Как сделать режим короткого замыкания

Добавил пользователь Дмитрий К.
Обновлено: 05.10.2024

1. Режим короткого замыкания электроустановки (Режим короткого замыкания) - режем работы электроустановки при наличии в ней короткого замыкания.

2. Режим работы электроустановки предшествующий короткому замыканию (Предшествующий режим) - режим работы электроустановки непос­редственно перед моментом возникновения короткого замыкания.

3. Установившийся режим короткого замыкания электроустановки - режим короткого замыкания электроус­тановки, наступающий после затухания во всех цепях свободных токов и прекраще­ния изменения напряжения возбудителей синхронных машин под действием автома­тических регуляторов возбуждения.

4. Переходный процесс в электроустановке - процесс перехода от одного установив­шегося режима электроустановки к другому.

5. Электромагнитный пере­ходный процесс в электроустановке - переходный процесс, характеризуемый изменением значений только электромагнит­ных величин электроустановки.

6. Электромеханический переходный процесс в электроустановке - переходный процесс, характеризуемый совместным изменением значений электро­магнитных и механических величин, опре­деляющих состояние электроустановки.

7. Режим нормального нап­ряжение синхронной машины при коротком замыкании (Режим нормального напряжении) - режим работы синхронной машины при коротком замыкании в электроэнергетической системе, когда напряжение на выво­дах машины поддерживается равным нап­ряжению нормального режима.

8. Режим подъема возбужде­ния синхронной машины при коротком замыкании (Режим подъема возбуждения) - режим работы синхронной машины при коротком замыкании в электроэнергетичес­кой системе, когда ток возбуждения машины под действием автоматического регуля­тора возбуждения продолжает увеличивать­ся.

9. Режим предельного воз­буждения синхронной машины при коротком замыкании (Режим предельного возбуждения) - установившийся режим работы синхрон­ной машины при коротком замыкании в электрической системе, когда ток возбуж­дения машины равен предельному.

10. Выпадение из синхрониз­ма синхронной машины - нарушение устойчивости параллельной работы синхронной машины с питающей сетью при синхронной частоте вращения, в результате которого она начинает вращаться с асинхронной частотой.

11. Переходные процессы во вращающейся электрической машине - э лектромагнитные, тепловые и механи­ческие процессы во вращающейся элект­рической машине, возникающие при вне­запном изменении ее установившегося со­стояния.

12. Статическая устойчивость синхронной машины - с пособность синхронной машины со­хранять устойчивую параллельную работу с питающей сетью с синхронной частотой вращения при плавном нарушении ее ус­тановившегося состояния.

13. Динамическая устойчи­вость синхронной машины - способность синхронной машины со­хранять устойчивую параллельную работу с питающей сетью с синхронной частотой вращения после колебаний этой частоты, вызванных внезапным нарушением уста­новившегося состояния машины.

14. Статическая устойчивость асинхронной машины - способность асинхронной машины со­хранять устойчивую работу при плавном нарушении ее установившегося состояния.

15. Динамическая устойчи­вость асинхронной машины - с пособность асинхронной машины со­хранять устойчивую работу после колеба­ния частоты вращения, вызванного вне­запным нарушением ее установившегося состояния.

16. Качания частоты враще­ния электрической машины пере­менного тока (качания) - периодические отклонения мгновенного значения частоты вращения вала электри­ческой машины переменного тока от среднего установившегося значения при неизменных напряжении и частоте сети и постоянном моменте нагрузки.

17. Режим работы электрооборудования – совокупность условий работы электрооборудования за определенный интервал времени с учетом их длительности, последовательности, а также значения и характера нагрузки.

18. Установившийся режим работы электрооборудования – режим работы электрооборудования, при котором значения всех параметров режима практически неизменны или изменяются периодически.

19. Переходный режим работы электрооборудования – режим перехода от одного установившегося режима работы электрооборудования к другому.

20. Переходный режим работы энергосистемы – режим работы энергосистемы, при котором скорости изменения параметров настолько значительны, что они должны учитываться при рассмотрении конкретных практических задач.

21. Асинхронный режим работы энергосистемы – переходных режим, характеризующийся несинхронным вращением части генераторов энергосистемы.

22. Режим качаний в энергосистеме – режим энергосистемы, при котором происходят периодические изменения параметров без нарушения синхронизма.

23. Устойчивость энергосистемы – способность энергосистемы возвращаться к установившемуся режиму работы после различного рода возмущений.

24. Область устойчивости энергосистемы – зона значений параметров режима энергосистемы, в которой устойчивость её при данном возмущении обеспечена.

25. Статическая устойчивость энергосистемы – способность энергосистемы возвращаться к установившемуся режиму после малых возмущений

Примечание: под малым возмущением режима энергосистемы понимается такое, при котором изменения параметров несоизмеримо малы по сравнению со значениями этих параметров.

26. Критическое напряжение в энергосистеме – предельное наименьшее значение напряжения в узлах энергосистемы по условиям статической устойчивости.

27. Запас статической устойчивости энергосистемы – показатель, количественно характеризующий статическую устойчивость данного режима энергосистемы в сравнении с предельным по устойчивости режимом.

28. Динамическая устойчивость энергосистемы – способность энергосистемы возвращаться к установившемуся режиму после значительных нарушений без перехода в асинхронный режим.

Примечание: под значительным понимается такое нарушение режима, при котором изменения параметров режима соизмеримы со значениями этих параметров.

29. Результирующая устойчивость энергосистемы – способность энергосистемы восстанавливать синхронную работу после возникновения асинхронного режима.

30. Лавина напряжения в энергосистеме – явление лавинообразного снижения напряжения вследствие нарушения статической устойчивости энергосистемы и нарастающего дефицита реактивной мощности.

31. Лавина частоты в энергосистеме – явление лавинообразного снижения частоты в энергосистеме, вызванного нарастающим дефицитом активной мощности.

32. Нейтраль – общая точка соединенных в звезду фазных обмоток электрооборудования.

33. Электрическая сети с изолированной нейтралью – электрическая сеть, содержащая оборудование, нейтрали которого не присоединены к заземляющим устройствам или присоединены к ним через устройства измерения, защиты, сигнализации с большим сопротивлением.

34. Электрическая сети с заземленной нейтралью – электрическая сеть, содержащая оборудование, нейтрали которого, все или часть из них, соединены с заземляющими устройствами непосредственно или через устройство с малым сопротивлением по сравнению с сопротивлением нулевой последовательности сети.

35. Коэффициент замыкания на землю – отношение наибольшего фазного напряжения в месте металлического замыкания на землю к напряжению в той же точке при отсутствии замыкания.

36. Электрическая сеть с эффективно заземленной нейтралью – электрическая сеть, в которой коэффициент замыкания на землю не превышает нормируемого значения.

37. Электрическая сеть с компенсированной нейтралью – электрическая сеть, содержащая оборудование, нейтрали которого, все или часть из них, заземлены через дугогасящие реакторы.

Режимом короткого замыкания трансформатора называется режим, при котором вторичная обмотка замкнута накоротко или на очень малое сопротивление. Короткое замыкание в условиях эксплуатации создаёт аварийное состояние, поскольку вторичный ток, а, следовательно, и первичный, увеличиваются в несколько десятков раз по сравнению с номинальными, что может вызвать разрушение трансформатора. Поэтому в цепях с трансформатором должна быть предусмотрена защита, которая при коротком замыкании автоматически отключает трансформатор.

Иногда трансформатор представляют в виде упрощённой эквивалентной схемы, для которой используется понятие активного сопротивления. Активное сопротивлениетрансформатора или сопротивление короткого замыкания RКЗ определяется в режиме короткого замыкания как:


.
46.10

Опыт короткого замыкания служит также контрольным опытом для определения коэффициента трансформации. Так как в этом режиме суммарный магнитный поток в сердечнике очень мал, то в первом приближении намагничивающая сила в первичной цепи I1·n1 уравновешивается размагничивающим действием вторичного тока I2·n2:


.
46.11

Порядок выполнения работы.


Рис. 46.2.

1. Изучить схему (Рис. 46.2), стационарно собранную на лабораторном столе.

2. Провести опыт холостого хода трансформатора.

a. Проверить положение ключей К1 и К2 во вторичной цепи. Они должны быть разомкнуты.

b. Установить напряжение U1 = 120 В в первичной цепи с помощью ЛАТРа.

c. Снять показания всех приборов и записать их в первую строку Таблицы 46.1.

3. Выполнить измерения в рабочем режиме трансформатора.

a. Замкнуть ключ К1 во вторичной цепи.

b. Напряжение в первичной цепи U1 = 120 В поддерживать постоянным в течение опыта.

c. Изменять ток I2вторичной цепи от 1 до 10 A через 1 A, изменяя сопротивление нагрузки с помощью реостатов R1 и R2.

d. Показания всех приборов свести в Таблицу 46.1.

4. Провести опыт короткого замыкания трансформатора.

a. Напряжение в первичной цепи установить равным 0 (U1 = 0 В)

b. Толькопослетого, как убедитесь, чтовольтметр первичной цепи показывает 0, можно замкнуть ключи К1 и К2во вторичной цепи.

c. С помощью ЛАТРа постепенно увеличивая напряжение в первичной цепи последовательно установить значения тока I2от 2 А до 10 А через 2 А. В Таблицу 46.2 занести показания амперметра и ваттметра (I1 и P1) в первичной цепи.

d. . В Таблицу 46.2 занести показания амперметра и ваттметра (I1 и P1) в первичной цепи.

U1, В I1, А P1, Вт U2, В I2, А P2, Вт
Режим холостого хода
120[1] 15
43
105
Рабочий режим
1,0
2,0

Таблица 46.2. Режим короткого замыкания

I2, А 2,0 4,0 6,0 8,0 10,0
P1, Вт
I1, А

1. Таблицы наблюдений в режиме холостого хода, рабочем режиме и в режиме короткого замыкания.

2. Расчёт коэффициента трансформации К из данных Таблицы 46.1 по формуле (46.3).

3. Величину потерь мощности в стальном сердечнике трансформатора, определённую из Таблицы 46.1.


4. Расчет значений КПД трансформатора в зависимости от тока во вторичной обмотке h = = f(I2). График зависимости h = f(I2).

5. Вычисление значений cosj1 и cosj2 по формулам (46.7) и (46.9). Графики зависимости этих коэффициентов от мощности I2.

6. Расчёт среднего значения активного сопротивления r из данных Таблицы 46.2 по формуле (46.10).

7. Расчёт среднего значения коэффициента трансформации К из данных Таблицы 46.2 по формуле (46.11). Сравнение полученного значения с коэффициентом, рассчитанным по формуле (46.3).

8. График зависимости потерь мощности в проводах обмоток от величины I2 (Pпр = f(I2)) (по указанию преподавателя).

9. Из построенного графика (Pпр = f(I2)) найти то значение тока I2, при котором Pст = Pпр. Убедиться, что положение максимума КПД приходится на это значение тока.

1. Какой физический закон лежит в основе работы трансформатора?

2. Какие режимы работы трансформатора предлагается изучить в работе?

3. Что такое коэффициент мощности трансформатора?

4. В каком режиме можно определить коэффициент трансформации?

[1] Числа, записанные в этой строке таблицы, являются примером записи результатов.

Timeweb - компания, которая размещает проекты клиентов в Интернете, регистрирует адреса сайтов и предоставляет аренду виртуальных и физических серверов. Разместите свой сайт в Сети - расскажите миру о себе!

Виртуальный хостинг

Быстрая загрузка вашего сайта, бесплатное доменное имя, SSL-сертификат и почта. Первоклассная круглосуточная поддержка.

Производительность и масштабируемые ресурсы для вашего проекта. Персональный сервер по цене виртуального хостинга.

Выделенные серверы

Быстрая загрузка вашего сайта, бесплатное доменное имя, SSL-сертификат и почта. Первоклассная круглосуточная поддержка.

Что такое короткое замыкание

Короткое замыкание – это соединение двух точек электрической цепи с различными потенциалами, что не предусмотрено нормальным режимом работы цепи и приводит к критичному росту силы тока в месте соединения.

Таким образом, КЗ приводит к образованию разрушительных токов, превышающих допустимые величины. Что способствует выходу приборов из строя и повреждениям проводки. Для того, чтобы понять, что может спровоцировать этот процесс, нужно детально разобраться в процессах, происходящих при коротком замыкании.

Что такое короткое замыкание

По закону Ома сила тока (I) обратно пропорциональна сопротивлению (R)

Пример применения закона Ома к лампе накаливания мощностью в 100 Вт, подключенную к электросети в 220В. Здесь можно с помощью закона Ома рассчитать величину тока для нормального режима работы и короткого замыкания. Сопротивление источника и электропроводки проигнорируем.

Что такое короткое замыкание

Электрическая схема нормального режима работы (a) и короткого замыкания (b)

Вот пример нормальной цепи, по которой ток течет от источника к лампе накаливания. На схеме ниже изображен этот процесс.

Что такое короткое замыкание

Пример нормальной цепи, ток течет от источника к лампе

А теперь, представим, что произошла поломка, из-за которой в цепь попал дополнительный проводник.

Как не допустить кз

Дополнительный проводник замыкает цепь

Сопротивление проводников стремится к нулю. Вот почему большая часть электрического тока после замыкания сразу потечет через дополнительный проводник, как бы избегая лампы накаливания с высоким сопротивлением. Результатом будет некорректная работа прибора, потому, что он не получит достаточно тока. И это еще не самый опасный вариант.

Как известно, по закону Ома сила тока обратно пропорциональна сопротивлению. Когда давление в цепи падает в результате короткого замыкания — на несколько порядков возрастет сила тока. По закону Джоуля – Ленца при росте силы тока увеличивается выделение тепла.

При многократном росте силы тока проводники мгновенно нагреваются. А теперь представим, что в сети нет предохранителей либо они не сработали достаточно быстро. В результате проводники плавятся, а изоляция начинает гореть. Зачастую, так возникают пожары в результате короткого замыкания.

Виды коротких замыканий

Как не допустить кз

Схемы кз

Короткие замыкания в быту:

  • однофазные– происходит, когда фазный провод замыкается на ноль. Такие КЗ случаются чаще всего. Обозначен, как однофазное с землей К(1)
  • двухфазные – ( К2)происходит, когда одна фаза замыкается на другую, относится к несимметричным процессам. Есть еще 2-х фазное с землей К (1,1)в системах с заземленной нейтралью;
  • трехфазные – происходит, когда замыкаются сразу три фазы. Самый опасный вид КЗ. Это единственный вид короткого замыкания, при котором не происходит перекос фаз, процесс протекает симметрично;

Вот типичная картина последствий короткого замыкания: оплавленная или сгоревшая изоляция, запах гари, следы оплавления или горения внутри электрического прибора.

Как не допустить кз

Последствия короткого замыкания в электрощите многоэтажного дома

В реальных условиях короткое замыкание происходит в таких ситуациях:

  • Повреждение изоляции проводников. Это может произойти из-за изношенности изоляции, а так же механического воздействия на неё. Жилы кабеля замыкаются напрямую или через корпус оборудования.
  • Некорректное подключение электроприборов к сети. Данный случай характеризуется допущением ошибки мастера или владельца квартиры из-за чего и происходит короткое замыкание.
  • Попадание в электрический прибор воды. Конечно же нельзя допускать попадание воды на электроприборы, ведь она является хорошим проводником электричества и замыкает контакты.

В обустройстве быта короткое замыкание происходит во время ремонта стен, если случайно повредить проводку. Также аварии случаются в квартирах и домах со старой проводкой. В результате чрезмерного нагревания она повреждается в следствие воздействия воды или грызунов.

Причины короткого замыкания и как его предотвратить

Причин может быть сколько угодно, остановимся на тех, что по данным аварийной статистики случаются чаще всего.

  1. Износ электрохозяйства энергетических систем либо бытовой электросети. Случается, когда изоляция проводов теряет диэлектрические свойства. Тогда на таком участке в цепи возникает непредусмотренное электрическое соединение.

Как не допустить кз

Причины возникновения короткого замыкания

2. Превышение допустимой нагрузки на цепь питания. Вызывает нагрев токонесущих элементов, что приводит к повреждению изоляции.

Как не допустить кз

Возникновение короткого замыкания из-за перегрузки электросети

3. Удар молнии в ВЛ. В данном случае короткое замыкание вызывает перенапряжение электросети. молнии не обязательно попадать непосредственно в ЛЭП, если разряд был близко, он вызывает ионизацию воздуха, что увеличивает его электропроводимость. В результате чего образовывается электрическая дуга между линиями электропередач.

4. Физическое воздействие на провода, которое вызывает механическое повреждение изоляции, а так же попадание металлических предметов на токопроводимые элементы. К этому нарушению может привести неосторожность в ведении хозяйства.

5. Подключение к сети неисправного оборудования. К примеру может быть вызвано снижением внутреннего сопротивления.

6. Человеческий фактор. Довольно обширное определение под которое попадает огромное количество случаев неосторожного или неправильного действия человека: ошибки при монтаже электропроводки, неудачный ремонт электрооборудования, неправильная работа персонала подстанции.

Защита от короткого замыкания

Соблюдайте правила эксплуатации электрических приборов. Наши рекомендации помогут предупредить короткое замыкание, чтобы дело не дошло до серьезных последствий.

Следите за состоянием проводки

В основном это касается старых зданий, в которых проводка прокладывалась десятки лет назад. Дело в том, что сечение кабеля старой проводки часто не соответствует мощности и силе тока, необходимым для работы современных электроприборов: кондиционеров, стиральных машин, микроволновых печей, электрочайников и прочей техники. Это приводит к нагреву кабеля и риску короткого замыкания.

Следовательно обезопасить себя можно своевременной заменой старой проводки на новую. У новой проводки сечение кабеля должно соответствовать потребляемой мощности и силе тока в сети. Эти данные находятся в договоре на подключение здания к электросети. Выбрать нужное сечение кабеля поможет таблица.

Что такое короткое замыкание

У новой проводки сечение кабеля должно соответствовать потребляемой мощности и силе тока в сети

Использование подходящих автоматических предохранителей

Как не допустить кз

Жучок — предохранитель

Проверка работоспособности кабеля

Перед монтажом проводки всегда проверяйте кабель на целостность изоляции и отсутствие короткого замыкания. Кабель с ленточной броней надо проверять на замыкание на броню. Мегаометр — прибор, с помощью которого проще всего это сделать.

Как не допустить кз

Мегаомметр

Электросети без заземления или зануления — нет эксплуатации

Наличие заземления и зануления само по себе не предупреждает короткое замыкание. Однако оно защищает любое оборудование в ситуации, когда происходит короткое замыкание. Сила тока мгновенно уменьшается до безопасного для человека уровня.

например в многоквартирных и частных домах заземление реализовано таким образом, чтобы при коротком замыкании срабатывали автоматы защиты. Надежные предохранители в бытовом потреблении значительно снижают риск КЗ.

Схема электропроводки в здании и на участке под час ремонта

Если в вашей квартире проводится ремонт, или земельные работы в частном доме, то крайне важно не повредить проводку. Чтобы этого не случилось, при сверлении или штроблении стен, необходимо проверить этот участок с помощью тестера скрытой проводки. А перед выполнением земляных работ важно изучить схему проводки на участке.

Последствия КЗ

Даже зная причины короткого замыкания и того, как его не допустить, бывают внештатные ситуации, когда всё же они случаются. И тогда, в зависимости от тяжести КЗ, возникают последствия:

  1. Поражение электрическим током и выделяющимся теплом человека.
  2. Пожар.
  3. Выход из строя приборов.
  4. Отключение электричества с невозможностью доступа ни к интернету, ни к телевизору. Дальнейшее времяпровождение без света при свечах может затянутся надолго, пока не закончатся ремонтные работы.

Как не допустить кз

Часто причиной пожара является короткое замыкание

Такое явление, как короткое замыкание – возмутитель спокойствия и комфорта. От него нужно защищаться доступным каждому обывателю способами защиты.

Основным действием при борьбе с КЗ и защите от него является своевременное размыкание цепи. Делается это с помощью разных аппаратов защиты от короткого замыкания.

Практически во всех современных электроприборах есть плавкие предохранители. Силой тока предохранитель расплавляется и цепь разрывается.

Во многоэтажных домах, в каждой квартире есть автоматы защиты от короткого замыкания. Это автоматические выключатели, которые рассчитаны на конкретный рабочий ток. При повышении силы тока автомат срабатывает, разрывая цепь.

В промышленной сфере, для защиты электродвигателей от коротких замыканий применяется специальные реле.

Что такое короткое замыкание

Автоматы для защиты от короткого замыкания

Теперь, зная что такое короткое замыкание, его его причины, заодно вспомнив закон Ома, вы можете легко предотвратить это неприятное ЧП. .

Заключение

Короткое замыкание возникает в результате повреждения проводников или электрических приборов, их некорректного подключения или перегрузке сети. Последствия в данной ситуации могут быть самые разнообразные: от простой поломки прибора до возникновения пожара или поражения людей током. В профилактических целях, предупредить замыкание можно, используя правильные предохранители, а так же кабели с подходящим сечением. Будьте внимательны при выполнении ремонтных работ. Не допускайте механического повреждения проводки, тщательно изучайте необходимые схемы энергетических систем в вашем жилище. Если ко всему подходить с умом — проблем с коротким замыканием не возникнет и тогда не потребуется его устранять.

Читайте также: