Как сделать проверку в сложных уравнениях

Обновлено: 08.07.2024

Количество уравнений в системе равно 4, а количество переменных в системе 5, следовательно, т.к. - система имеет бесконечное множество решений или не имеет решений.

Для решения системы выпишем расширенную матрицу системы:

Приведем расширенную матрицу системы к эквивалентной матрице системы в ступенчатом виде.

Выразим базисные переменные через свободные

Запишем частное решение, придавая любые значения свободным переменным.

Например, при значение , а .

Ответ в виде вектора: .

Сделаем проверку, подставив найденное решение в каждое уравнение системы.

Итак, мы видим, что после подстановки в систему каждое уравнение обратилось в числовое тождество. Следовательно, решение системы найдено верно.

Варианты задания 5

Найти общее и частное решение неоднородной СЛАУ. Сделать проверку решения. (метод Гаусса)

Вариант СЛАУ Вариант СЛАУ

Задание 6

Найти фундаментальный набор решений однородной СЛАУ. Сделать проверку решения.

Решение:

Количество уравнений в системе равно 4, а количество переменных в системе 5, следовательно, т.к. - система имеет бесконечное множество решений.

Для решения системы выпишем исходную матрицу системы:

Приведем исходную матрицу системы к эквивалентной матрице системы в ступенчатом виде.

- система имеет бесконечное множество решений, включая нулевое - тривиальное.

Выразим базисные переменные через свободные

Найдем фундаментальный набор решений.

Количество фундаментальных решений равно количеству свободных слагаемых, т.е. 2.

Придадим свободным переменным любые такие значения, которые образуют квадратную матрицу с определителем не равным нулю; самый простой набор таких значений – единичная матрица.

Запишем ответ в виде двух векторов:

Сделаем проверку, подставив найденное решение в каждое уравнение системы.

Итак, мы видим, что после подстановки в систему каждое уравнение обратилось в числовое тождество. Следовательно, решение системы найдено верно.

Уравнения бывают разные. Вы изучите их многие виды в курсе математике, но все они решаются по одним правилам, эти правила мы сейчас рассмотрим подробно.

Что такое уравнение? Смысл и понятия.

Узнаем сначала все понятия, связанные с уравнением.

Определение:
Уравнение – это равенство, содержащее переменные и числовые значения.

Переменные (аргументы уравнения) или неизвестные уравнения – их обозначают в основном латинскими буквами (x, y, z, f и т.д.). При подстановки числового значения переменной в уравнение получаем верное равенство – это корень уравнения.

Решить уравнение – это значит найти все корни уравнения или доказать, что у данного уравнения нет корней.

Корни уравнения – это значение переменной при котором уравнение превращается в верное равенство.

Рассмотрим теперь, все термины на простом примере:
x+1=3

В данном случае x – переменная или неизвестное значение уравнения.

Можно устно решить данное уравнение. Какое надо число прибавить к 1, чтобы получить 3? Конечно, число 2. То есть наша переменная x =2. Корень уравнения равен 2. Проверим правильно ли мы решили уравнение? Чтобы проверить уравнение, нужно вместо переменной подставить полученный корень уравнения.

Получили верное равенство. Значит, правильно нашли корни уравнения.

Но бывают более сложные уравнения, которые устно не решить. Нужно прибегать к правилам решения уравнений. Рассмотрим правила решения уравнений ниже, которые объяснят нам как решать уравнения.

Правила уменьшения или увеличения уравнения на определенное число.

Чтобы понять правило рассмотрим подробно простой пример:
Решите уравнение x+2=7

Решение:
Чтобы решить данное уравнение нужно левую и правую часть уменьшить на 2. Это нужно сделать для того, чтобы переменная x осталась слева, а известные (т.е. числа) справа. Что значит уменьшить на 2? Это значит отнять от левой части двойку и одновременно от правой части отнять двойку. Если мы делаем какое-то действие, например, вычитание применяя его одновременно к левой части уравнения и к правой, то уравнение не меняет смысл.

Нужно остановиться на этом моменте подробно. Другими словами, мы +2 перенесли с левой части на правую и знак поменяли стало число -2.

Как проверить правильно ли вы нашли корень уравнения? Ведь не все уравнения будут простыми как данное. Чтобы проверить корень уравнения его значение нужно поставить в само уравнение.

Проверка:
Вместо переменной x подставим 5.

x+2=7
5+2=7
Получили верное равенство, значит уравнение решено верно.
Ответ: 5.

Разберем следующий пример:
Решите уравнение x-4=12.

Решение:
Чтобы решить данное уравнение нужно увеличить левую и правую часть уравнения на 4, чтобы переменная x осталось в левой стороне, а известные (т.е. числа) в правой стороне. Прибавим к левой и правой части число 4. Получим:

Другими словами, мы -4 перенесли из левой части уравнения в правую и получили +4. При переносе через равно знаки меняются на противоположные.

Теперь выполним проверку, вместо переменной x подставим в уравнение полученное число 16.
x-4=12
16-4=12
Ответ: 16

Очень важно понять правила переноса частей уравнения через знак равно. Не всегда нужно переносить числа, иногда нужно перенести переменные или даже целые выражения.

Рассмотрим пример:
Решите уравнение 4+3x=2x-5

Решение:
Чтобы решить уравнение необходимо неизвестные перенести в одну сторону, а известные в другую. То есть переменные с x будут в левой части, а числа в правой части.
Сначала перенесем 2x с правой стороны в левую сторону уравнения и получим -2x.

4+3x= 2x -5
4+3x -2x =-5

Далее 4 с левой стороны уравнения перенесем на правую сторону и получим -4
4 +3x-2x=-5
3x-2x=-5 -4

Теперь, когда все неизвестные в левой стороне, а все известные в правой стороне посчитаем их.
(3-2)x=-9
1x=-9 или x=-9

Получилось верное равенство, уравнение решено верно.
Ответ: корень уравнения x=-9.

Правила уменьшения или увеличения уравнения в несколько раз.

Данное правило подходит тогда, когда вы уже посчитали все неизвестные и известные, но какой-то коэффициент остался перед переменной. Чтобы избавится от не нужного коэффициента мы применяем правило уменьшения или увеличения в несколько раз коэффициент уравнения.

Рассмотрим пример:
Решите уравнение 5x=20.

Решение:
В данном уравнение не нужно переносить переменные и числа, все компоненты уравнения стоят на месте. Но нам мешает коэффициент 5 который стоит перед переменной x. Мы не можем его просто взять и перенести в правую сторону уравнения, потому что между число 5 и переменно x стоит умножение 5⋅х. Если бы между переменной и числом стоял знак плюс или минус, мы могли бы 5 перенести вправо. Но мы так поступить не можем. За то мы можем все уравнение уменьшить в 5 раз или поделить на 5. Обязательно делим правую и левую сторону одновременно.

5x=20
5x :5 =20 :5
5:5x=4
1x=4 или x=4

Делаем проверку уравнения. Вместо переменной x подставляем 4.
5x=20
5⋅ 4 =20
20=20 получили верное равенство, корень уравнение найден правильно.
Ответ: x=4.

Рассмотрим следующий пример:
Найдите корни уравнения .

Решение:
Так как перед переменной x стоит коэффициент необходимо от него избавиться. Надо все уравнение увеличить в 3 раза или умножить на 3, обязательно умножаем левую часть уравнения и правую часть.

Сделаем проверку уравнения. Подставим вместо переменной x полученный корень уравнения 21.

7=7 получено верное равенство.

Ответ: корень уравнения равен x=21.

Следующий пример:
Найдите корни уравнения

Решение:
Сначала перенесем -1 в правую сторону уравнения относительно знака равно, а в левую сторону и знаки у них поменяются на противоположные.
Теперь нужно все уравнение умножить на 5, чтобы в коэффициенте перед переменной x убрать из знаменателя 5.

Далее делим все уравнение на 3.

3x :3 =45 :3
(3:3)x=15

Сделаем проверку. Подставим в уравнение найденный корень.

Как решать уравнения? Алгоритм действий.

Подведем итог разобранной теме уравнений, рассмотрим общие правила решения уравнений:

  1. Перенести неизвестные в одну сторону, а известные в другую сторону уравнения относительно равно.
  2. Преобразовать и посчитать подобные в уравнении, то есть переменные с переменными, а числа с числами.
  3. Избавиться от коэффициента при переменной если нужно.
  4. В итоге всех действий получаем корень уравнение. Выполняем проверку.

Эти правила действуют на любой вид уравнения (линейный, квадратный, логарифмический, тригонометрический, рациональные, иррациональные, показательные и другие виды). Поэтому важно понять эти простые правила и научиться ими пользоваться.

Kak reshit logarifmicheskoe uravnenie

Как решить логарифмическое уравнение? Этим вопросом задаются многие школьники, особенно в преддверии сдачи ЕГЭ по математике. Ведь в задании С1 профильного ЕГЭ могут встретиться именно логарифмические уравнения.

Уравнение, в котором неизвестное находится внутри логарифмов, называется логарифмическим. Причем неизвестное может находится как в аргументе логарифма, так и в его основании.

Способов решения таких уравнений существует несколько. В этой статье мы разберем способ, который легко понять и запомнить.

Как решать уравнения с логарифмами: 2 способа с примерами

Решить логарифмическое уравнение можно разными способами. Чаще всего в школе учат решать логарифмическое уравнение с помощью определения логарифма. То есть мы имеем уравнение вида: Вспоминаем определение логарифма и получаем следующее: Таким образом мы получаем простое уравнение, которое сможем легко решить.

При решении логарифмических уравнений важно помнить об области определения логарифма, т.к. аргумент f(x) должен быть больше ноля. Поэтому после решения логарифмического уравнения мы всегда делаем проверку!

Давайте посмотрим, как это работает на примере:

Воспользуемся определением логарифма и получим:

Теперь перед нами простейшее уравнение, решить которое не составит труда:

Сделаем проверку. Подставим найденный Х в исходное уравнение: Так как 3 2 = 9, то последнее выражение верно. Следовательно, х = 3 является корнем уравнения.

Основной минус данного метода решения логарифмических уравнений в том, что многие ребята путают, что именно нужно возводить в степень. То есть при преобразовании logaf(x) = b, многие возводят не a в степень b, а наоборот b в степень a. Такая досадная ошибка может лишить вас драгоценных баллов на ЕГЭ.

Поэтому мы покажем еще один способ решения логарифмических уравнений.

Чтобы решить логарифмическое уравнение, нам нужно привести его к такому виду, когда и в правой, и в левой части уравнения будут стоять логарифмы с одинаковыми основаниями. Это выглядит вот так:

Решим еще раз то же самое уравнение, но теперь этим способом: В левой части у нас логарифм с основанием 2. Следовательно, правую часть логарифма нам нужно преобразовать так, чтобы она тоже содержала логарифм с основанием 2.

Kak reshit logarifmicheskoe uravnenie6

Для этого вспоминаем свойства логарифмов. Первое свойство, которое нам здесь понадобится – это логарифмическая единица. Напомним его:То есть в нашем случае: Возьмем правую часть нашего уравнения и начнем ее преобразовывать: Теперь нам нужно 2 тоже внести в логарифмическое выражение. Для этого вспоминаем еще одно свойство логарифма:

Kak reshit logarifmicheskoe uravnenie9

Воспользуемся этим свойством в нашем случае, получим: Мы преобразовали правую часть нашего уравнения в тот вид, который нам был нужен и получили: Теперь в левой и в правой частях уравнения у нас стоят логарифмы с одинаковыми основаниями, поэтому мы можем их зачеркнуть. В результате, получим такое уравнение:

Да, действий в этом способе больше, чем при решении с помощью определения логарифма. Но все действия логичны и последовательны, в результате чего шансов ошибиться меньше. К тому же данный способ дает больше возможностей для решения более сложных логарифмических уравнений.

Разберем другой пример: Итак, как и в предыдущем примере применяем свойства логарифмов и преобразовываем правую часть уравнения следующим образом:После преобразования правой части наше уравнение принимает следующий вид:Теперь можно зачеркнуть логарифмы и тогда получим: Вспоминаем свойства степеней:

Теперь делаем проверку: то последнее выражение верно. Следовательно, х = 3 является корнем уравнения.

Еще один пример решения логарифмического уравнения:Преобразуем сначала левую часть нашего уравнения. Здесь мы видим сумму логарифмов с одинаковыми основаниями. Воспользуемся свойством суммы логарифмов и получим:Теперь преобразуем правую часть уравнения:Выполнив преобразования правой и левой частей уравнения, мы получили:Теперь мы можем зачеркнуть логарифмы:

Решим данное квадратное уравнение, найдем дискриминант:

Kak reshit logarifmicheskoe uravnenie24

Сделаем проверку, подставим х1 = 1 в исходное уравнение: Верно, следовательно, х1 = 1 является корнем уравнения.

Kak reshit logarifmicheskoe uravnenie26

Теперь подставим х2 = -5 в исходное уравнение:Так как аргумент логарифма должен быть положительным, выражение не является верным. Следовательно, х2 = -5 – посторонний корень.

Пример решения логарифмического уравнения с разными основаниями

Выше мы решали логарифмические уравнения, в которых участвовали логарифмы с одинаковыми основаниями. А что же делать, если основания у логарифмов разные? Например,

Правильно, нужно привести логарифмы в правой и левой части к одному основанию!

Итак, разберем наш пример: Преобразуем правую часть нашего уравнения:

Тогда получим:Вот теперь в правой и левой части уравнения у нас стоят логарифмы с одинаковыми основаниями и мы можем их зачеркнуть: Делаем проверку:Если мы преобразуем правую часть, воспользовавшись свойствами логарифма, то получим: Верно, следовательно, х = 4 является корнем уравнения.

Пример решения логарифмического уравнения с переменными основаниями

Выше мы разобрали примеры решения логарифмических уравнений, основания которых были постоянными, т.е. определенным значением – 2, 3, ½ … Но в основании логарифма может содержаться Х, тогда такое основание будет называться переменным. Например, logx+1(х 2 +5х-5) = 2. Мы видим, что основание логарифма в данном уравнении – х+1. Как же решать уравнение такого вида? Решать мы его будем по тому же принципу, что и предыдущие. Т.е. мы будем преобразовывать наше уравнение таким образом, чтобы слева и справа были логарифмы с одинаковым основанием. Преобразуем правую часть уравнения:Теперь логарифм в правой части уравнения имеет такое же основание, как и логарифм в левой части:Теперь мы можем зачеркнуть логарифмы: Но данное уравнение неравносильно исходному уравнению, так как не учтена область определения. Запишем все требования, относящиеся к логарифму:

1. Аргумент логарифма должен быть больше ноля, следовательно:

2. Основание логарифма должно быть больше 0 и не должно равняться единице, следовательно:

Сведем все требования в систему:

Данную систему требований мы можем упростить. Смотрите х 2 +5х-5 больше ноля, при этом оно приравнивается к (х + 1) 2 , которую в свою очередь так же больше ноля. Следовательно, требование х 2 +5х-5 > 0 выполняется автоматически и мы можем его не решать. Тогда наша система будет сведена к следующему: Перепишем нашу систему: Следовательно, наша система примет следующий вид: Теперь решаем наше уравнение: Справа у нас квадрат суммы: Данный корень удовлетворяет наши требования, так как 2 больше -1 и не равно 0. Следовательно, х = 2 – корень нашего уравнения.

Для полной уверенности можем выполнить проверку, подставим х = 2 в исходное уравнение:

Т.к. 3 2 =9, то последнее выражение верно.

Как сделать проверку

Еще раз обращаем ваше внимание, что при решении логарифмических уравнений необходимо учитывать область допустимых значений. Так, основание логарифма должно быть больше ноля и не должно равняться единице. А его аргумент должен быть положительным, т.е. больше ноля.

Kak reshit logarifmicheskoe uravnenie50

Если наше уравнение имеет вид loga (f(x)) = loga (g(x)), то должны выполняться следующие ограничения:

После решения логарифмического уравнения нужно обязательно сделать проверку. Для этого вам необходимо подставить получившееся значения в исходное уравнение и посчитать его. Времени это займет немного, зато позволит не записать в ответ посторонние корни. Ведь так обидно правильно решить уравнение и при этом неправильно записать ответ!


Сначала мы решаем уравнения в школе в тетрадях, а потом в уме на совещаниях. В статье расскажем, как решать самые простые уравнения быстро и легко.

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

  • кубические,
  • уравнения четвертой степени,
  • иррациональные и рациональные, и другие.

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

деление на 4

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

блок-схема решений линейного уравнения

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

5х − 3х − 2х = −12 − 1 + 15 − 2

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

пример 5

Пример 5. Решить:

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

  1. 2х + 6 = 5 − 7х
  2. 2х + 7х = 5 − 6
  3. 9х = −1
  4. х = −1/9

Сейчас 00.12, 21 декабря 2012 года и я поздравляю всех посетителей сайта с Концом Света. Он оказался для меня самой настоящей находкой, поскольку каждый раз, начиная новую статью, я мучаюсь с первым абзацем, чтобы грамотно подобрать сухие точные фразы и сориентировать читателя в теме.

Тибетские монахи сказали, что Армагеддон будет продолжаться две недели (видимо, все были студентами и сдавали сессии), поэтому у чайников ещё есть время ознакомиться с уроками Действия с матрицами, Свойства матричных операций и матричные выражения, Как найти обратную матрицу? Это не так сложно и не так много, как кажется! То есть для освоения матричных уравнений необходимо обладать некоторыми навыками, и быть, если не шаманом матриц, то, по меньшей мере, матричным охотником. Не переживайте, Конец Концом, а матричные уравнения сдадутся на милость победителя.

Выполним проверку, для этого подставим найденное значение в исходное уравнение:

Получено верное равенство, значит, решение найдено правильно.

Про матричные уравнения рассказывать? =) Они устроены практически так же, только вместо чисел… правильно – матрицы (и конечно, числа тоже есть, помним, что матрицу можно умножить на число). Плюс особенные фишки, характерные для действий с матрицами. Всё просто, и особых трудностей возникнуть не должно.

Общие принципы решения матричных уравнений

Типовое матричное уравнение состоит, как правило, из нескольких матриц и неизвестной матрицы , которую предстоит найти. То есть, решением матричного уравнения является матрица.

Решить матричное уравнение, выполнить проверку

Как решить матричное уравнение?

Фактически нужно использовать алгоритм решения детского уравнения с числами.

В правой части умножаем каждый элемент матрицы на три, а матрицу левой части переносим направо со сменой знака:

Причёсываем правую часть:

Выразим , для этого обе части уравнения умножим на :

Ответ:

Как выполнить проверку?

Подставим найденное значение в левую часть исходного уравнения и проведём упрощения:

Получена правая часть исходного уравнения, значит решение найдено правильно.

Кстати, всегда ли матричное уравнение вообще имеет решение? Конечно не всегда. С ходу привожу простейшее доказательство: .

Пример, который мы разобрали, элементарен, и, скажу честно, вероятность столкнуться с чем-то подобным на практике невелика. Поэтому перейдём к более содержательным заданиям, которые с вероятностью, стремящейся к 100%, встретятся вам в реальной контрольной работе. Но прежде систематизируем общий ход решения:

Распространённый алгоритм решения матричного уравнения

Итак, на голову упал стандартный персонаж, состоящий из нескольких матриц, некоторых множителей и птицы счастья .

На первом шаге уравнение приводится к одному из двух видов:

либо , где – известные матрицы.

Примечание: существует также третий вид: , но в действительности он встречается крайне редко. Тем не менее, в конце статьи я рассмотрю данный случай.

На втором шаге необходимо выразить или, выражаясь более академично, разрешить уравнение относительно .

1) . Для того, чтобы разрешить данное уравнение относительно , умножим обе его части на слева (здесь и далее предполагаем, что обратная матрица существует):

. Внимание! Произведение матриц не перестановочно, поэтому критически важно, с какой стороны проводить умножение.

Чего и требовалось достичь. Матрица нам не известна.

2) . Умножаем обе части уравнения на справа:

Единичную матрицу убираем:

Готово. Матрица нам опять же не известна.

Таким образом, на втором шаге решение выражается в виде либо в виде . Поскольку обратной матрицы мы не знаем, то третий этап решения будет состоять в её нахождении. Это стандартная задача урока Как найти обратную матрицу?

На заключительном четвёртом шаге выполняем матричное умножение или , и, собственно, получаем ответ.

Рассмотрим примеры решений уравнений обоих видов более подробно:

Решение матричного уравнения вида

…и добавить нечего =)

Решить матричное уравнение, выполнить проверку

Решение: Уравнение уже имеет вид , поэтому никаких предварительных действий проводить не нужно.

Для разрешения уравнения относительно умножим обе его части на слева:

Из условия известны матрицы , однако, обратной матрицы мы не знаем. Придётся её найти:

Обратную матрицу найдем по формуле:
, где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

– матрица миноров соответствующих элементов матрицы .

– матрица алгебраических дополнений.

– транспонированная матрица алгебраических дополнений.

Таким образом, обратная матрица:

На финише проводим матричное умножение и получаем решение:

Ответ:

Проверка: Подставим найденное значение в левую часть исходного уравнения:

Получена правая часть исходного уравнения. Таким образом, решение найдено правильно.

Следующая задача весьма любопытна, и некоторые из вас сделают для себя неожиданное открытие:

Решить матричное уравнение и сделать проверку:

Решение: Неизвестная распложена справа от матрицы, и уравнение, очевидно, сведётся к виду . Используем уже знакомые из Примера №1 действия:

Для разрешения уравнения относительно умножим обе его части на слева:

Обратную матрицу найдем по формуле:
, где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

– матрица миноров соответствующих элементов матрицы .

– матрица алгебраических дополнений.

– транспонированная матрица алгебраических дополнений.

Таким образом, решение уравнения:

Ответ:

Дробь красивше оставить перед вектором-столбцом, хотя вполне приемлемо записать и так: .

Проверка: Подставим найденное значение в левую часть исходного уравнения:

Получена правая часть исходного уравнения, таким образом, решение найдено верно.

Напоминаю технический приём, который мы рассмотрели на уроке Свойства операций над матрицами. Матричные выражения. После подстановки в левую часть уравнения, константа уютно расположилась между матрицами. В подобных случаях число необходимо вынести вперёд и разобраться с ним в самом конце – после матричного умножения.

А теперь остановимся вот на каком моменте…. Вернёмся к самому началу решения, когда мы получили матричное уравнение в виде . Задача состояла в том, чтобы найти неизвестный вектор-столбец .

Перепишем уравнение в виде и в левой части умножим матрицы по обычному правилу:

До боли знакомая картина =) Две матрицы равны, когда равны их соответствующие элементы. Это система трёх линейных уравнений с тремя неизвестными:

И полученный нами ответ представляет собой решение данной системы:
.

Таким образом, матричный метод решения системы – это, по сути, частный случай матричного уравнения.

Найти из матричного уравнения:

Проверить полученный результат.

Заметьте, что справа находится нулевая матрица а не ноль. Нулевая матрица для матриц – это аналог нуля для чисел. И её можно не записывать, после того, как вы что-нибудь перенесёте в правую часть.

Полное решение и примерный чистовой образец оформления задания в конце урока.

В процессе решения матричных уравнений у начинающих могут появиться трудности с умножением матриц. В этом случае, пожалуйста, вернитесь к матричным выражениям и отработайте данное действие.

Решение матричного уравнения вида

Алгоритм решения точно такой же с некоторыми содержательными и техническими отличиями:

Решить матричное уравнение, выполнить проверку найденного решения.

Для разрешения уравнения относительно умножим обе его части на справа:

, где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

– матрица миноров соответствующих элементов матрицы .

– матрица алгебраических дополнений.

– транспонированная матрица алгебраических дополнений.

Таким образом, обратная матрица:


Находим решение, при этом не забываем про порядок умножения матриц, обратная матрица едет во втором вагоне:

Ответ:

Проверка: Подставим найденное значение в левую часть исходного уравнения:

Получена правая часть исходного уравнения. Таким образом, решение найдено правильно.

Решить матричное уравнение, сделать проверку:

Решение: Незнакомец расположился слева от матрицы, поэтому уравнение сводится к виду . Упаковываем множители, переносим свободную матрицу в правую часть и выполняем вычитание матриц:

Для разрешения уравнения относительно умножим обе его части на справа:

Обратную матрицу найдем по формуле:
, где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

– матрица миноров соответствующих элементов матрицы .

– матрица алгебраических дополнений.

– транспонированная матрица алгебраических дополнений.

Ответ:

Проверка: Подставим найденное значение в левую часть исходного уравнения:

Получена правая часть исходного уравнения, таким образом, решение найдено верно.

Решить матричное уравнение и сделать проверку:

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

В заключение коротко рассмотрим ещё один тип матричного уравнения, который практически не встречается: , где – известные матрицы. То есть, наш партизан залёг между двумя матрицами.

Разрешим данное уравнение относительно . Сначала умножим обе части на слева:

Теперь умножим обе части на справа:

Готового примера у себя в коллекции я не нашёл, но сейчас всё равно что-нибудь подберу из этой оперы…. Вот:

Да, работёнки здесь побольше. Раза в два. Как решить данное уравнение?

– для матрицы находим обратную матрицу ;
– для матрицы находим обратную матрицу ;
– перемножаем три матрицы (см. статью про свойства матричных операций).

Желающие могут прорешать данный пример, верный ответ: .

Поздравляю ещё раз! Если вы читаете эти строки, то Конец Света так и не наступил! Конец Света как деньги – любит тишину =) На самом деле всё было так: летописцы майя составили свой календарь до дня зимнего солнцестояния 2012 года. А потом устали.

Но на всякий случай передаю привет следующей цивилизации. Когда-нибудь они откопают хорошо сохранившийся в вечной мерзлоте сервер и расшифруют нашу клинопись =)

Удачной сдачи зачётов и экзаменов!

Решения и ответы:

Пример 4: Решение: Приведем уравнение к виду :

Для разрешения уравнения относительно умножим обе его части на слева:

Обратную матрицу найдем по формуле:
, где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

– матрица миноров соответствующих элементов матрицы .
– матрица алгебраических дополнений.
– транспонированная матрица алгебраических дополнений.
Обратная матрица:

Решение системы:

Ответ:
Проверка: подставим найденное значение в левую часть исходного уравнения:

Получена правая часть исходного уравнения, таким образом, значение найдено верно.

Пример 7: Решение: Приведем уравнение к виду :

Для разрешения уравнения относительно умножим обе его части на справа:

Обратную матрицу найдем по формуле:
, где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

– матрица миноров соответствующих элементов матрицы .
– матрица алгебраических дополнений.
– транспонированная матрица алгебраических дополнений.
Обратная матрица:
Таким образом:

Ответ:
Проверка: Подставим найденное значение в левую часть исходного уравнения:

Получена правая часть исходного уравнения, таким образом, решение найдено верно.

Автор: Емелин Александр

(Переход на главную страницу)

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

Читайте также: