Как сделать положительно определенную матрицу

Добавил пользователь Дмитрий К.
Обновлено: 04.10.2024

Теорема. Для любой матрицы $ A_<> $ матрицы $ A_<>A^ $ и $ A^ A $ — симметричны. Для любой квадратной матрицы $ A_<> $ матрица $ A_<>+A^ $ — симметрична.

Определитель

Теорема [Кэли]. В полном разложении определителя симметричной матрицы порядка $ n $ обозначим $ \mathfrak s_n $ число слагаемых, $ \mathfrak s_n^ <(+)>$ — число слагаемых с положительным знаком, $ \mathfrak s_n^ $ — число слагаемых с отрицательным знаком, а $ \mathfrak d_n =\mathfrak s_n^ <(+)>- \mathfrak s_n^ $. Имеют место соотношения:

$$ \mathfrak s_=(n+1)\mathfrak s_n- C_n^2 \mathfrak s_ \ ; $$ $$ \mathfrak d_=-(n-1)\mathfrak d_n- C_n^2 \mathfrak d_ \ . $$

Имеют место пределы:

Миноры: тождества Кронекера

Теорема [Кронекер]. Для симметричной матрицы $ A_<> $ порядка $ n \ge k+1 $ имеет место тождество

$$ A\left(\begin 1 & 2 & \dots & k-2 & k \\ 2 & 3 & \dots & k-1 & k+1 \end \right)- A\left(\begin 2 & 3 & \dots & k-1 & k \\ 1 & 2 & \dots & k-2 & k+1 \end \right)= $$ $$ = A\left(\begin 1 & 2 & \dots & k-3 & k-2 & k-1 \\ 2 & 3 & \dots & k-2 & k & k+1 \end \right) \ , $$ связывающее три ее минора порядка $ k-1 $.

Пример. Для $ k=4 $:

$$ A\left(\begin 1 & 2 & 4 \\ 2 & 3 & 5 \end \right)- A\left(\begin 2 & 3 & 4 \\ 1 & 2 & 5 \end \right)= A\left(\begin 1 & 2 & 3 \\ 2 & 4 & 5 \end \right) $$ $$ \iff \ \left| \begin a_ & a_ & a_ \\ a_ & a_ & a_ \\ a_ & a_ & a_ \end \right|- \left| \begin a_ & a_ & a_ \\ a_ & a_ & a_ \\ a_ & a_ & a_ \end \right|= \left| \begin a_ & a_ & a_ \\ a_ & a_ & a_ \\ a_ & a_ & a_ \end \right| \ . $$

В настоящем разделе минор матрицы $ A $ $$ A\left( \begin j_1 & \dots & j_k \\ j_1 & \dots & j_k \end \right) = \left|\begin a_ & a_ & \dots & a_ \\ a_ & a_ & \dots & a_ \\ \vdots & & \ddots & \vdots \\ a_ & a_ & \dots & a_ \end \right| , \quad 1\le j_1 ☞ ЗДЕСЬ.

Теорема. Если $ \mathfrak r = \operatorname (A)\ge 1 $, то в матрице $ A $ существует ненулевой ведущий минор порядка $ \mathfrak r $.

Произведение

Теорема. Для того, чтобы произведение симметричных матриц $ A $ и $ B $ было симметричной матрицей необходимо и достаточно, чтобы матрицы $ A $ и $ B $ коммутировали: $ AB = BA $.

Обратная матрица

Теорема. Обратная к симметричной матрице (если существует) будет симметричной матрицей.

Характеристический полином, собственные числа, собственные векторы

Теорема 1. Все собственные числа симметричной матрицы вещественны.

Доказательство ☞ ЗДЕСЬ.

Если $ \lambda=0 $ корень кратности $ \mathfrak m $ характеристического полинома симметричной матрицы $ A $, т.е.

$$ \det (A-\lambda E)\equiv(-1)^n \lambda^n+a_1\lambda^+\dots+a_ \lambda^ <\mathfrak m>\quad npu \ a_\ne 0 $$ то $ \operatorname (A)=n-\mathfrak m $.

Если в характеристическом полиноме некоторый коэффициент $ a_j $ при $ j \not\in \ $ обращается в нуль, то соседние с ним в нуль не обращаются и имеют различные знаки: $ a_ a_ ♦

Локализация собственных чисел

Теорема [Коши]. Для симметричной матрицы $ A_<> $ число ее собственных чисел, лежащих на интервале $ ]a,b_<>[ $, определяется по формуле:

Согласно этой теореме, главные миноры матрицы $ A-\lambda\, E $ играют роль системы полиномов Штурма для характеристического полинома симметричной матрицы $ A_<> $.

$$ A_1,A_2,\dots,A_ $$ симметричной матрицы $ A_<> $ отличны от нуля, то число положительных собственных чисел матрицы $ A_<> $ равно числу знакопостоянств, а число отрицательных собственных чисел — числу знакоперемен в ряду $ 1,A_1,\dots,A_n $:

Часто в приложениях требуется вычислить значения не всех собственных чисел симметричной матрицы, а только небольшого (по сравнению с порядком матрицы) количества максимальных по модулю. Численный метод решения этой задачи изложен ☞ ЗДЕСЬ.

Диагонализуемость

Для понимания материалов настоящего пункта требуется знание материалов пункта ДИАГОНАЛИЗУЕМОСТЬ МАТРИЦЫ ОПЕРАТОРА.

Теорема. Существует ортогональная матрица $ P_<> $, приводящая симметричную матрицу $ A_<> $ к диагональному виду:

$$ P^AP=P^>AP= \left( \begin \lambda_1 & & & \mathbb O \\ & \lambda_2 & & \\ && \ddots & \\ \mathbb O&& & \lambda_n \end \right). $$

Доказательство особенно просто в случае когда все собственные числа $ \lambda_1,\dots, \lambda_n $ различны. На основании теоремы 1 матрица $ A_<> $ диагонализуема над множеством вещественных чисел и на основании теоремы 2 матрица $ P $, приводящая к диагональному виду, может быть выбрана ортогональной.

Для общего случая доказательство производится индукцией по порядку $ n $ матрицы $ A $. Окончание доказательства ☞ ЗДЕСЬ. ♦

Теорема утверждает что даже при наличии кратных корней у характеристического полинома $$ f(\lambda)=(-1)^n(\lambda - \lambda_1)^<<\mathfrak m>_1> \times \dots \times (\lambda - \lambda_<\mathfrak r>)^<<\mathfrak m>_<\mathfrak r>>, \quad <\mathfrak m>_1+\dots+<\mathfrak m>_<<\mathfrak r>>=n, \ \lambda_k \ne \lambda_ \ npu \ k \ne \ell $$ алгебраическая кратность собственного числа $ \lambda_j $ совпадает с его геометрической кратностью: $$\operatorname \, (A-\lambda_j\, E)= <\mathfrak m>_j\, npu \quad \forall j\in \ <1,\dots,\mathfrak r\>.$$ Или, что то же: размерность собственного подпространства $$ \left\ \right\> $$ равна $ <\mathfrak m>_j $. При нахождении фундаментальной системы решений (ФСР) указанной системы уравнений мы получим $ <\mathfrak m>_j $ линейно независимых собственных векторов $ \<<\mathfrak X>_,\dots, <\mathfrak X>__j> \> $ , принадлежащих $ \lambda_j $. Однако при традиционных способах построения ФСР вовсе не гарантирована ортогональность этих векторов. Как построить ФСР так, чтобы она удовлетворяла условию теоремы, т.е. была ортонормированной? Воспользуемся для этого процессом ортогонализации Грама-Шмидта, применив его к системе $ \<<\mathfrak X>_,\dots, <\mathfrak X>__j> \> $. Результатом процесса будет новая система векторов $ \<<\mathfrak Y>_,\dots, <\mathfrak Y>__j> \> $ такая что ее линейная оболочка совпадает с линейной оболочкой исходной системы: $$ <\mathcal L>\left(<\mathfrak Y>_,\dots, <\mathfrak Y>__j> \right)= <\mathcal L>\left(<\mathfrak X>_,\dots, <\mathfrak X>__j> \right) \quad \mbox < и >\quad \langle <\mathfrak Y>_,<\mathfrak Y>_ \rangle =0 \ \mbox < при >\ k \ne \ell \, , $$ т.е. векторы $ <\mathfrak Y>_,\dots, <\mathfrak Y>__j> $ остаются собственными векторами, принадлежащими $ \lambda_j $. Но теперь эти новые векторы попарно ортогональны. Нормировав их, мы получим требуемую теоремой систему из $ <\mathfrak m>_j $ ортогонормированных столбцов матрицы $ P $, соответствующих кратному собственному числу $ \lambda_j $.

Пример. Диагонализовать матрицу

$$ A=\left( \begin 0&1&0&1&0&0&0&-1 \\ 1&0&1&0&0&0&-1&0 \\ 0&1&0&1&0&-1&0&0 \\ 1&0&1&0&-1&0&0&0 \\ 0&0&0&-1&0&1&0&1 \\ 0&0&-1&0&1&0&1&0 \\ 0&-1&0&0&0&1&0&1 \\ -1&0&0&0&1&0&1&0 \end \right) $$ с помощью ортогональной матрицы.

Решение. Имеем: $$ \det (A-\lambda E) \equiv (\lambda-3)(\lambda+3)(\lambda-1)^3(\lambda+1)^3 \, . $$ Ищем собственные векторы. Для простых собственных чисел: $$ \lambda_1=-3 \ \Rightarrow \ \mathfrak X_1=\left[1,-1,1,,-1,-1,1,-1,1\right]^ \ ; $$ $$ \lambda_2=3 \ \Rightarrow \ \mathfrak X_2=\left[-1,-1,-1,-1,1,1,1,1\right]^ \ . $$ Эти столбцы войдут в состав матрицы $ P $, только их надо нормировать: $ \mathfrak X_ /|\mathfrak X_| $. Для кратных собственных чисел $ \lambda_j \in \ $ сначала находим произвольные ФСР $$ \lambda_3=1 \ \Rightarrow \ \left\ x_1&-x_2 & &-x_4 & & & &+x_8 & =0 \\ & x_2 &-x_3 & +x_4 & & -x_6 & & & =0 \\ & & x_3 & +x_4 & & & -x_7 &-x_8& =0 \\ & & & 3\,x_4 &+x_5 & -x_6 & -2\,x_7 & -x_8 & =0 \\ & & & & x_5 & -x_6 & +x_7 & -x_8 & =0 \end \right. $$ $$ \Rightarrow \mathfrak X_ =\left[1,1,0,0,1,1,0,0 \right]^\ ;\mathfrak X_ =\left[ 0,-1,0,1,-1,0,1,0 \right]^;\ \mathfrak X_ =\left[0,1,1,0,1,0,0,1 \right]^ \ . $$ $$ \lambda_4=-1 \ \Rightarrow \quad \left\< \begin \mathfrak X_ =\left[-1,1,0,0,-1,1,0,0 \right]^\\ \mathfrak X_ =\left[ 0,1,-1,0,-1,0,0,1 \right]^ \\ \mathfrak X_ =\left[0,1,0,-1,-1,0,1,0 \right]^ \end \right\>\, . $$ Применяем к каждой из них алгоритм ортогонализации Грама-Шмидта: $$\mathfrak Y_=\mathfrak X_=\left[1,1,0,0,1,1,0,0 \right]^; $$ $$ \mathfrak Y_=\mathfrak X_+ \alpha > \mathfrak Y_, \quad \langle \mathfrak Y_,\mathfrak Y_ \rangle =0 \quad \Rightarrow \ \alpha >=-\frac<\langle \mathfrak X_,\mathfrak Y_ \rangle><\langle \mathfrak Y_,\mathfrak Y_ \rangle >=\frac \quad \Rightarrow $$ $$ \Rightarrow \mathfrak Y_=\left[\frac,-\frac,0,1,-\frac,\frac,1,0 \right]^ ; $$ $$ \mathfrak Y_=\mathfrak X_+ \beta > \mathfrak Y_+ \gamma > \mathfrak Y_, \quad \langle \mathfrak Y_,\mathfrak Y_ \rangle =0, \langle \mathfrak Y_,\mathfrak Y_ \rangle =0 \quad \Rightarrow \ $$ $$ \beta > =-\frac<\langle \mathfrak X_,\mathfrak Y_ \rangle><\langle \mathfrak Y_,\mathfrak Y_ \rangle>=-\frac,\ \gamma > =-\frac<\langle \mathfrak X_,\mathfrak Y_ \rangle ><\langle \mathfrak Y_,\mathfrak Y_ \rangle >=\frac \quad \Rightarrow \ $$ $$ \Rightarrow \mathfrak Y_=\left[-\frac,\frac,1,\frac,\frac,-\frac,\frac,1 \right]^ \, . $$ $$ \mathfrak Y_=\mathfrak X_=\left[-1,1,0,0,-1,1,0,0 \right]^, \mathfrak Y_=\left[\frac,\frac,-1,0,-\frac,-\frac,0,1 \right]^, $$ $$ \mathfrak Y_=\left[\frac,\frac,\frac,-1,-\frac,-\frac,1,-\frac \right]^ \, . $$ После нормирования, составляем из этих векторов ортогональную матрицу: $$ P= \left(\begin -\sqrt/4 & \sqrt/4 & 1/2 & \sqrt/6 & -\sqrt/12 & -1/2 & \sqrt/6 & \sqrt/12 \\ -\sqrt/4 & -\sqrt/4 & 1/2 & -\sqrt/6 & \sqrt/12 & 1/2 & \sqrt/6 & \sqrt/12 \\ -\sqrt/4 & \sqrt/4 & 0 & 0 & \sqrt/4 & 0 & -\sqrt/3 & \sqrt/12 \\ -\sqrt/4 & -\sqrt/4 & 0 & \sqrt/3 & \sqrt/12 & 0 & 0 & -\sqrt/4 \\ \sqrt/4 & -\sqrt/4 & 1/2 & -\sqrt/6 & \sqrt/12 & -1/2 & -\sqrt/6 & -\sqrt/12 \\ \sqrt/4 & \sqrt/4 & 1/2 & \sqrt/6 & -\sqrt/12 & 1/2 & -\sqrt/6 & -\sqrt/12 \\ \sqrt/4 & -\sqrt/4 & 0 & \sqrt/3 & \sqrt/12 & 0 & 0 & \sqrt/4 \\ \sqrt/4 & \sqrt/4 & 0 & 0 & \sqrt/4 & 0 & \sqrt/3 & -\sqrt/12 \end \right) \, . $$ $$ P^AP= \left( \begin 3&&&&&&& \\ &-3&&&&&& \\ &&1&&&&& \\ &&&1&&&& \\ &&&&1&&& \\ &&&&&-1&& \\ &&&&&&-1& \\ &&&&&&&-1 \end \right) \, . $$ ♦

Квадратичная форма

Экстремальное свойство собственных чисел

Пусть уравнение $ X^>A X=1 $ задает эллипсоид в $ \mathbb R^3 $, т.е. квадратичная форма положительно определена. Построить посылочный ящик минимального объема (минимальный параллелепипед), содержащий данный эллипсоид.

Замеченное свойство собственных чисел симметричной матрицы распространяется и в многомерное пространство. Традиционно его формулируют в несколько ином виде — хотя и менее наглядном, но более ориентированном на приложения в задачах механики и статистики.

Задача. Найти условные экстремумы квадратичной формы $ F(X)=X^>A X $ на единичной сфере $$ \mathbb S= \< X\in \mathbb R^n \mid x_1^2+\dots+ x_n^2=1 \>\, . $$

В курсе математического анализа показывается, что, во-первых, указанные экстремумы существуют 2) , и, во-вторых, могут быть найдены применением метода множителей Лагранжа.

Теорема. Если $ \lambda_ <\max>$ — максимальное, а $ \lambda_ <\min>$ — минимальное собственные числа матрицы $ A $, то

$$ \max_ X^>A X =\lambda_<\max>, \qquad \min_ X^>A X =\lambda_ <\min>\, . $$ Указанные экстремумы квадратичная форма достигает на соответствующих собственных векторах матрицы $ A $ единичной длины.

Доказательство. Применяем метод множителей Лагранжа, т.е. составляем функцию $$L(X,\lambda) = F(X)- \lambda (X^X-1)$$ и ищем ее абсолютные экстремумы (как функции $ (n+1) $-го аргумента). На основании теоремы о стационарных точках полинома эти экстремумы должны достигаться на вещественных решениях системы уравнений $$ \left\< \begin <\partial L >\big/<\partial x_1 >=&2\left(a_x_1+a_x_2+\dots+a_x_n \right)-2 \lambda x_1 &=0, \\ \dots & & \dots \\ <\partial L >\big/<\partial x_n>=&2\left(a_x_1+a_x_2+\dots+a_x_n \right)-2 \lambda x_n &=0, \\ <\partial L >\big/<\partial \lambda >=&x_1^2+\dots +x_n^2-1 &= 0 \, . \end \right. $$ Решаем эту систему. Первые $ n $ уравнений перепишем в матричном виде $$AX-\lambda X=\mathbb O \ \iff \ (A-\lambda \, E) X=\mathbb O \, . $$ Из последнего уравнения системы следует, что $ X \ne \mathbb O $. Следовательно, решениями системы будут исключительно только собственные векторы $ <\mathfrak X>_j $ матрицы $ A $, при $ \lambda $ равном соответствующему собственному числу $ \lambda_j $ этой матрицы. При $ X=<\mathfrak X>_j $ и $ \lambda=\lambda_j $ получаем экстремальные значения функции $ F(X) $: $$F(<\mathfrak X>_j)=<\mathfrak X>_j^<^>A <\mathfrak X>_j = \lambda_j <\mathfrak X>_j^<^><\mathfrak X>_j=\lambda_j \, . $$ Откуда и следует утверждение теоремы. ♦

Еще один вариант экстремального свойства симметричной матрицы излагается ☞ ЗДЕСЬ.

Как в матлабе проверить матрицу на положительную определенность,не используя eig?

__________________
Помощь в написании контрольных, курсовых и дипломных работ здесь


Положительная определенность матрицы и собственные числа
Известно утверждение, что матрица A положительно определенная тогда и только тогда, когда все ее.

Положительная определенность квадратичной формы
Существуют ли такие значения v, при которых квадратичная форма f(x1, x2, x3) = v*(x1)2 + (x2)2 +.

Подсчитать количество строк матрицы у которых сумма элементов положительная
Подсчитать такие строки массивы А, что суммы элементов этих строк положительны.


Задана матрица.ВЫполнить сортировку эл.по возрастанию в тех строках матрицы сумма элементов в которых положительная
Задана матрица.Выполнить сортировку эл.по возрастанию в тех строках матрицы сумма элементов в.


Симметрическая матрица А /?-го порядка называется положительно (неотрицательно) определенной, если для любого ненулевого вектора х = (jq, *2. *п)' выполняется неравенство

Например, матрица А А неотрицательно определена, так как для любого вектора хх'(А'Л)х = (х'А) Ах = <Ах)'Ах= у'у > 0, ибо у у представляет скалярный квадрат вектора у = Ах.

Понятие положительно (неотрицательно) определенной симметрической матрицы А тесно связано с понятием положительно определенной (полуопределенной) квадратичной формы.


Для положительно (неотрицательно) определенных матриц используется запись А > О (А > 0).

Соотношение А >В (А > В) означает, что матрица А— В положительно (неотрицательно) определена.

Свойства положительно (неотрицательно) определенных матриц.

  • 1. Если А >В, то ац >Ьц, / = 1. п, т. е. диагональные элементы матрицы А более соответствующих диагональных элементов матрицы В.
  • 2. Если А >В, С > 0, то А + С >В.
  • 3. Если А > В, где А и В — невырожденные матрицы, то В~ [ >А~ 1 .
  • 4. Если А > 0 (А > 0), то все собственные значения матрицы А положительны (неотрицательны), т. е. X,- >0 (X,- >0), / = 1. п.

Свойства симметрической положительно определенной матрицы А п-го порядка.

  • 1. Если п > /я, rang п,т) = /и, то В'АВ— положительно определенная матрица.
  • 2. Матрица А~ 1 , обратная к А, также симметрическая и положительно определенная.
  • 3. Определитель |л| > 0, а значит, и все главные миноры матрицы А (получаемые для подматриц, образованных из матрицы А вычеркиванием строк и столбцов с одинаковыми номерами) положительны.
  • 4. След матрицы А равен сумме ее собственных значений:



Квадратная матрица С называется ортогональной, если

Свойства ортогональной матрицы С:

  • 1. С С—Е.
  • 2. Определитель С = 1 или |С| = -1.
  • 3. В ортогональной матрице как строки, так и столбцы образуют ортонормированную систему векторов (§ 13.6).
  • 4. С помощью ортогональной матрицы С симметричная матрица А может быть приведена к диагональному виду


Ai,A2,.-, А л собственные значения матрицы А.

5. Симметричная матрица А может быть представлена через ортогональную и диагональную матрицу в виде


Пусть матрица СЛАУ (5) симметричная и положительно определенная, т.е.: и для любого ненулевого вектора соответствующей размерности . Поскольку для положительно определенной матрицы выполняется критерий Сильвестра, то определители всех главных подматриц матрицы не равны нулю (они строго больше нуля), т.е. для выполнены условия теоремы об LU-разложении и для нее единственно разложение вида:

где - нижняя с единицами на главной диагонали и верхняя треугольные матрицы соответственно, причем диагональные элементы матрицы .

Представим матрицу в следующем виде:

В силу симметричности матрицы имеем:

Итак, , где - нижние треугольные матрицы с единицами на главной диагонали, и - верхние треугольные матрицы с положительными диагональными элементами. LU-разложение определяется однозначно, поэтому:

а разложение (50) будет иметь вид:

Поскольку элементы матрицы положительные, представим ее в виде:

Разложение (50) называется разложением Холесского для симметричной положительно определенной матрицы.

Теорему. Если - симметричная положительно определенная -матрица, то существует и единственно ее треугольное разложение , называемое разложением Холесского, где - нижняя треугольная матрица с положительными диагональными элементами.

Построение симметричного разложения Холесского производится аналогично тому, как строится LU-разложение матрицы.

Метод Холесского для СЛАУ с симметричной и положительно определенной матрицей , основанный на разложении Холесского матрицы СЛАУ, выглядит следующим образом:

Шаг 1. Построить разложение Холесского матрицы СЛАУ: ;

Шаг 2. Решить СЛАУ , в результате решения получить вектор ;

Шаг 3. Решить СЛАУ , в результате решения получить искомый вектор .

Пример. Пусть требуется решить СЛАУ

Матрица СЛАУ является симметричной, т.к. , и положительно определенной, поскольку . Таким образом, для решения данной СЛАУ можно воспользоваться методом Холесского.

Шаг 1. Построим для матрицы симметричное разложение:

Элемент матрицы равен произведению первой строки матрицы на первый столбец матрицы , т.е. , откуда . Элемент матрицы равен произведению первой строки матрицы на второй столбец матрицы , т.е. , откуда . Элемент матрицы равен произведению второй строки матрицы на второй столбец матрицы , т.е. , откуда . Таким образом:

Читайте также: