Как сделать пиротехническую ракету

Добавил пользователь Дмитрий К.
Обновлено: 04.10.2024

В майнкрафте можно построить несколько видов разнообразных ракет. Одни будут взрываться в воздухе оставляя красивый огненный шар (обычная пиротехническая ракета), другие же способны поднять персонажа или другой груз высоко в небо. Строительство ракеты дело довольно затратное и не простое. Но для создания действующей конструкции главной целью которой является поднятие различных грузов высоко вверх можно и сэкономить на ресурсах.

Содержание:

Крафт пиротехнической ракеты

Материалы

Изготовление

Создание пиротехнической ракеты происходит в верстаке, путем соединения всех выше перечисленных компонентов.

Как сделать:

Создание ракеты для полетов

Примитивная (без модов)

Основная функция этого изделия поднять персонажа или любой другой груз в воздух. Ею нельзя управлять и она движется по строго указанной траектории. Для создания не требуется больших затрат или редких материалов.

Управляемая ракета (нужен мод AirCraft)

Для создания такого же или подобного летающего аппарата потребуется установить мод AirCraft. С ним можно будет построить даже НЛО. Так же ей можно самостоятельно управлять и задавать силу ускорения.

Сигнальные ракеты являются неотъемлемой частью арсенала не только военных, но и туристов, охотников, рыбаков. Если вы заблудились или не можете идти дальше самостоятельно, такие ракеты будут ориентиром того места, где вы находитесь. Соблюдая все меры предосторожности, можно самостоятельно изготовить патроны для подачи сигнала.

Как сделать сигнальную ракету

  • Как сделать сигнальную ракету
  • Как сделать ракету в домашних условиях
  • Как сделать бумажную ракету

Смешайте ацетон с порохом и оставьте на срок от 5 до 10 дней. Периодически встряхивайте смесь. Она должна получиться однородной, густоватой, зелено-серого цвета.

Из бумаги толщиной 1 мм склейте стаканчики. Его высота должна быть примерно как у дробового пыжа (контейнера). Высота пыжа варьируется в зависимости от калибра пули.

Сделайте пиротехническую смесь из указанных выше ингредиентов. В крайнем случае, магний можно заменить на серебрянку. Добавьте в полученную смесь немного раствора пороха. У вас должна получиться густая кашица. Плотно расфасуйте ее по бумажным стаканчикам, оставляя около 0,5 см до верхнего края. Оставьте смесь до полного высыхания.

Аккуратно разотрите черный порох. Делайте это в металлической емкости деревянным пестиком. Добавьте немного уже приготовленного вами раствора из ацетона и пороха и заполните высушенные стаканчики до краев. Вновь дождитесь, пока смесь застынет, смажьте сверху тонким слоем раствора пороха и присыпьте измельченным черным порохом.

Возьмите контейнер-пыж и отрежьте от него стаканчик и обтюратор. Просверлите в каждом из них сквозное трехмиллиметровое отверстие. Склейте детали так, чтобы отверстия совпали.

Вставьте туда же изготовленный вами стаканчик с пиротехнической смесью (дном к верху). Теперь гильзу надо закрыть картонной прокладкой, толщиной 1 мм. Край гильзы завальцовывается закруткой. Если в патроне была серебрянка, то след от выстрела будет голубоватым, если магний – белым.

Мало кто из моих ровесников не увлекался постройкой моделей ракет. Может, сказывалось всемирное увлечение человечества пилотируемыми полетами, а может, кажущаяся простота постройки модели. Картонная трубка с тремя стабилизаторами и головным обтекателем из пенопласта или бальсы, согласитесь, намного проще даже элементарной модели самолета или автомобиля. Правда, энтузиазм большинства молодых Королевых, как правило, улетучивался на этапе поиска ракетного двигателя. Оставшимся ничего не оставалось, как осваивать азы пиротехники.

Сам себе ракетостроитель: взлетаем самостоятельно


Двигатели из патронов

Двигательный тюнинг

Качество серийных двигателей, как нетрудно догадаться, для серьезных соревнований не годилось. Поэтому рядом с заводом в 1984 году появилось мелкосерийное опытное производство, обеспечивавшее своей продукцией сборную страны. Особенно выделялись двигатели, частным образом изготовленные мастером Юрием Гапоном.


А в чем, собственно, сложность производства? По своей сути ракетомодельный двигатель — простейшее устройство: картонная трубка с запрессованным внутри дымным порохом марки ДРП-3П (дымный ружейный порох 3-й состав для прессованных изделий) с керамической заглушкой с соплом-дыркой с одной стороны и пыжом с вышибным зарядом — с другой. Первая проблема, с которой не справлялось серийное производство, — точность дозировки, от которой зависел и конечный суммарный импульс двигателя. Вторая — качество корпусов, которые часто давали трещины при прессовании под давлением в три тонны. Ну и третья — собственно, качество запрессовки. Впрочем, проблемы с качеством возникали не только в нашей стране. Не блещут им и серийные ракетомодельные двигатели другой великой космической державы — США. А лучшие модельные двигатели делают микроскопические предприятия в Чехии и Словакии, откуда их контрабандой провозят для особо важных мероприятий.

Тем не менее при социализме двигатели, пусть неважные и с дефицитом, но были. Сейчас же их нет вообще. Отдельные детские ракетомодельные студии летают на старых, еще советских запасах, закрывая глаза на то, что срок годности давно вышел. Спортсмены пользуются услугами пары мастеров-одиночек, а если повезет, то и контрабандными чешскими двигателями. Любителям же остается единственный путь — перед тем как стать Королевым, сначала стать Глушко. То есть делать двигатели самим. Чем, собственно, и занимались я и мои друзья в детстве. Слава богу, пальцы и глаза у всех остались на месте.

Из всех искусств

Из всех искусств для нас важнейшим является кино, любил поговаривать Ильич. Для ракетомоделистов-любителей середины прошлого века — тоже. Ибо кино- и фотопленка того времени делалась из целлулоида. Туго свернутая в небольшой рулончик и засунутая в бумажную трубку со стабилизаторами, она позволяла взлететь простейшей ракете на высоту пятиэтажного дома. У таких двигателей было два главных недостатка: первый — небольшая мощность и, как следствие, высота полета; второй — невозобновимость запасов целлулоидной пленки. Например, фотоархива моего отца хватило всего на пару десятков запусков. Сейчас, кстати, жалко.


Максимальная высота при фиксированном суммарном импульсе двигателя достигалась при кратковременном четырехкратном скачке мощности на старте и дальнейшем переходе на ровную среднюю тягу. Скачок тяги достигался формированием отверстия в топливном заряде.

Второй вариант двигателей собирался, так сказать, из отходов деятельности Советской армии. Дело в том, что при стрельбах на артиллерийских полигонах (а один из них как раз находился неподалеку от нас) метательный заряд при выстреле выгорает не до конца. И если хорошенько поискать в траве перед позициями, можно было найти довольно много трубчатого пороха. Самая несложная ракета получалась в результате простого заворачивания такой трубки в обычную фольгу от шоколадки и поджигания с одного конца. Летала такая ракета, правда, невысоко и непредсказуемо, зато весело. Мощный двигатель получался при собирании длинных трубок в пакет и заталкивании их в картонный корпус. Из обожженной глины изготавливалось и примитивное сопло. Работал такой двигатель очень эффектно, поднимал ракету довольно высоко, но часто взрывался. К тому же на артиллерийский полигон не особо походишь.


Третий вариант представлял собой попытку почти промышленного изготовления ракетомодельного двигателя на самодельном дымном порохе. Делали его из калиевой селитры, серы и активированного угля (он постоянно заклинивал родительскую кофемолку, на которой я его измельчал в пыль). Признаюсь честно, мои пороховые двигатели работали с перебоями, поднимая ракеты всего на пару десятков метров. Причину я узнал лишь пару дней назад — запрессовывать двигатели нужно было не молотком в квартире, а школьным прессом в лаборатории. Но кто бы, спрашивается, меня в седьмом классе пустил запрессовывать ракетные двигатели?!


Два редчайших двигателя, которые удалось достать "ПМ": МРД 2, 5-3-6 и МРД 20-10-4. Из советских запасов ракетомодельной секции в Детском доме творчества на Воробьевых горах.

Работа с ядами

Вершиной же моей двигателестроительной деятельности стал довольно ядовитый двигатель, работавший на смеси цинковой пыли и серы. Оба ингредиента я выменял у одноклассника, сына директора городской аптеки, на пару резиновых индейцев, самую конвертируемую валюту моего детства. Рецепт я почерпнул в жутко редкой переводной польской ракетомодельной книжке. И двигатели набивал в папином противогазе, который хранился у нас в кладовке, — в книжке особый упор делался на токсичность цинковой пыли. Первый пробный запуск был проведен в отсутствие родителей на кухне. Столб пламени из зажатого в тисках двигателя с ревом устремился к потолку, прокоптив на нем пятно диаметром в метр и наполнив квартиру таким вонючим дымом, с каким не сравнится и коробка выкуренных сигар. Вот эти-то двигатели и обеспечили мне рекордные запуски — метров, наверное, на пятьдесят. Каково же было мое разочарование, когда через двадцать лет я узнал, что детские ракеты нашего научного редактора Дмитрия Мамонтова летали в разы выше!


1, 2, 4) При наличии заводского ракетного двигателя с постройкой простейшей ракеты справится и школьник начальных классов. 3) Продукт самодеятельного творчества - двигатель из патронной гильзы.

На удобрениях

Двигатель Дмитрия был проще и технологичнее. Основной компонент его ракетного топлива — это натриевая селитра, которая продавалась в хозяйственных магазинах как удобрение в мешках по 3 и 5 кг. Селитра служила окислителем. А в качестве горючего выступала обычная газета, которая и пропитывалась перенасыщенным (горячим) раствором селитры, а затем высушивалась. Правда, селитра в процессе сушки начинала кристаллизоваться на поверхности бумаги, что приводило к замедлению горения (и даже гашению). Но тут вступало в действие ноу-хау — Дмитрий проглаживал газету горячим утюгом, буквально вплавляя селитру в бумагу. Это стоило ему испорченного утюга, но зато такая бумага горела очень быстро и стабильно, выделяя большое количество горячих газов. Набитые свернутой в тугой рулон селитрованной бумагой картонные трубки с импровизированными соплами из бутылочных пробок взлетали на сотню-другую метров.

Карамель


Картонные или пенопластовые корпуса ракет, топливо на основе пороха кажутся не очень серьезными достижениями. Но как знать - может, это первые шаги будущего конструктора межпланетных кораблей?

Безусловным хитом любительского ракетного двигателестроения сейчас являются так называемые карамельные двигатели. Рецепт топлива прост до неприличия: 65% калиевой селитры KNO3 и 35% сахара. Селитра подсушивается на сковородке, после чего измельчается в обычной кофемолке, медленно добавляется в расплавленный сахар и застывает. Итогом творчества становятся топливные шашки, из которых можно набирать любые двигатели. В качестве корпусов двигателей и форм прекрасно подходят стреляные гильзы от охотничьих патронов — привет тридцатым! Гильзы в неограниченном количестве есть на любом стрелковом стенде. Хотя признанные мастера рекомендуют использовать не сахарную, а сорбитовую карамель в тех же пропорциях: сахарная развивает большее давление и, как следствие, раздувает и прожигает гильзы.


Ситуация, можно сказать, вернулась в 1930-е годы. В отличие от других видов модельного спорта, где недостаток отечественных двигателей и прочих комплектующих можно компенсировать импортом, в ракетомодельном спорте это не проходит. У нас ракетомодельные двигатели приравниваются к взрывчатым веществам, со всеми вытекающими условиями по хранению, транспортировке и провозе через границу. Не родился еще на земле русской человек, способный наладить импорт таких изделий.

Выход один — производство на родине, благо технология тут вовсе не космическая. Но заводы, имеющие лицензии на производство таких изделий, за них не берутся — им этот бизнес был бы интересен лишь при миллионных тиражах. Вот и вынуждены начинающие ракетомоделисты из крупнейшей космической державы летать на карамельных ракетах. Тогда как в Соединенных Штатах сейчас стали появляться уже многоразовые модельные ракетные двигатели, работающие на гибридном топливе: закись азота плюс твердое горючее. Как вы думаете, какая страна лет через тридцать полетит к Марсу?

Здесь ее фрезеруют с обеих сторон, удаляя все неровности и дефекты. На этом этапе в стружку превращается примерно 120 килограммов сплава АМг6. Похудевшую, но уже ровную плиту гнут — вальцуют, превращая ее в сектор цилиндра, а затем сваривают с двумя другими. Получившееся кольцо отправляется в другой цех, который почти целиком занимает фрезерный станок высотой в три человеческих роста.


Вертикальный фрезерный станок, который вырезает вафельный фон на уже сваренной обечайке бака.


Но можно делать иначе.

Труба

Ракета — это металлическая труба с топливом. В нижнем конце этой трубы стоят ракетные двигатели, в верхнем — полезная нагрузка, скажем, ядерная боеголовка, спутник или космический корабль.

Конечно, если присмотреться, начинаются нюансы. Если свернуть лист бумаги в трубку и склеить шов липкой лентой, такая труба удержит на себе небольшую стопку книг, если правильно распределить их вес. Этот тип конструкции, где обшивка является несущим элементом, в авиации называют монокок. Но стоит этой конструкции чуть-чуть отклониться от идеальной цилиндрической формы, прогнуться, она моментально схлопывается.

Чтобы это предотвратить, нужно или увеличивать толщину листа, или добавить внутрь силовой набор — ребра жесткости, продольные (стрингеры) и поперечные (шпангоуты). Таким образом из монокока вы получите уже полумонокок, очень популярный среди авиаконструкторов. Если подойти близко к любому самолету, вы увидите на его фюзеляже сотни и тысячи заклепок — это они держат обшивку на тех самых стрингерах и шпангоутах.


The Smithsonian Institution


Imperial War Museums


Imperial War Museums


Банка

После войны ракеты фон Брауна попали в руки к советским и американским инженерам. И они почти сразу задались вопросом: зачем в одну емкость (корпус ракеты) вставлять вторую (топливные баки)? Разве нельзя обойтись только одной?

Помимо очевидных преимуществ — снижение массы, упрощение конструкции — это инженерное решение давало возможность увеличить прочность баков за счет наддува. С этим эффектом сталкивается каждый из нас, когда пробовал смять банку газировки.

Смять пустую алюминиевую банку в плоский блин (например, наступив на нее ногой) намного проще, чем полную. Жидкость (и газ, если внутри газировка) давит на банку изнутри, что позволяет ей выдержать уже больше 200 килограммов.


Для того, чтобы такая ракета была прочной, с ней поступили точно так же, как с банкой выше: начали наддувать пустое пространство газом. Большая часть ракет, старт которых вы видели, представляют собой такие алюминиевые банки, только очень большие.

Несущие баки и наддув позволили ракетостроителям убрать из ракеты стрингеры и шпангоуты, избавиться от точечной сварки, а вместе с тем тысяч слабых место в обшивке, которая и так была тоньше бумаги.


Вафля


Типы вафельного подкрепления


Бак горючего (несимметричный диметилгидразин — НДМГ) первой ступени ракеты УР-200.


Так инженеры нашли практически идеальное решение проблемы — как сделать баки с силовыми набором, но при этом не ослаблять обшивку ни сваркой, ни клепкой: нужно просто сделать силовой набор вместе с обшивкой. Этот метод стал стандартом для большинства тяжелых ракет по всему миру. Но платить за это решение пришлось временем, ресурсами и, разумеется, деньгами.

Как это теперь собрать

Большинство методов сварки предполагает, что вы расплавляете электрической дугой или газовой горелкой края двух металлических деталей, соединяете их, а когда расплавленный металл застывает, две эти детали оказываются единым целым, увы, единство это мнимое, и такой способ соединения не намного лучше традиционной клепки. В толще сварного шва могут остаться микроскопические пузыри, трещины и другие дефекты. Кроме того, расплавленный и застывший металл может стать менее прочным.


Фрезерованный лист для ракетного бака на заводе ULA


Фрезерование листов алюминия на заводе ULA


Готовая обечайка бака на заводе ULA

В случае, если сварной шов не подвергается большим нагрузкам, этим можно пренебречь, но в ответственных случаях приходится заниматься тщательной проверкой швов: дефекты ищут при помощи рентгена, ультразвука, магнитного порошка и десятков других инструментов. Но даже хорошие швы все равно остаются слабым местом, и их приходится усиливать, увеличивая толщину деталей в месте соединения.


Три главных буквы

Это значительно лучше традиционной электросварки. Например, если аргоно-дуговая сварка обеспечивает прочность шва в 160-170 мегапаскалей, то шов от СТП на тех же листах дает 250 мегапаскалей (при исходной прочности листа 300 мегапаскалей).

Аэрокосмическая отрасль давно заметила эту технологию: уже в 1999 году стартовала ракета-носитель Delta II, где компания Boeing применила СТП для сварки межбакового переходника, а в 2001 году полетела такая же ракета со сваренными тем же методом баками.


Станок для сварки методом СТП бака ракеты Delta II. Внутри виден традиционный вафельный фон.

А. Я. Ищенко и др., Автоматическая сварка, 2007

Примерно тогда же СТП в 2001 году — начали использовать для сварки внешнего топливного бака шаттлов, восемь швов в баке для жидкого водорода и четыре — для жидкого кислорода, всего почти 800 метров.

И снова труба

Сегодня уже не приходится сомневаться, что эти технологии работают: Falcon 9 успешно летают и по многу раз — недалек тот день, когда одна из первых ступеней ракеты совершит десятый в своей биографии полет. Много говорят о технологических хитростях Маска, которые позволили ему сделать такую ракету: о переохлажденном топливе, что позволяет увеличить объем горючего на борту, не увеличивая объем баков, говорят о решетчатых рулях, говорят о двигателях, способных к многоразовому включению и дросселированию, но почти никто не говорит о СТП и стрингерах. Хотя именно это небольшое новшество может изменить всю технологическую цепочку производства ракет.


Силовой набор в обечайках бака ракеты Falcon 9

Как именно — можно увидеть в цехе Центра разработок С7, который сейчас создает ракету легкого класса.


Выращенный с помощью 3D-печати вафельный силовой набор — до чистовой фрезерной обработки и после.


Робот-манипулятор сваривает бак

Он и его коллеги смогли сильно упростить и саму технику СТП — они используют станки собственного производства и роботы-манипуляторы. Роботы дорогие, признает Снытин, но даже так, по его словам, получается дешевле традиционной технологии на порядок.

От легкой до средней

Разработчики решили оставить на потом решение самой сложной задачи — создание двигателей и купить серийные у одного из российских предприятий (контракт пока не подписан, и название контрагента пока не раскрывают). Композитный обтекатель будет делать одна из дочек S7 на базе технологий компании Epic Aircraft. Центру остается создать все то, что находится между двигателями и головной частью ракеты — баки и систему управления.

На первой стадии предполагается построить ракету легкого класса, способную выводить на низкую орбиту более тонны полезной нагрузки. Если все пойдет по плану, то полетит эта ракета уже в ближайшие несколько лет. Для будущей ракеты среднего класса, которая сможет выводить шесть тонн на геопереходную орбиту при старте с экватора, Центр планирует разработать собственный двигатель.


Прототип бака изнутри.

Для баков ракеты планируется использовать новый сплав 1580 в отожженном состоянии — экспериментальный магнийсодержащий сплав, который отличается от традиционного АМг6 добавлением 0,1 процента скандия для повышения прочности. В отличие от нагартованного АМг6 его прочность не снижается при нагреве, а значит первую ступень можно потенциально сделать возвращаемой, она выдержит прохождение сквозь атмосферу, не потеряв качества.


Почти готовое днище бака, напечатанное вместе с силовым торцевым шпангоутом

Читайте также: