Как сделать нижний индекс в питоне

Обновлено: 04.07.2024

Я хочу сделать индекс для метки оси моего сюжета, построенного с использованием matplotlib. У меня есть следующий снимок сценария:

У меня есть 2 вопроса:

В сюжете индекс “2”, кажется, занимает целую длину слова вместо половины, что делает сюжет немного странным. Как уменьшить индекс (как по размеру, так и по длине)?

Как отображать “ангстремы” (единица длины 10 ^ -10m) вместо A?

Какую версию matplotlib вы используете? В моей версии суперскрипт кажется прекрасным (для меня). Im, использующий python 2.6.5 и matplotlib 1.1.0

Используйте \AA для angstram → plt.ylabel(“$\AA $”). Однако круг немного мал.

Если это доступно вам, попробуйте использовать TeX для визуализации вашего текста.

Индексы и срезы в Python

Строки и списки в Python состоят из элементов, занимающих свои нумерованные позиции в иерархии. К любому элементу, можно обратиться по его порядковому номеру - индексу. Отсчет начинается с нуля и ведется слева направо.

Индекс строки в Python

Строка представляет собой упорядоченный набор символов. Это значит, что каждый символ в строке занимает свое место - индекс. Например, у строки 'string', символ 's' имеет индекс 0 и далее по порядку:

Первый по счету символ в строке всегда будет иметь индекс 0. Таким образом, обратившись по индексу к элементу, мы можем узнать его значение. В чем и состоит смысл индексов. У пробела, так же есть индекс.

Так мы получим всю строку целиком:

get_str = 'это строка'
print(get_str)
это строка

А здесь, обратившись по индексу 5, получаем его значение - символ 't'.

get_s = 'это строка'
print(get_s[5])
t

При обращении к несуществующему индексу, программа выведет ошибку.

get_s = 'это строка'
print(get_s[10])
IndexError: string index out of range

Отрицательный индекс

Мы знаем точно, что у первого символа строки всегда будет индекс 0. А как насчет последнего символа? Ведь длина строки не всегда заранее известна. Для закрепления постоянного индекса для последнего символа, Python вводит понятие отрицательного индекса и предлагает вести отсчет наоборот, справа налево.

P y t h o n
-6 -5 -4 -3 -2 -1

get_last = 'Python'
print(get_last[-1])
n

Срез строки в Python

Иногда требуется получить из строки не один символ, а сразу несколько по некоторой закономерности - первые 2, каждый 3-ий или 4 последних. Для этого существуют срезы. Мы выборочно срезаем нужные символы и обращаемся по срезу. Надо отметить, что физически срезанные символы, остаются на своих местах. Сама строка никоим образом не меняется, мы работаем со срезанными копиями.

Возьмем первые три символа у строки 'срезы Python'. В параметрах передадим два индекса - начало и конец среза. При срезе первый индекс входит включительно, а второй индекс не входит в выборку.

Если не указаны начало или конец среза, то по умолчанию берётся первый или последний элемент коллекции.

Третьим параметром у срезов, может передаваться шаг.

Индекс списка в Python

Список - это упорядоченная коллекция нумерованных элементов, где первый элемент начинается с нулевой позиции. Когда мы обратимся к 4-ому элементу, то получим 12.

a = [2, 3, 5, 9, 12, 16]
print(a[4])
12

Правила для индексов у списка, похожие для индексов у строк:

  • обращение к несуществующему элементу, выведет ошибку
  • первый индекс равен 0, а последний индекс -1

Заменить элемент в списке

Существует принципиальная разница - элементы в списках в отличие от элементов в строках можно заменять, удалять или добавлять. Мы обращаемся по индексу в 3-му элементу в списке d и присваиваем индексу новое значение. В результате произошла замена - 7 поменялась на 10.

d = [1, 3, 5, 7, 8]
d[3] = 10
print(d)
[1, 3, 5, 10, 8]

Удалить элемент из списка

Элемент со значением 15 под индексом 2, вылетел из списка.

f = [11, 13, 15, 17]
del f[2]
print(f)
[11, 13, 17]

Срез списка в Python

Со срезами у списков дело обстоит точно так же, как и у строк. Делаем выборку со 2-го индекса по 4-ый, не включая сам 4-ый индекс.

b = [21, 32, 54, 90, 22, 46]
print(b[2:4])
[54, 90]

Вывод четных элементов списка

Выведем все четные элементы списка, используя срезы. Первым параметром передаем 1-ый индекс, во втором параметре пишем двоеточие (по умолчанию выведется последний элемент списка) и третьим параметром указываем шаг для выводимых элементов.

c = [21, 22, 23, 24, 25, 26, 27]
print(c[1::2])
[22, 24, 26]

Итоги

Ранее мы научились создавать строку, узнали, какие у строк есть методы. Сегодня вы научились по индексам и срезам находить значения. Но на этом, познания о строках не заканчиваются и все самое интересное, вас ждет впереди.


Если Вы не хотите пропустить новые материалы на сайте,
то Вы можете подписаться на обновления: Подписаться на обновления

Если у Вас остались какие-либо вопросы, либо у Вас есть желание высказаться по поводу этой статьи, то Вы можете оставить свой комментарий внизу страницы.

Порекомендуйте эту статью друзьям:

Если Вам понравился сайт, то разместите ссылку на него (у себя на сайте, на форуме, в контакте):

Она выглядит вот так:

Комментарии ( 0 ):

Учимся выполнять основные действия над строковым типом данных в Python: создание, экранирование, конкатенация и умножение, срезы, форматирование, строковые методы.

Logo Python Course Lesson 4

Учимся выполнять основные действия над строковым типом данных в Python: создание, экранирование, конкатенация и умножение, срезы, форматирование, строковые методы.

One

Строки в Python - упорядоченные неизменяемые последовательности символов, используемые для хранения и представления текстовой информации, поэтому с помощью строк можно работать со всем, что может быть представлено в текстовой форме.

Последовательности в Python
Последовательность(Sequence Type) — итерируемый контейнер, к элементам которого есть эффективный доступ с использованием целочисленных индексов.

Последовательности могут быть как изменяемыми, так и неизменяемыми. Размерность и состав созданной однажды неизменяемой последовательности не может меняться, вместо этого обычно создаётся новая последовательность.

    - изменяемая - неизменяемая - неизменяемая
  1. Строка (str, unicode) - неизменяемая

Строки в одинарных и двойных кавычках - одно и то же. Причина наличия двух вариантов в том, чтобы позволить вставлять в строки символы кавычек, не используя экранирование. Например вот так(обратите внимание на кавычки внутри строки):

2. С помощью тройных кавычек.
Главное достоинство строк в тройных кавычках в том, что их можно использовать для записи многострочных блоков текста. Внутри такой строки возможно присутствие кавычек и апострофов, главное, чтобы не было трех кавычек подряд. Пример:

Python Строки str создание

Two

Экранированные последовательности - это служебные наборы символов, которые позволяют вставить нестандартные символы, которые сложно ввести с клавиатуры.

В таблице перечислены самые часто используемые экранированные последовательности:

"Сырые строки"
Если перед открывающей кавычкой стоит символ 'r' (в любом регистре), то механизм экранирования отключается.
Это может быть нужно, например, в такой ситуации:
str = r'C:\new_file.txt'

Three

Методов для работы со строками довольно много. Может возникнуть вопрос - а как же не запутаться в их многообразии? Ответ на него такой - необходимо структурировать и разбить методы по группам.

Python строки str методы

Итак, строки в Python поддерживают две группы методов:

    ( list ) ( tuple ) ( range ).
  1. Обработки двоичных данных( binary data ) и
  2. Текстовых строк( str ).

x in s; Если элемент присутствует в последовательности, то возвращает True, иначе - False x not in s; Возвращает True, если элемент отсутствует в последовательности. s + t; Конкатенация(сложение) двух последовательностей s * n; Эквивалентно сложению последовательности s с собой n раз s[i]; Возвращает i-й элемент последовательности s[i, j]; Возвращает набор элементов последовательности с индексами из диапазона i

Подытожим
Строки в Python - представители Sequence Type данных. Это значит, что они(наряду со списками, кортежами и диапазонами) поддерживают все операции, приведенные в таблице выше.

Группа 2. Дополнительные методы, которые работают только со строками
Помимо общих операций, которые мы рассмотрели в таблице выше, существуют методы, которые могут быть использованы только для работы с типом str . В ходе урока рассмотрим самые важные и часто используемые из них.

Four

Python строки str конкатенация умножение

Далее будем рассматривать базовые операции, которые можно выполнять со строками. Начнем со сложения и умножения строк. Они, как мы уже выяснили выше, относятся к группе общих операций над последовательностями. Итак:

1. Оператор сложения строк +
+ — оператор конкатенации строк. Он возвращает строку, состоящую из совокупности других строк.
Например:

2. Оператор умножения строк *
* — оператор создает несколько копий строки. Если str это строка, а n целое число, то будет создано n копий строки str .

Five

Срезы так же относятся к группе общих операций - они используются для всех последовательностей, а значит и для строковых переменных. Рассмотрим подробнее, что это такое и с чем его едят.

Срез (slice) — извлечение из данной строки одного символа или некоторого фрагмента подстроки или подпоследовательности.

Индекс - номер символа в строке (а также в других структурах данных: списках, кортежах). Обратите внимание, что нумерация начинается с 0 . Если указать отрицательное значение индекса, то номер будет отсчитываться с конца, начиная с номера -1 .

Есть три формы срезов:
1. Самая простая форма среза - взятие одного символа строки - S[i] , где S - строка, i - индекс. Пример:

Python строки str индексация

2. Второй тип - срез с двумя параметрами. Т. е. S[a:b] возвращает подстроку, начиная с символа c индексом a до символа с индексом b , не включая его. Если опустить второй параметр (но поставить двоеточие), то срез берется до конца строки. Пример:

3. Срез с тремя параметрами - S[a:b:d] . Третий параметр задает шаг(как в случае с функцией range ), то есть будут взяты символы с индексами a, a + d, a + 2 * d и т. д. Например, при задании значения третьего параметра, равному 2 , в срез попадет каждый второй символ:

И еще разок: строки в Python - это неизменяемый тип данных!
Любые операции среза со строкой создают новые строки и никогда не меняют исходную строку. В Питоне строки вообще являются неизменяемыми, их невозможно изменить. Можно лишь в старую переменную присвоить новую строку.

Задачи по темам

Специфика типа данных словарь (dict) в Python, характеристики. Примеры использования словарей, задачи с решениями.

Строки как тип данных в Python. Основные методы и свойства строк. Примеры работы со строками, задачи с решениями.

Six

Далее давайте рассмотрим методы второй группы, которые были созданы специально для работы с данными типа str . Полный и актуальный список методов можно посмотреть на странице официальной документации. И как вы сможете заметить, их там немало. Мы же с вами перечислим самые полезные из них и популярные, а так же рассмотрим несколько примеров их использования. Итак, список:


Основы

Одним из самых распространённых типов данных является строковый. Вопреки расхожему мнению, программист чаще сталкивается не с числами, а с текстом. В Python, как известно, всё является объектами. Не исключение и строки – это объекты, состоящие из набора символов. Естественно, в языке существует широкий набор инструментов для работы с этим типом данных.

Строковые операторы

Оператор сложения строк +

Оператор умножения строк *

Это работает только с целочисленными множителями. Если умножить на ноль или отрицательное число, результатом будет пустая строка. Но лучше так не делать.

Оператор принадлежности подстроки in

Если надо проверить, содержится ли подстрока в строке, удобно пользоваться оператором “in”

Встроенные функции строк в python

Пайтон содержит ряд удобных встроенных функций для работы со строками.

Функция ord() возвращает числовое значение символа, при чём, как для кодировки ASCII, так и для UNICODE.

Функция chr(n) возвращает символьное значение для данного целого числа, то есть выполняет действие обратное ord().

Функция len() возвращает количество символов в строке.

Функция str() возвращает строковое представление объекта.

Индексация строк

Строка является упорядоченной последовательностью символов. Другими словами, она состоит из символов, стоящих в определённом порядке. Благодаря этому, к символу можно обратиться по его порядковому номеру. Для этого надо указать номер символа в квадратных скобках. Нумерация начинается с нуля (0 – это первый символ).

Попытка обращения по индексу большему чем длина строки вызовет исключение IndexError:

В качестве индекса может быть использовано отрицательное число. В этом случае индексирование начинается с конца строки: -1 относится к последнему символу, -2 к предпоследнему и так далее.

Срезы строк

В Python существует механизм срезов коллекций. Срезы позволяют обратиться к подстроке используя индексы. Для этого надо в квадратных скобках указать: [начальный индекс : конечный индекс : шаг]. Каждый из параметров является необязательным. Поскольку строка это коллекция, срезы применимы и к ней.

Форматирование строки

В Python есть функция форматирования строки, которая официально названа литералом отформатированной строки, но обычно упоминается как f-string.

Главной особенностью этой функции является возможность подстановки значения переменной в строку.

Чтобы это сделать с помощью f-строки необходимо:

  • Указать f или F перед кавычками строки (что сообщит интерпретатору, что это f-строка).
  • В любом месте внутри строки вставить имя переменной в фигурных скобках (< >).

Изменение строк

Тип данных строка в Python относится к неизменяемым (immutable), но это почти не влияет на удобство их использования, ведь можно создать изменённую копию. Для этого есть два возможных пути:

Как Вы можете видеть, данный метод не меняет строку, а возвращает изменённую копию.

Встроенные методы строк в Python

Изменение регистра строки

Если Вам надо изменить регистр строки, удобно использовать один из следующих методов

capitalize() переводит первую букву строки в верхний регистр, остальные в нижний.

Не алфавитные символы не изменяются:

lower() преобразует все буквенные символы в строчные.

swapcase() меняет регистр на противоположный.

title() преобразует первые буквы всех слов в заглавные

upper() преобразует все буквенные символы в заглавные.

Найти и заменить подстроку в строке

Эти методы предоставляют различные способы поиска в целевой строке указанной подстроки.

Каждый метод в этой группе поддерживает необязательные аргументы start и end. Они задают диапазон поиска: действие метода ограничено частью целевой строки, начинающейся в позиции символа start и продолжающейся вплоть до позиции символа end, но не включая его. Если start указано, а end нет, метод применяется к части строки от start до конца.

count() подсчитывает количество точных вхождений подстроки в строку.

endswith() определяет, заканчивается ли строка заданной подстрокой.

find() ищет в строке заданную подстроку. Возвращает первый индекс который соответствует началу подстроки. Если указанная подстрока не найдена, возвращает -1.

index() ищет в строке заданную подстроку.

Этот метод идентичен find(), за исключением того, что он вызывает исключение ValueError, если подстрока не найдена.

rfind() ищет в строке заданную подстроку, начиная с конца.

Возвращает индекс последнего вхождения подстроки, который соответствует её началу.

rindex() ищет в строке заданную подстроку, начиная с конца.

Этот метод идентичен rfind(), за исключением того, что он вызывает исключение ValueError, если подстрока не найдена.

startswith() определяет, начинается ли строка с заданной подстроки.

Классификация строк

Методы в этой группе классифицируют строку на основе символов, которые она содержит.

isalnum() возвращает True, если строка не пустая, а все ее символы буквенно-цифровые (либо буква, либо цифра).

isalpha() определяет, состоит ли строка только из букв.

isdigit() определяет, состоит ли строка из цифр.

isidentifier() определяет, является ли строка допустимым идентификатором (название переменной, функции, класса и т.д.) Python.

isidentifier() вернет True для строки, которая соответствует зарезервированному ключевому слову Пайтон, даже если его нельзя использовать.

Вы можете проверить, является ли строка ключевым словом Python, используя функцию iskeyword(), которая находится в модуле keyword.

Если вы действительно хотите убедиться, что строку можно использовать как идентификатор Питон, вы должны проверить, что isidentifier() = True и iskeyword() = False.

islower() определяет, являются ли буквенные символы строки строчными.

isprintable() определяет, состоит ли строка только из печатаемых символов.

Это единственный метод данной группы, который возвращает True, если строка не содержит символов. Все остальные возвращаются False.

isspace() определяет, состоит ли строка только из пробельных символов.

Тем не менее есть несколько символов ASCII, которые считаются пробелами. И если учитывать символы Юникода, их еще больше:

‘\f’ и ‘\r’ являются escape-последовательностями для символов ASCII; ‘\u2005’ это escape-последовательность для Unicode.

istitle() определяет, начинаются ли слова строки с заглавной буквы.

isupper() определяет, являются ли буквенные символы строки заглавными.

Выравнивание строк, отступы

Методы из данной группы управляют отображением строки.

center() выравнивает строку по центру.

Если указан необязательный аргумент fill, он используется как символ заполнения:

Если строка больше или равна указанной ширине, строка возвращается без изменений:

expandtabs() заменяет каждый символ табуляции (‘\t’) пробелами. По умолчанию табуляция заменяются на 8 пробелов.

tabsize необязательный параметр, задающий количество пробелов.

ljust() выравнивание по левому краю.

lstrip() удаляет переданные в качестве аргумента символы слева. По умолчанию это пробелы.

replace() заменяет вхождения подстроки в строке.

Необязательный аргумент count, указывает количество замен, которое нужно осуществить:

rjust() выравнивание по правому краю строки в поле.

rstrip() обрезает пробельные символы.

strip() удаляет символы с левого и правого края строки.

Когда возвращаемое значение метода является другой строкой, как это часто бывает, методы можно вызывать последовательно:

zfill() возвращает копию строки дополненную нулями слева для достижения длины строки указанной в параметре width:

Если строка короче или равна параметру width, строка возвращается без изменений:

Методы преобразования строки в список

Методы в данной группе превращают строку в другой тип данных и наоборот. Эти методы возвращают или принимают коллекции (чаще всего это список).

join() возвращает строку, которая является результатом конкатенации элементов коллекции и разделителя.

Стоит обратить внимание что все элементы итерируемого объекта должны быть строкового типа. Так же Вы могли заметить в последнем примере, что для объединения словаря в строку метод join() использует не значения, а ключи. Если Вам нужны именно ключи, то делается это так:

Сложнее ситуация, когда нужны пары ключ-значение. Здесь придётся сперва распаковать кортежи.

partition() делит строку на основе разделителя (действие, обратное join). Возвращаемое значение представляет собой кортеж из трех частей:

  • Часть строки до разделителя
  • Разделитель
  • Часть строки после разделителя

Если разделитель не найден, возвращаемый кортеж содержит строку и ещё две пустые строки:

rpartition() делит строку на основе разделителя, начиная с конца.

rsplit() делит строку на список из подстрок. По умолчанию разделителем является пробел.

split() делит строку на список из подстрок.

Ведет себя как rsplit(), за исключением того, что при указании maxsplit – максимального количества разбиений, деление начинается с левого края строки:

Если параметр maxsplit не указан, между rsplit() и split() разницы нет.

splitlines() делит текст на список строк и возвращает их в списке. Любой из следующих символов или последовательностей символов считается границей строки:

Разделитель Значение
\n Новая строка
\r Возврат каретки
\r\n Возврат каретки + перевод строки
\v или же \x0b Таблицы строк
\f или же \x0c Подача формы
\x1c Разделитель файлов
\x1d Разделитель групп
\x1e Разделитель записей
\x85 Следующая строка
\u2028 Новая строка (Unicode)
\u2029 Новый абзац (Unicode)

Заключение

Читайте также: