Как сделать кубическую параболу

Обновлено: 07.07.2024

Простейшая парабола вам хорошо известна: (см. ниже). Обратите внимание, что график этой функции симметричен относительно оси . Такие функции называют чётными. Аналитически чётность выражается условием . Проверим на чётность нашу функцию, для этого ВМЕСТО подставим :
, значит, функция – чётная.

В общем случае квадратичная функция чётной не является, но симметрию самой параболы никто не отменял и этим удобно пользоваться на практике.

Внимание! Для проверки рассчитываем и то, и то значение, они должны совпасть!

Принципиально такую же форму имеют графики – только в первом случае гипербола будет иметь одну ветвь, во втором – две ветви, расположенные в 1-й и 2-й координатных четвертях, и третья гипербола будет похожа на .
Ну и, конечно, творческие задания, которые нас заждались!

Задание 7
а) Решить графически систему уравнений . Догадайтесь сами ;)
б) Построить график . Вспоминаем, как раскрывать модуль.
в) Проверить функции на чётность / нечётность и построить их графики:
, пожалуй, достаточно.

г) Дано – уравнение окружности с центром в начале координат
радиуса . Выразить функции, определяющие верхнюю и нижнюю полуокружность, указать их области определения.

Кубическая парабола задается функцией . Вот знакомый со школы чертеж:


Перечислим основные свойства функции

Область определения – любое действительное число: .

Область значений – любое действительное число: .

Функция не ограничена. На языке пределов функции это можно записать так: ,


Наверняка, вы заметили, в чем ещё проявляется нечетность функции. Если мы нашли, что , то при вычислении уже не нужно ничего считать, автоматом записываем, что . Эта особенность справедлива для любой нечетной функции.

Теперь немного поговорим о графиках многочленов.

График любого многочлена третьей степени ( ) принципиально имеет следующий вид:

Многочлены 4-ой, 6-ой и других четных степеней имеют график принципиально следующего вида:


Эти знания полезны при исследовании графиков функций.

График функции

Он представляет собой одну из ветвей параболы. Выполним чертеж:


Основные свойства функции :

Область определения: .

То есть, график функции полностью находится в первой координатной четверти.

Функция не ограничена сверху. Или с помощью предела:


На самом деле хочется разобрать еще примеры с корнями, например, , но они встречаются значительно реже. Сейчас я ориентируюсь на более распространенные случаи, и, как показывает практика, что-нибудь вроде приходиться строить значительно чаще. Однако унывать не нужно, в других статьях я рассмотрю самые разнообразные функции и их графики, корни в том числе.

Парабола в Microsoft Excel

Построение параболы является одной из известных математических операций. Довольно часто она применяется не только в научных целях, но и в чисто практических. Давайте узнаем, как совершить данную процедуру при помощи инструментария приложения Excel.

Создание параболы

Парабола представляет собой график квадратичной функции следующего типа f(x)=ax^2+bx+c. Одним из примечательных его свойств является тот факт, что парабола имеет вид симметричной фигуры, состоящей из набора точек равноудаленных от директрисы. По большому счету построение параболы в среде Эксель мало чем отличается от построения любого другого графика в этой программе.

Создание таблицы

Переход к прогрессии в Microsoft Excel

Окно прогрессии в Microsoft Excel

Столбец X заполнен значениями в Microsoft Excel

Значение первой ячейки столбца f(x) в Microsoft Excel

Маркер заполнения в Microsoft Excel

Столбец f(x) заполнен в Microsoft Excel

На этом формирования таблицы можно считать законченным и переходить непосредственно к построению графика.

Построение графика

Как уже было сказано выше, теперь нам предстоит построить сам график.

Построение диаграммы в Microsoft Excel

Парабола построена в Microsoft Excel

Редактирование диаграммы

Теперь можно немного отредактировать полученный график.

Переход к изменению типа диаграммы в Microsoft Excel

Окно изменения типа диаграммы в Microsoft Excel

Измененый вид параболы в Microsoft Excel

Кроме того, можно совершать любые другие виды редактирования полученной параболы, включая изменение её названия и наименований осей. Данные приёмы редактирования не выходят за границы действий по работе в Эксель с диаграммами других видов.

Как видим, построение параболы в Эксель ничем принципиально не отличается от построения другого вида графика или диаграммы в этой же программе. Все действия производятся на основе заранее сформированной таблицы. Кроме того, нужно учесть, что для построения параболы более всего подходит точечный вид диаграммы.

Закрыть

Мы рады, что смогли помочь Вам в решении проблемы.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Закрыть

Опишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Кубическая функция — это функция вида y=ax³, где a — число ( a≠0).

График кубической функции называется кубической параболой.

Для начала рассмотрим свойства и график кубической функции y=x³ (при a=1).

Свойства функция y=x³:

1) Область определения — множество действительных чисел:

2) Область значений — все действительные числа:

3) Функция имеет один нуль:

4) Точка O (0;0) делит кубическую параболу на две равные части, каждая из которых называется ветвью кубической параболы. Ветви кубической параболы симметричны относительно точки O — начала координат.

Отсюда следует, что противоположным значениям x соответствуют противоположные значения y: (- x)³= — x³ .

5) Функция возрастает на всей числовой прямой.

6) Промежутки знакопостоянства: функция принимает положительные значения при x∈(0;∞) (или y>0 при x>0);


функция принимает отрицательные значения при x∈(-∞;0) (или y

Эти точки отмечаем на координатной плоскости и строим кубическую параболу:


График функции y=ax³ при a≠1 ( a≠0) получают из графика функции y=x³ при помощи геометрических преобразований.

Функция y=x³ — один из частных случаев степенной функции


где α — любое действительное число.

В курсе алгебры из частных случаев степенной функции мы уже встречались с квадратичной функцией y=x² и функцией обратной пропорциональности

Каждая функция имеет свою собственную область определения. Целью этого материала является объяснение этого понятия и описание способов ее вычисления. Сначала мы введем основное определение, а потом на конкретных примерах покажем, как выглядит область определения основных элементарных функций (степенной, постоянной и др.) Разбирать случаи с более сложными функциями мы пока не будем.

В рамках данной статьи мы рассмотрим область определения функций, включающих в себя только одну переменную.

Понятие и обозначение области определения функции

По мере углубления знаний о функциях определение сужается и усложняется. Так, в одном из учебников можно встретить следующую формулировку:

Числовая функция с областью определения D – это соответствие значений переменной x некоторому числу y , которое находится в зависимых отношениях с x .

Используя это определение, охарактеризуем нужное нам понятие более четко:

Областью определения функции называется множество значений аргумента, на котором можно задать эту функцию.

Теперь рассмотрим, как правильно обозначать ее на письме. Ранее мы договорились, что для записи самих функций будем использовать маленькие латинские буквы, например, g , f и др. Чтобы указать на наличие функциональной зависимости, используется запись вида y = f ( x ) . Таким образом, функция f представляет собой некоторое правило, согласно которому каждому значению переменной x можно поставить в соответствие значение другой переменной y , которая находится в зависимых отношениях от x .

Возьмем для примера функцию y = x 2 . Можно записать ее как f ( x ) = x 2 . Это функция возведения в квадрат, которая ставит в соответствие каждому значению переменной x = x 0 некоторое значение y = x 0 2 . Так, если мы возьмем число 3 , то функция поставит ему в соответствие 9 , поскольку 3 2 = 9 .

Чтобы обозначить область определения некоторой функции f , используется запись D ( f ) . Однако нужно помнить, что у некоторых функций есть собственные обозначения, например, у тригонометрических. Поэтому в учебниках иногда встречаются записи вида D ( sin ) или D ( a r c sin ) . Их следует понимать как области определения синуса и арксинуса соответственно. Допустима и запись вида D ( f ) , где f – функция синуса или арксинуса.

Если мы хотим записать, что функция f определена на множестве значений x , то используем формулировку D ( f ) = X . Так, для того же арксинуса запись будет выглядеть как D ( a r c sin ) = [ − 1 , 1 ] (подробнее об области определения арксинуса мы расскажем далее.)

Как найти области определения для основных элементарных функций

Прочитав определения выше, легко понять, что понятие области определения очень важно для любой функции. Это ее неотъемлемая часть, которую задают вместе с самой функцией. То есть когда мы вводим какую-либо функцию, то мы сразу указываем и область ее определения. Обычно в рамках школьного курса основные функции изучаются последовательно: сначала прямые пропорциональности, затем линейные функции, потом y = x 2 и т.д., а их области определения указываются в качестве основных свойств.

В этом пункте мы расскажем, какие области определения имеют основные элементарные функции.

Область определения постоянной функции

Вспомним формулу, которой задается постоянная функция: y = C , или f ( x ) = C . Переменная C может быть любым действительным числом.

Смысл функции в том, что каждому значению аргумента будет соответствовать значение, равное C , следовательно, областью определения данной функции будет множество всех действительных чисел. Обозначим его R .

Так, если у нас есть функция y = − 3 (или в другой записи f ( x ) = − 3 ), то ( D ( f ) = ( − ∞ , + ∞ ) или D ( f ) = R ) .

Если же мы возьмем функцию y = 7 3 , то для нее, как и для любой постоянной функции, область определения будет равна R .

Область определения функции с корнем

С помощью знака корня, или радикала, мы можем задать функцию извлечения квадратного корня y = x , либо в обобщенном виде функцию корня степени N , которую можно записать в виде формулы y = x n . В этих случаях n может быть любым натуральным числом, которое больше 1 .

Область определения таких функций будет зависеть от того, является ли показатель четным или нечетным числом.

  1. Возьмем сначала случай, когда n – четное число, т.е. n = 2 · m , где m ∈ N . Тогда областью определения станет множество всех неотрицательных действительных чисел: D 2 · m = [ 0 ; + ∞ ) .
  2. Если же n представляет из себя нечетное число, которое больше 1 , т.е. n = 2 · m + 1 , то областью определения будет множество всех действительных чисел: D 2 · m + 1 = ( – ∞ ; + ∞ ) .

Таким образом, область определения функций с корнем y = x , y = x 4 , y = x 6 – это числовое множество [ 0 , + ∞ ) , а функций y = x 3 , y = x 5 , y = x 7 – множество ( − ∞ , + ∞ ) .

Область определения степенной функции

Запись степенной функции выглядит как y = x a или f ( x ) = x a , где x является переменной, которая лежит в основании степени, и a представляет из себя определенное число в ее показателе. Мы берем область определения степенной функции в зависимости от значения ее показателя.

Перечислим возможные варианты.

  1. Допустим, что a будет положительным целым числом. Тогда областью определения степенной функции будет множество действительных чисел ( − ∞ , + ∞ ) .
  2. Если a является нецелым положительным числом, то D ( f ) = [ 0 , + ∞ ) .
  3. В случае, когда a относится к целым отрицательным числам, областью определения такой функции становится множество ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) .
  4. В остальных случаях, т.е. когда a будет отрицательным нецелым числом, область определения будет числовым промежутком ( 0 , + ∞ ) .
  5. Если a имеет нулевое значение, то такая степенная функция будет определена для всех действительных x , кроме нулевого. Это связано с неопределенностью 0 0 . Мы знаем, что любое число, кроме 1 , при возведении в нулевую степень будет равно 1 , тогда при a = 0 у нас получится функция y = x 0 = 1 , область определения которой ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) .

Поясним нашу мысль несколькими примерами.

Для функций y = x 5 , y = x 12 область определения представляет собой множество всех действительных чисел R , поскольку показатели степени являются целыми положительными числами.

Для степенных функций y = x 6 3 , y = x π , y = x 7 4 , y = x 2 3 будут определены на интервале [ 0 , + ∞ ) , поскольку показатели являются положительными, но не целыми числами.

3. Для функции y = x − 5 с целыми отрицательными показателями областью определения будет множество ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) .

4. Для степенных функций y = x – 19 , y = x – 3 e , y = x – 9 8 , y = x – 3 11 область определения будет представлять из себя открытый числовой луч ( 0 , + ∞ ) , т.к. их показателями являются нецелые отрицательные числа.

Область определения показательной функции

Такую функцию принято записывать как y = a x , причем переменная будет располагаться в показателе функции. Основанием степени здесь является число a , которое больше 0 и не равно 1 .

Область определения такой функции есть множество всех действительных чисел, т.е. R .

Например, если у нас есть показательные функции y = 1 4 x , y = e x , y = 13 x , y = 15 x , то они будут определены на промежутке от минус бесконечности до плюс бесконечности.

Область определения логарифмической функции

Функция логарифма задается как y = log a x , где a – основание, большее 0 и не равное 1 . Она определена на множестве всех положительных действительных чисел. Это можно записать как D ( log a ) = ( 0 , + ∞ ) , например, D ( ln ) = ( 0 , + ∞ ) и D ( l g ) = ( 0 , + ∞ ) .

Так, для логарифмических функций y = log 2 3 x , y = log 3 x , y = log 7 x , y = ln x областью определения будет множество ( 0 , + ∞ ) .

Область определения тригонометрических функций

Чтобы узнать, на каком промежутке будут определены тригонометрические функции, нужно вспомнить, как именно они задаются и как называются.

  • Формула y = sin x обозначает функцию синуса ( sin ) . Она будет определена на множестве всех действительных чисел. Можно записать, что D ( sin ) = R .
  • Формула y = cos x означает функцию косинуса ( cos ) . Она также будет определена на множестве всех действительных чисел, т.е. D ( cos ) = R .
  • Формула y = t g x означает функцию тангенса ( t g ) , а y = c t g x – котангенса. Областью определения тангенса будет множество всех действительных чисел, за исключением π 2 + π · k , k ∈ Z .

Областью определения котангенса будет также множество R , за исключением π · k , k ∈ Z .

Иными словами, если мы знаем, что x является аргументом функций тангенса и котангенса, то нужно помнить, что данные функции определены при x ∈ R , x ≠ π 2 + π · k , k ∈ Z и x ∈ R , x ≠ π · k , k ∈ Z .

Область определения тригонометрических функций

К обратным тригонометрическим относятся функции арксинуса, арккосинуса, арктангенса и арккотангенса.

  • Формула y = a r c sin x обозначает функцию арксинуса. Обычно она рассматривается на отрезке [ − 1 , 1 ] ] и обозначается arcsin. Промежуток [ − 1 , 1 ] и будет нужной нам областью определения данной функции. Можно записать, что D ( a r c sin ) = [ − 1 , 1 ] .
  • Формула y = a r c cos x выражает функцию арккосинуса (обозначается a r c cos ). Она рассматривается на том же отрезке, что и арксинус. Следовательно, областью определения данной функции является [ − 1 , 1 ] , т.е. D ( a r c cos ) = [ − 1 , 1 ] .
  • Функции y = a r c t g x и y = a r c c t g x означают арктангенс и арккотангенс. Они рассматриваются на множестве всех действительных чисел, значит, областью их определения является R . Можем записать, что D ( a r c t g ) = R и D ( a r c c t g ) = R .

Области определения основных функций в табличном виде

Чтобы запомнить или легко найти нужные нам области, правила вычисления которых мы объяснили выше, представим всю информацию в табличном виде. Не лишним будет оформить ее на отдельном листе и держать под рукой, так же, как и таблицу простых чисел, квадратов и др. Она очень пригодится при работе с функциями, пока вы не выучите ее содержимое наизусть.

[ 0 ; + ∞ ) , если n – четное
– ∞ ; + ∞ , если n – нечетное

– ∞ ; + ∞ , если a > 0 , a ∈ Z
[ 0 ; + ∞ ) , если a > 0 , a ∈ R , a ∉ Z
– ∞ ; 0 ∪ 0 ; + ∞ , если a 0 , a ∈ Z
0 ; + ∞ , если a ∈ R , a ≠ Z
– ∞ ; 0 ∪ 0 , + ∞ , если a = 0

Показательная y = a x R Логарифмическая y = log a x 0 ; + ∞

y = sin x y = cos x y = t g x y = c t g x

R R x ∈ R , x ≠ π 2 + π · k , k ∈ Z x ∈ R , x ≠ π · k , k ∈ Z

y = a r c sin x y = a r c cos x y = a r c t g x y = a r c c t g x

Подводя итоги статьи, следует отметить, что в рамках школьного курса изучаются не только основные элементарные функции, но и их различные сочетания. Задачи такого типа встречаются очень часто. Области определения таких комбинированных функций указываются далеко не всегда. Авторы задач подразумевают, что в таких случаях областью определения функции можно считать множество таких значений аргумента, при которых она будет иметь смысл. Это позволяет нам приблизиться к ответу на вопрос, как именно вычисляется область определения функции в подобных случаях.


Идёт приём заявок

Для учеников 1-11 классов и дошкольников






  • Колесник Марина АнатольевнаНаписать 3336 06.03.2018

Номер материала: ДБ-1293565

    06.03.2018 576
    06.03.2018 252
    06.03.2018 179
    06.03.2018 184
    06.03.2018 778
    06.03.2018 2666
    06.03.2018 556
    06.03.2018 1099

Не нашли то что искали?

Вам будут интересны эти курсы:


Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение редакции может не совпадать с точкой зрения авторов.

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако редакция сайта готова оказать всяческую поддержку в решении любых вопросов связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Читайте также: