Как сделать каноническое уравнение прямой

Обновлено: 04.07.2024

Получить уравнение прямой, проходящей через две точки помогут созданные нами калькуляторы. Предлагаем найти каноническое и параметрическое уравнение прямой, а также уравнение прямой с угловым коэффициентом как на плоскости, так и в пространстве.

Прямая — это бесконечная линия, по которой проходит кратчайший путь между любыми двумя её точками.

Уравнения прямой, проходящей через две точки могут быть следующих видов:

  • каноническое уравнение,
  • параметрическое уравнение,
  • общее уравнение прямой,
  • уравнение прямой с угловым коэффициентом,
  • уравнение прямой в полярных координатах и другие.

Для получения уравнений введите координаты двух точек прямой. Онлайн-калькулятор найдет уравнения и выдаст результат с подробным решением.

Существует несколько различных типов уравнений, описывающих кривую первого порядка, называемую прямой. Каждый из них оптимален для какой-то своей цели. Давайте познакомимся с ними поближе.

Каноническое уравнение прямой в пространстве

Канонический вид уравнения прямой в пространстве выглядит как следующее равенство:

где буквы $(x_0, y_0, z_0)$ используются для обозначения координат любой точки, возлежащей на данной прямой, а $(α, β, γ)$ — координаты направляющего эту прямую вектора, как несложно догадаться, они не могут быть нулевыми.

Не во всех случаях удобно и практично пользоваться каноническим уравнением, поэтому частенько возникает надобность использовать какое-то другое, например, можно прибегнуть к параметрическому.

Для каких прямых не представляется возможным или нельзя написать каноническое уравнение?

Глядя на это уравнение, видно, что его возможно использовать только в том случае, если координаты направляющих векторов исследуемых прямых не равны нулю, для таких прямых стоит воспользоваться параметрическими уравнениями.

Параметрический вид уравнений прямой в пространстве такой:

$\begin x = x_1 + α \cdot λ \\ y = y_1 + β \cdot λ \\ z = z_1 + γ \cdot λ \\ \end$,

где $x_1, y_1, z_1$ — координаты некоторой точки, находящейся на описываемой прямой, $α, β, γ$ — координаты параллельного или лежащего на данной прямой вектора, $λ$ — произвольное число-коэффициент, иногда для его обозначения используют слово “параметр”.

Параметрическое уравнение как раз удобно применять если одна из координат направляющего вектора равна нулю.

Чтобы произвести переход от параметрического вида уравнения к каноническому виду уравнения прямой в пространстве, осуществите вывод канонического уравнения прямой из параметрического.

Готовые работы на аналогичную тему

Для этого следует в к каждом уравнении перенести $λ$ в левую часть, а затем приравнять уравнения. Никакой магии, а только самая что ни на есть пресловутая арифметика:

Уравнение прямой, образуемой пересечением двух плоскостей

Рисунок 1. Связь канонического и общего уравнения прямой

Для того чтобы составить каноническое уравнение прямой в пространстве, заданной пересечением плоскостей, необходимо познакомиться поближе с 2 исследуемыми плоскостями.

Любую плоскость, находящуюся в пространстве, можно описать с помощью равенства:

$Ax + By + Cz + D = 0$,

где $A, B, C$ и $D$ - постоянные, причём $A, B, C$ не могут быть одновременно все нулевыми.

Соответственно, не нужно быть гением, чтобы понять, что если две плоскости пересечены между собой, то на их общей части будет возлежать некая прямая. Чтобы её найти, нужно получить общее решение следующей системы уравнений:

$\begin A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \\ \end$

С помощью же частного решения этой системы уравнений можно узнать, принадлежит ли какая-либо точка трёхмерной системы координат описанным уравнениями плоскостям и, конечно же, нашей прямой. Для этого нужно просто подставить её икс, игрек и зет в систему.

Приведённая система уравнений является своеобразной “формулой”, служащей для нахождения общего уравнения прямой в пространстве.

Иногда в каких-либо практических задачах требуется получить из уравнения прямой в пространстве в общем виде параметрические или канонические уравнения, тогда в первую очередь вам стоит узнать координаты её направляющего вектора и какую-либо точку, находящуюся на изучаемой прямой.

Ну что ж, давайте решать нашу задачу. На первом этапе вычислим $x, y, z$ для направляющего вектора.

Найдём нормальные вектора для плоскостей. Если кто забыл, нормальный вектор — это такой вектор, который является перпендикулярным (ортогональным) к данной плоскости или прямой.

Для этого из нашего очаровательного примера системы уравнений необходимо взять коэффициенты из уравнений. В итоге для 1-ой плоскости вектор-нормаль будет выглядеть как $(A_1; B_1; C_1)$, а для второй как $(A_2; B_2; C_2)$.

Теперь необходимо перемножить оба вектора и получить их произведение, здесь $(i, j, k)$ - координаты единичного вектора.

$|\overline \cdot \overline| = \overline \cdot (B_1 \cdot C_2 – C_1 \cdot B_2) - \overline \cdot (A_1 \cdot C_2 – A_2 \cdot C_1) + \overline \cdot (A_1 \cdot B_2 – A_2 \cdot B_1)$

Следующим этапом выполняем поиск координат точки, возлежащей на искомой прямой.

Для выполнения этого наиболее "сложного" пункта необходимо выбрать одну наиболее нравящуюся вам координату $x, y$ или $z$ и вместо неё подставить в систему уравнений, описывающую плоскости, нулевое значение.

Составьте каноническое уравнение прямой, получаемой из системы уравнений, описывающей пару пересечённых плоскостей:

$\begin 2x – y + 3z + 4 = 0 \\ x + 5y – 3z – 7 = 0 \\ \end$

Найдём направляющий вектор, для этого сначала запишем вектора нормалей плоскостей:

Ну а сейчас пора вычислить сам направляющий вектор:

Найдём точку, находящуюся на нашей прямой, тут всё просто, приравняем $y$ к нулю и внедрим в нашу систему уравнений:

$\begin 2x + 3z + 4 = 0 \\ x – 3z – 7 = 0 \\ \end$

Решение вышеприведённой системы уравнений будет: $x = 1, z = -2$, то есть координаты точки, возлежащей на нашей прямой, будут $(1; 0; -2)$.

Подставим все полученные нами цифры и получим следующее уравнение:

Составление канонического уравнения прямой по координатам двух точек

На практике это очень распространённая и любимая во многих вузах и других учебных заведениях задача — нужно найти уравнение прямой в пространстве, проходящей через 2 точки. Примем заранее, что эти две точки не обладают одинаковыми $x, y, z$.

Для того чтобы написать уравнение прямой в пространстве, проходящей через 2 точки, воспользуйтесь координатами ваших точек и внедрите их в следующее уравнение:

Это уравнение можно вывести из параметрического уравнения прямой.

Допустим, у нас есть две точки с координатами $(x_1; y_1; z_1)$, и для второй $(x_2; y_2; z_2)$.

Найти направляющий вектор для изучаемой прямой при наличии пары точек несложно, вектор с координатами $(x_2 – y_1; y_2 – y_2;z_2 – z_2)$ и будет желаемой частью результата.

Придумаем точку, находящуюся на нашей прямой, пусть она будет обладать координатами $(x_1;y_1;z_1)$.

Помещаем обнаруженные нами координаты вектора и точки в каноничное уравнение прямой в пространстве и получим уравнение прямой, проходящей через 2 точки.

Если же необходимо выразить именно параметрические уравнения из координат двух точек, через которые проведена некая одна прямая, то тут тоже всё довольно просто и без неожиданностей:

$\begin x = x_1 + (x_2 - x_1) \cdot λ \\ y = y_1 + (y_2 - y_1)\cdot λ \\ z = z_1 + (z_2 - z_1) \cdot λ \\ \end$

Направляющий вектор - это вектор, параллельный искомой прямой. При этом координаты направляющего вектора связаны отношением с общим уравнением как искомой прямой, так и любой другой прямой, параллельной направляющему вектору.


Элементарными преобразованиями (в основном приведением к общему знаменателю и затем умножением всех членов уравнения на общий знаменатель) каноническое уравнение прямой легко приводится к уравнению прямой в общем виде.

Заметим, что в каноническом уравнении один один из знаменателей (то есть, одна из координат направляющего вектора) или может оказаться равным нулю (оба числа быть равными нулю не могут, ибо вектор ненулевой). Так как всякая пропорция означает равенство , то в данном случае каноническое уравнение прямой запишется в виде

Пример 1. Составить на плоскости каноническое уравнение прямой, проходящей через точку и имеющей направляющий вектор . Затем привести уравнение к общему виду.

Решение. Поскольку одна из координат направляющего вектора равна нулю, то по формуле (2) получаем:

Приводим уравнение к общему виду:

Пример 2. Составить на плоскости каноническое уравнение прямой, проходящей через точку и имеющей направляющий вектор . Затем привести уравнение к общему виду.

Решение. По формуле (2) получаем каноническое уравнение:

Приводим уравнение к общему виду:

Как видим, координаты направляющего вектора связаны с общим уравнением отношением . Значит, задача решена корректно.

Пример 3. Составить на плоскости каноническое уравнение прямой, проходящей через точку и параллельной заданной прямой . Затем привести уравнение к общему виду.

Решение. Из общего уравнения заданной прямой получаем координаты направляющего вектора:

Тогда каноническое уравнение искомой прямой запишется в виде:

Приводим это уравнение к общему виду:

Координаты направляющего вектора связаны с общим уравнением искомой прямой отношением .

Пример 4. Составить на плоскости каноническое уравнение прямой, проходящей через точку и равноудалённой от точек и . Затем привести уравнение к общему виду.

Решение. Искомая прямая равноудалена от точек P и Q, следовательно, параллельна прямой, проходящей через эти точки. Поэтому сначала составим общее уравнение этой прямой, а из него получим координаты направляющего вектора искомой прямой:

Таким образом, направляющий вектор запишется так:

Каноническое уравнение искомой прямой:

Приводим это уравнение к общему виду:

Координаты направляющего вектора связаны с общим уравнением искомой прямой отношением .

Пример 5. Даны вершины треугольника , и . Составить каноническое уравнение прямой, проходящей через вершину A параллельно стороне BC. Затем привести уравнение к общему виду.

Решение. Cначала составим общее уравнение стороны BC, а из него получим координаты направляющего вектора искомой прямой:

Таким образом, направляющий вектор запишется так:

Составляем каноническое уравнение искомой прямой:

Приводим это уравнение к общему виду:

Координаты направляющего вектора связаны с общим уравнением искомой прямой отношением .

Любая прямая на плоскости может быть задана уравнением первого порядка Ax + By + C = 0. Здесь A и B постоянные и не равны нулю одновременно. Такое уравнение первого порядка всегда называют общим уравнением прямой.

Уравнение прямой – виды уравнения прямой: проходящее через точку, общее, каноническое, параметрическое и т.д. обновлено: 16 апреля, 2020 автором: Научные Статьи.Ру

Уравнение прямой проходящей через точку и нормальный вектор

Рассмотрим уравнение прямой проходящей через точку и нормальный вектор. Пусть в системе координат задана точка и ненулевой вектор (рис. 1).

Как видим, существует единственная прямая , что проходит через точку перпендикулярно направлению вектора (в этом случае называют нормальным вектором прямой ).

Прямая линия на плоскости

Докажем, что линейное уравнение

это уравнение прямой , то есть координаты каждой точки прямой удовлетворяют уравнение (1), но координаты точки, что не лежит на , уравнения (1) не удовлетворяют.

Для доказательства, обратим внимание, что скалярное произведение векторов и = в координатной форме совпадает с левой частью уравнения (1).

Дальше используем очевидное свойство прямой : векторы и перпендикулярны тогда, и только тогда, когда точка лежит на . А при условии перпендикулярности обоих векторов их скалярное произведение (2) превращается в для всех точек , что лежат на , и только для них. Значит, (1) – уравнение прямой .

Уравнение (1) называется уравнением прямой, что проходит через данную точку с нормальным вектором = .

Нужна помощь в написании работы?

Написание учебной работы за 1 день от 100 рублей. Посмотрите отзывы наших клиентов и узнайте стоимость вашей работы.

Общее уравнение прямой

Превратим уравнение (1)

– общее уравнение прямой.

Таким образом, прямой линии отвечает линейное уравнение вида (3). Наоборот, за данным уравнением вида (3), где хотя бы один из коэффициентов и не равен нулю, можно построить прямую.

Действительно, пусть пара чисел удовлетворяют уравнение (3), то есть

Отнимая последнее от (3), получим соотношение , которое определяет прямую за вектором и точкой .

Исследование общего уравнения прямой

Полезно знать особенности размещения прямой в отдельных случаях, когда одно либо два из чисел равны нулю.

1. Общее уравнение выглядит так: . Ему удовлетворяет точка , значит, прямая проходит через начало координат. Его можно записать: = – x (см. рис. 2).

Графическое изображение - общее уравнение прямой

Если положить , тогда , получается ещё одна точка (см. рис. 2).

2. , тогда уравнение выглядит так , где = –. Нормальный вектор лежит на оси , прямая . Таким образом, прямая перпендикулярна в точке , либо же параллельна оси (см. рис. 3). В частности, если и , тогда и уравнение – это уравнение оси ординат.

Общее уравнение прямой

3. Аналогично, при уравнение записывается , где . Вектор принадлежит оси . Прямая в точке (рис. 4) .

общее уравнение прямой

Если же , тогда уравнение оси .

Исследование можно сформулировать в такой форме: прямая параллельна той координатной оси, смена которой в общем уравнении прямой отсутствует.

1. прямая , слагаемое с отсутствует, поэтому .

Уравнение прямой в отрезках

Построим прямую по общему уравнению при условии, что – не равны нулю. Для этого достаточно найти две точки, что лежат на этой прямой. Такие точки иногда удобнее находить на координатных осях.

Обозначим – = , – = . Найдены точки и . Отложим на осях и и через них проведём прямую (см. рис. 5).

Уравнение прямой в отрезках

От общего можно перейти к уравнению, в которое будут входить числа и :

И тогда получается:

Либо, согласно обозначению, получим уравнение,

Которое называется уравнением прямой в отрезках. Числа и с точностью к знаку равняются отрезкам, которые отсекаются прямой на координатных осях.

Уравнение прямой с угловым коэффициентом

Чтобы узнать, что такое уравнение прямой с угловым коэффициентом, рассмотрим уравнение (1):

уравнение прямой, которая проходит через точку в заданном направлении. Геометрическое содержание коэффициента понятно из рис. 6.

В = = , где – наименьший угол, на который нужно повернуть положительное направление оси вокруг общей точки до совмещения её с прямой . Очевидно, что если угол – острый, тогда ; если же – тупой угол, тогда .

Раскроем скобки в (5) и упростим его:

где . Соотношение (6) – уравнение прямой с угловым коэффициентом. При , – отрезок, который отсекает прямую на оси (см. рис. 6).

Для перехода от общего уравнения прямой к уравнению с угловым коэффициентом необходимо сначала решить относительно .

Прямая с угловым коэффициентом

где обозначено = –, = –. Если же , тогда из исследования общего уравнения уже известно, что такая прямая перпендикулярна оси .

Каноническое уравнение прямой

Рассмотрим каноническое уравнение прямой при помощи примера.

Пусть в системе координат задана точка и ненулевой вектор (рис. 7).

Каноническое уравнение прямой

Необходимо составить уравнение прямой, что проходит через точку параллельно вектору , который называется направляющим вектором. Произвольная точка принадлежит этой прямой тогда и только тогда, когда . Так как вектор – задан, а вектор , тогда согласно условию параллельности, координаты этих векторов пропорциональны, то есть:

Соотношение (7) называется уравнением прямой, которая проходит через заданную точку в заданном направлении или каноническом уравнением прямой.

Обратим внимание, что к уравнению вида (7) можно перейти, например, от уравнения пучка прямых (4)

или от уравнения прямой через точку и нормальный вектор (1):

Выше предполагалось, что направляющий вектор – ненулевой, но может так случиться, что одна из его координат, например, . Тогда выражение (7) формально запишется:

который, вообще не имеет смысла. Однако, принимают и получают уравнение прямой перпендикулярной оси . Действительно, из уравнения видно, что прямая определена точкой и направляющим вектором , перпендикулярным оси . Если в этом уравнении освободиться от знаменателя, тогда получим:

. , либо – уравнение прямой, перпендикулярной оси . Аналогично было бы получено для вектора .

Параметрическое уравнение прямой

Чтобы понять, что такое параметрическое уравнение прямой, необходимо вернуться к уравнению (7) и приравнять каждую дробь (7) до параметра . Так как хотя бы один из знаменателей в (7) не равен нулю, а соответствующий числитель может приобретать произвольные значения, тогда область смены параметра – вся числовая ось.

Примеры задач на прямую линию

Конечно же, сложно что-либо решить исключительно по определениям, ведь нужно решить самостоятельно хотя бы несколько примеров или задач, которые помогут закрепить пройденный материал. Поэтому, давайте разберём основные задачи на прямую линию, так как похожие задачи часто попадаются на экзаменах и зачётах.

Каноническое и параметрическое уравнение

На прямой линии заданной уравнением , найти точку , которые находятся от точки этой прямой на расстоянии 10 единиц.

Решение:

Пусть искомая точка прямой, тогда для расстояния запишем . При условии . Так как точка принадлежит прямой , у которой есть нормальный вектор , тогда уравнение прямой можно записать: = = и далее получается:

Тогда расстояние . При условии , или . Из параметрического уравнения:

Задача

Точка движется равномерно со скоростью по направлению вектора от начальной точки . Найти координаты точки через от начала движения.

Решение

Сначала нужно найти единичный вектор . Его координаты – это направляющие косинусы:

Тогда вектор скорости:

Каноническое уравнение прямой теперь запишется:

= = , = – параметрическое уравнение. После этого нужно воспользоваться параметрическим уравнением прямой при .

Ответ

Угол между двумя прямыми

В равнобедренном прямоугольном треугольнике известна вершина прямого угла и уравнение гипотенузы . Составить уравнение катетов.

Решение:

Уравнение прямой, которая проходит через точку находим по формуле пучка прямых , где угловой коэффициент для прямой и = для прямой .

При условии , , поэтому и находим по формуле :

Учитывая рисунок, где видно, что между прямыми и – два угла: один острый , а второй – тупой . Согласно формуле (9) – это тот угол между прямыми и , на который нужно повернуть прямую против часовой стрелки относительно их точки пересечения до совмещения её с прямой .

Угол между двумя прямыми

Итак, формулу вспомнили, с углами разобрались и теперь можно вернуться к нашему примеру. Значит, учитывая формулу (9) находим сначала и уравнения катета .

Угол между прямыми

Так как поворот прямой на угол против часовой стрелки относительно точки приводит к совмещению с прямой , тогда в формуле (9) , а . Из уравнения :

По формуле пучка уравнения прямой запишется:

Аналогично находим , а ,

Уравнение прямой – виды уравнения прямой: проходящее через точку, общее, каноническое, параметрическое и т.д. обновлено: 16 апреля, 2020 автором: Научные Статьи.Ру

Читайте также: