Как сделать измеритель напряжения

Обновлено: 04.07.2024

Простой вольтметр переменного напряжения с частотой 50 Гц, выполнен в виде встраиваемого модуля, который может использоваться как отдельно, так и быть встроен в готовое устройство.
Вольтметр собран на микроконтроллере PIC16F676 и 3-разрядном индикаторе и содержит не очень много деталей.



Основные характеристики вольтметра:
• Форма измеряемого напряжения — синусоидальная
• Максимальное значение измеряемого напряжения — 250 В;
• Частота измеряемого напряжения — 40…60 Гц;
• Дискретность отображения результата измерения — 1 В;
• Напряжение питание вольтметра — 7…15 В.
• Средний ток потребления — 20 мА
• Два варианта конструкции: с БП на борту и без
• Односторонняя печатная плата
• Компактная конструкция
• Отображение измеряемых величин на 3-разрядном LED-индикаторе

Содержание / Contents

↑ Принципиальная схема вольтметра для измерения переменного напряжения


Реализовано прямое измерение переменного напряжения с последующим вычислением его значения и вывода на индикатор. Измеряемое напряжение поступает на входной делитель, выполненный на R3, R4, R5 и через разделительный конденсатор C4 поступает на вход АЦП микроконтроллера.

Резисторы R6 и R7 создают на входе АЦП напряжение 2,5 вольта (половина питания). Конденсатор C5, относительно малой ёмкости, шунтирует вход АЦП и способствует уменьшению ошибки измерения. Микроконтроллер организует работу индикатора в динамическом режиме по прерываниям от таймера.

↑ Конструкция и детали

Вариант с питанием от измеряемой сети 220 В. Предусмотрен простейший блок питания 5 Вольт, эта часть обведена бледно зелёной линией на схеме. Такой модуль используется при непосредственном питании от измеряемой сети. В этом режиме нижняя граница измеряемого напряжения будет составлять около 150 Вольт .



Вариант с доп. питанием + 7…15 В. Пределы измерения 0 – 250 Вольт.



Вольтметр собран на плате из одностороннего фольгированного стеклотекстолита. Индикатор применён с общим катодом.
Резисторы R6 и R7 могут иметь величину 47 – 100 ком. Их необходимо подобрать с одинаковыми номиналами или взять с 1% допуском. От их равенства номиналов зависит линейность показаний в верхней части шкалы.
Номинал резисторов R8 – R12 выбирается в зависимости от требуемой яркости свечения и светоотдачи индикатора. При этом возможно придётся увеличить ёмкость конденсатора C1 для получения большего значения тока для питания индикатора.
При использовании индикатора с малой светоотдачей желательно вместо микросхемы U1 (78L05) применить более мощную 7805 для того чтобы избежать перегрева.

↑ Настройка

Настройка вольтметра особенностей не имеет. Перед настройкой желательно выждать 10 – 15 минут после включения. Необходимо установить правильные показания с помощью резисторов R5 (точно) и R3 (грубо, если потребуется).

↑ Программа

Программа написана на языке СИ (mikroC PRO for PIC) и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему и повысить точность измерения малых напряжений.
Микропроцессор применён PIC16F676. Тактовая частота внутреннего генератора 4 МГц.

Работа программы: в течение некоторого отрезка времени производится многократное прямое измерение напряжения без привязки к фазе и при этом определяются минимальное и максимальное значения напряжений. Разность их значений будет равна размаху измеряемого напряжения, которое и выводится на индикатор.

↑ Возможные применения вольтметра


• Измерение регулируемого напряжения, снимаемого с ЛАТРа (пределы измерения 0 – 250 Вольт )



• Измерение напряжения внутри какого-либо устройства, если есть внутренний источник питания с напряжением 8 – 15 Вольт (пределы измерения 0 – 250 Вольт). Используется вариант платы без блока питания. Я применил этот вариант в ШИМ регуляторе переменного напряжения.


↑ Файлы

Схема, плата, прошивка и исходный код
🎁Soft_PH8_V2.zip 4.83 Kb ⇣ 326
🎁Plata-PH8.zip 19.18 Kb ⇣ 297
🎁Shema-PH8.zip 9.21 Kb ⇣ 282

↑ Дополнения

Спасибо за внимание!
Иван Внуковский, г. Днепропетровск, Украина

Рассматриваемый в этой статье сдвоенный малогабаритный прибор предназначен для измерения постоянного тока и напряжения по схеме с "общей землёй" для обоих приборов (вольтметра и амперметра).

Как в силу своей конструкции, так и в силу схемотехники, удобнее всего его будет применять в виде встроенного устройства для постоянного контроля работы других устройств.

Встраиваемый цифровой вольтметр - амперметр

Купить протестированный цифровой вольтметр - амперметр можно на Алиэкспресс, цена на момент обзора в зависимости от модификации - о т $ 2.75 до $3.45.

Внешний вид, комплектация, технические характеристики и схемотехника встраиваемого цифрового вольтметра - амперметра

Вольтметр-амперметр представляет собой небольшую плату с двумя светодиодными цифровыми индикаторами, вставленную в корпус-рамку:

Цифровой встраиваемый вольтметр - амперметр

Прибор выпускается в разных модификациях (с 3-значными индикаторами и 4-значными индикаторами), с различными комбинациями цветов свечения индикаторов (красный и/или синий), и на различные пределы измерения по напряжению и току (напряжение - 100 или 200 в, ток - 10 А или 50 А; для предела 50 А необходим внешний шунт).

Основные технические характеристики устройства (в скобках указаны значения для протестированного варианта прибора):

Разрядность индикаторов: 3 или 4 (3);

Размер шрифта (высота цифр): 0.28 дюйма (7.1 мм);

Диапазон измерения напряжения: 0 - 100 В или 0 - 200 В (100 В);

Диапазон измерения тока: 0 - 10 А или 0 - 50 А (10 А);

Точность измерения напряжения и тока: 0.08% + 2 ед. мл. разряда;

Частота обновления показаний: 3 раза в секунду;

Напряжение питания: 4 - 30 В;

Потребляемый ток: не более 20 мА;

Рабочая температура: -10 . +65°С;

Габариты: 48*29*20 мм (длина / ширина / глубина без учета вставленных разъёмов).

В комплектацию прибора входят два кабеля: кабель с двумя толстыми проводами для подключения амперметра и кабель с тремя тонкими проводами для подключения вольтметра и питания.

Комплектация цифрового вольтметра - амперметра

Если измеряемое напряжение находится в интервале 4 - 30 В, то питать прибор можно непосредственно измеряемым напряжением.

Если же измеряемое напряжение выходит за эти рамки, то для питания необходимо предусмотреть отдельный источник.

Это связано с тем, что если напряжение окажется выше 30 В, то рассеиваемая мощность на стабилизаторе питания прибора превысит предельно-допустимую, и прибор может выйти из строя.

Если же напряжение окажется ниже 4 В, то прибор просто не включится.

Так выглядит прибор с подключенными разъёмами:

Цифровой вольтметр - амперметр с подключенными кабелями

Здесь надо обратить внимание на один момент в конструкции.

На длинных боках прибора имеются по паре защёлок, чтобы прибор держался на внешней панели какого-либо устройства.

По идее, эти защелки должны иметь некоторую гибкость, чтобы прибор можно было установить на своё место без излишних усилий.

На самом деле никакой гибкости у защёлок нет, и притом сразу по двум причинам.

Во-первых, им мешают индикаторы прибора, установленные вплотную к границам платы: защёлкам просто некуда прогибаться.

Во-вторых, даже если плату вынуть, то оказывается, что защелки всё равно настолько жесткие, что пользоваться ими весьма затруднительно.

Впрочем, если пользователь решит установить прибор с помощью этих защелок, то другого варианта нет: сначала извлечь плату (это делается легко), затем установить корпус прибора на своё место, затем обратно установить плату. Перед этой операцией следует убедиться, что защелки не останутся в подогнутом состоянии и не помешают установке платы на своё место.

Теперь - о назначение проводников кабелей.

Кабель из двух толстых проводов - для измерения тока. Чёрный - "земля", он же вход амперметра (подключается к "земле" источника питания). Красный - выход амперметра (для подключения отрицательного полюса нагрузки).

Сечение проводов обозначено на них в американской системе как 18 AWG , что соответствует диаметру провода в 1.024 мм и сечению в 0.823 кв. мм. Провода такого диаметра обычно применяются в качестве силовых в стандартных блоках питания компьютеров на 300-500 Вт и достаточны для тока до 10 А.

Разъём для кабеля измерения тока тоже имеет более толстые контакты, чем для измерения напряжения; но следует помнить, что при высоких токах даже небольшое сопротивление в несколько миллиОм может оказать своё зловредное действие: привести к нагреву и даже обугливанию контактов. К этому вопросу вернёмся ещё в итогах обзора.

Кабель из трёх тонких проводов - для подачи питания и измеряемого напряжения. Черный - "земля", внутри прибора он соединён с толстым чёрным проводником амперметра.

Красный провод - питание, желтый - для подачи измеряемого напряжения. Если измеряемое напряжение находится в пределах 4 - 30 В, то красный и желтый провода можно замкнуть между собой и использовать и для питания, и для измерения напряжения.

Далее представлены типовые схемы подключения прибора со страницы продавца для двух описанных выше случаев: когда напряжение укладывается в пределы 4 - 30 В и когда не укладывается.

Схема подключения встроенного цифрового вольтметра - амперметра для напряжений 4 - 30 В

Схема подключения встроенного цифрового вольтметра - амперметра для напряжений ниже 4 В или выше 30 В

Теперь посмотрим на печатную плату цифрового вольметра-амперметра:

Печатная плата цифрового вольметра - амперметра

В левом верхнем углу - "главная" микросхема: аналого-цифровой процессор (без маркировки либо со стёртой маркировкой). Осуществляет измерение напряжения и тока и одновременно управляет светодиодными индикаторами.

Индикация осуществляется последовательным обходом разрядов цифровой индикации. Из-за этого при движении глаз заметен стробоскопический эффект.

Кроме того, прибор не имеет регулировки яркости свечения индикации.

В левом нижнем углу (в тени) - линейный стабилизатор питания M5333B на напряжение 3.3 В.

Подстроечники VR1 (V_ADJ) и VR2 (I_ADJ) служат для подстройки точности измерения напряжения и тока соответственно. В тестах их положение не менялось, прибор тестировался с заводской настройкой.

Между разъёмами расположился сдвоенный операционник LM358S.

Вверху у правого края сверху - шунт для измерения тока.

Вот, вкратце, и всё касательно схемотехники.

Тестирование встраиваемого цифрового вольтметра - амперметра

Для тестирования цифрового вольтметра-амперметра использовалось следующее оборудование:

- лабораторный блок питания Longwei LW-K3010D (30 В 10 А) (обзор);

- осциллограф Hantek 2D72 , включенный в режиме мультиметра;

- резистор 3.9 Ом 100 Вт, сопротивление вместе с соединительными проводами - 4.35 Ом.

Сначала был замерен ток потребления прибора, он составил 9.7 мА при напряжении питания 30 В. При снижении напряжения питания ток потребления снижался незначительно, так что можно считать данное потребление постоянным.

Дальнейшая программа - очень простая.

Проводим замер тока и напряжения при разных значениях: низком, среднем и относительно высоком. Поскольку осциллограф в качестве мультиметра не может одновременно измерять и ток, и напряжение, проверка точности измерения тока проводилась отдельно от проверки точности напряжения.

Показания осциллографа в качестве мультиметра принимались за эталонные, так как его разрядность (и, соответственно, точность) выше.

При этом следует заметить, что фактически проверялась точность заводской настройки прибора. В случае обнаружения ошибок в разумных пределах пользователь может подстроечниками сам добиться нужной точности, но наверняка какая-то часть пользователей будет использовать прибор "как есть".

Проверка измерения тока.

1. Малая величина тока.

Тестирование встраиваемого цифрового вольтметра-амперметра

При токе 0.952 А прибор показал 0.94 А, ошибка составила 1.3%.

Также надо обратить внимание, что этот тест сделан при минимально-допустимом напряжении питания (4 В) и оказался успешным.

2. Средняя величина тока.

Тестирование встраиваемого цифрового вольтметра-амперметра

При токе 2.198 А прибор показал 2.16 А, ошибка составила 1.7%.

3. Высокая величина тока (имеется в виду в пределах применённой аппаратуры).

Тестирование встраиваемого цифрового вольтметра-амперметра

При токе 4.64 А прибор показал 4.60 А, ошибка составила 0.9%.

Теперь проверим точность по напряжению.

1. Малая величина напряжения.

В данном случае под малым напряжением понимается напряжение, при котором, согласно техническим характеристикам, начинается штатная работа прибора, т.е. около 4 В. Прибор может измерять и меньшие напряжения, но при условии питания прибора от отдельного источника.

Тестирование цифрового вольтметра-амперметра

При напряжении 4.14 В прибор показал 4.05 В, ошибка составила 2.2%.

2. Средняя величина напряжения.

Тестирование цифрового вольтметра - амперметра

При напряжении 12.14 В прибор показал 12.0 В, ошибка составила 1.2%.

3. Высокая величина напряжения.

Тестирование цифрового вольтметра - амперметра

При напряжении 20.41 В прибор показал 20.2 В, ошибка составила 1.0%.

Проведённые испытания, хотя и не охватывают весь диапазон допустимых токов и напряжений, показали высокую точность протестированного вольтметра - амперметра и стабильность результатов. Погрешность оказалась не только малой, но и стабильной - не меняла знак в процессе измерений (высокая линейность характеристики).

Итоги и выводы

Протестированный встраиваемый цифровой вольтметр - амперметр показал себя изделием, вполне пригодным для использования в целях контроля параметров питания различной аппаратуры.

При этом надо учитывать некоторые особенности прибора.

В первую очередь надо отметить, что максимальную величину измеряемого тока (до 10 А) следует рассматривать, как предельно-допустимый эксплуатационный параметр, влияющий на срок эксплуатации прибора (причины были описаны выше).

Иными словами, как и всякий предельно-допустимый параметр, он не должен использоваться на 100% в течение длительного времени. Желательно, чтобы постоянная нагрузка по току не превышала 75-80% от максимальной.

Следующая "тонкость" - прибор не следует применять при быстрых изменениях измеряемой величины: по "мелькающим" цифрам трудно отслеживать изменения параметров. В таких случаях лучше использовать добрые старые стрелочные приборы, пусть даже их точность и ниже (обзор малогабаритных стрелочных амперметров - здесь). Как вариант - можно установить одновременно и стрелочный, и цифровой прибор.

И помним, что прибор рассчитан на измерение тока и напряжения только одной полярности - положительной относительно собственной "земли". Для измерения тока и напряжения отрицательной полярности необходимо и достаточно использовать отрицательное питание в качестве "земли" для прибора.

Где купить: на Алиэкспресс, цена на момент обзора - о т $ 2.75 до $ 3.45 .

Обзоры других контрольно-измерительные приборов, протестированных на данном сайте - здесь.

Весь раздел "Сделай сам! ( DIY) " - здесь.

Ваш Доктор.
20 июня 2021 г.

Индикатор напряжения своими руками

Для чего нужен логический пробник?

Это устройство с успехом применяется, когда необходимо произвести предварительную проверку работоспособности элементов простой электрической схемы, а также для первичной диагностики несложных приборов – то есть в тех случаях, когда не требуется высокая точность измерений. С помощью логического пробника можно:

  • Определить наличие в электроцепи напряжения величиной 12 – 400 В.
  • Определить полюса в цепи постоянного тока.

Прозвонка самодельным пробником

  • Произвести проверку состояния транзисторов, диодов и других электрических элементов.
  • Определить фазную жилу в электроцепи переменного тока.
  • Прозвонить электрическую цепь для проверки ее целостности.

Наиболее простыми и надежными приборами, с помощью которых производятся перечисленные манипуляции, являются индикаторная отвертка и звуковая отвертка.

Пробник электрика: принцип работы и изготовление

  • Диагностики на обрыв катушек и реле.
  • Прозвонки моторов и дросселей.
  • Проверки выпрямительных диодов.
  • Определения выводов на трансформаторах с несколькими обмотками.

Это далеко не полный перечень задач, которые решают с помощью пробника. Но и перечисленного достаточно, чтобы понять, насколько полезно это устройство в работе электромонтера.

Замеры самодельным тестером

В качестве источника питания для этого устройства используется обычная батарейка с показателем напряжения 9 В. Когда щупы тестера замкнуты, величина потребляемого тока не превышает 110 мА. Если же щупы разомкнуты, то устройство не потребляет электроэнергию, поэтому ему не нужен ни переключатель режима диагностики, ни выключатель энергопитания.

Пробник способен выполнять свои функции в полной мере, пока напряжение на источнике питания не падает ниже 4 В. После этого его можно использовать в качестве указателя напряжения в цепях.

Во время прозвонки электрических цепей, показатель сопротивления которых составляет 0 – 150 Ом, загорается два светоизлучающих диода – желтого и красного цвета. Если показатель сопротивления составляет 151 Ом – 50 кОм, то светится только желтый диод. Когда на щупы прибора подается напряжение сети величиной от 220 В до 380 В, начинает светиться неоновая лампа, одновременно с этим наблюдается легкое мерцание LED-элементов.

Схема этого индикатора напряжения имеется в интернете, а также в специализированной литературе. Изготавливая такой пробник своими руками, его элементы устанавливают внутри корпуса, который изготовлен из изоляционного материала.

Из чего можно сделать корпус щупов

Сборка простейшего пробника напряжения со светодиодным индикатором – на следующем видео:

Как изготовить эвуковой пробник электрика своими руками?

Подойдет и другое аналогичное устройство, снабженное металлической мембраной, внутри которого расположена пара последовательно соединенных катушек.

На базе такой детали может быть собран несложный звуковой пробник.

В первую очередь нужно разобрать телефонный капсюль и отсоединить катушки друг от друга. Это нужно для того, чтобы освободить их выводы. Элементы размещаются в наушнике под звуковой мембраной, около катушек. После сборки электрической цепи мы получим вполне рабочий определитель со звуковой индикацией, который возможно применять, к примеру, в целях проверки дорожек печатных схем на взаимное перемыкание.

Схема пробника со звуковой и световой индикацией

База такого пробника – электрогенератор с индуктивной противоположной взаимосвязью, основными деталями которого является телефон и транзистор малой мощности (лучше всего германиевый). Если такого транзистора у вас нет, то можно воспользоваться другим, обладающим проводимостью N-P-N, однако в этом случае полярность включения источника электропитания следует поменять. Если включить генератор не получается, выводы одной (любой) катушки нужно поменять между собой местами.

Увеличить громкость звука можно, выбрав частоту электрогенератора таким образом, чтобы она была максимально приближена к резонансной частоте наушника. Для этого мембрану и сердечник нужно расположить на соответствующем расстоянии, изменяя интервал между ними до получения нужного результата. Теперь вы знаете, как сделать индикатор напряжения на базе телефонного наушника.

Наглядно изготовление и использование простейшего пробника напряжения на видео:

Заключение

В этом материале мы рассказали, как индикатор напряжения на светодиодах можно собрать своими руками, а также рассмотрели вопрос изготовления простого диагностического прибора на базе звукового наушника.

Использование самодельного пробника напряжения

Как видите, самостоятельно собрать светодиодный индикатор, как и звуковой определитель, достаточно несложно – для этого достаточно иметь под рукой паяльник и нужные детали, а также обладать минимальными электротехническими знаниями. Если же вы не очень любите самостоятельно собирать электрические устройства, то при выборе прибора для несложной диагностики стоит остановиться на обычной индикаторной отвертке, которая продается в магазинах.



Часовой пояс: UTC + 3 часа

Вольт\амперметр из одной головки

Хочу сделать вольт\амперметр, так как замучмлся искать подходяшие. есть головка вольтметр на 10 в постоянного тока. Надо мерять пост. напряжение до 150в. и ток до 2 А, как правильно рассчитать делитель/шунт к этой головке??

Для измерения напряжения 150 В нужно поставить последовательно сопротивление, примерно в 14 раз выше, чем входное сопротивление имеющегося вольтметра.
С измерением тока этой же головкой- на 15 В- скорее всего- ничего не получится; в данной ситуации нужен милли-или микроамперметр, а не вольтметр.

JLCPCB, всего $2 за прототип печатной платы! Цвет - любой!

Для измерения напряжения 150 В нужно поставить последовательно сопротивление, примерно в 14 раз выше, чем входное сопротивление имеющегося вольтметра.
С измерением тока этой же головкой- на 15 В- скорее всего- ничего не получится; в данной ситуации нужен милли-или микроамперметр, а не вольтметр.

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Приглашаем 27/01/2022 всех желающих посетить вебинар, посвященный двум наиболее растущим сегментам интегрированных источников питания – AC/DC малой мощности (1-20Вт) и сегменту решений PoL без изоляции. На вебинаре рассмотрим проблему выбора AC/DC в бюджетном сегменте и концепцию тестирования ускоренного старения, проведем сравнительный анализ подходов к интеграции AC/DC модулей. Сделаем обзор решений концепции POL с доисторических времен до современных технологий и средств для разработки и тестирования.

Компания Mornsun выпустила три серии источников питания с креплением на DIN-рейку в форм-факторе Home Automation на популярные значения выходной мощности 30, 60 и 100 Вт (серии LI30-20/PR2, LI60-20/PR2, LI100-20/PR2). Эти источники питания относятся ко второму поколению продукции (R2) и характеризуются высокой надежностью и хорошей стоимостью.

Можно сделать сколько хотите- увеличивайте сопротивление шунта. В первом приближении его рассчитать так- разделить предельное измеряемое напряжение в вольтах на полный ток отклонения стрелки прибора в миллиамперах; получится добавочное сопротивление в килооомах.
Пример; напряжение 150 в, ток отклонения 0,05 мА. Добавочное сопротивление =3000 кОм.


Часто Внутри вольтметров (амперметров) стоят добавочные сопротивления (шунты) к довольно чувствительной головке. Можно аккуратно разобрать и посмотреть, что там стоит. Если есть сопротивление, то его убрать и тогда можно делать приборы на любые пределы напряжений и токов.

_________________
Если хотите, чтобы жизнь улыбалась вам, подарите ей своё хорошее настроение


Да, Света права.
Измерьте сопротивление Вашего вольтметра- если получится килоомы- значит, внутри есть добавочное сопротивление. Ну и далее- по рекомендациям Светы.

Спасибо за советы!! прибор разобрал, внутри стоит резистор 9К8, померял сопротивление прибора без него получилось 386 Ом, как измерить ток полного отклонения стрелки?

Включить последовательно какой-нибудь другой микроамперметр. Или можно включить последовательно резистор с известным сопротивлением и измерять на нём напряжение при полном отклонении стрелки испытуемого прибора.

_________________
Если хотите, чтобы жизнь улыбалась вам, подарите ей своё хорошее настроение

Евгений156..
как измерить ток полного отклонения стрелки?
Щас, когда сопротивления те известны, а в первом посту ты писал, что есть головка вольтметр на 10 в постоянного тока
Подставляшь в пропорцию эти сопротивления и это напряжения и решаешь..
И не надо второй измеритель, хотя с ним - проще.

Включить последовательно какой-нибудь другой микроамперметр. Или можно включить последовательно резистор с известным сопротивлением и измерять на нём напряжение при полном отклонении стрелки испытуемого прибора.

Хочу уточнить порядок действий, значит

1. Измеряю полный ток отклонения стрелки прибора.

2. Делю предельное измеряемое напряжение в вольтах(150в) на полный ток отклонения стрелки прибора в миллиамперах; получится добавочное сопротивление в килооомах.

3. Ставлю высчитанное добавочное сопротивление последовательно прибору??Имеет значение на какую клемму +\- паять??

4. Каков порядок действий для определения шунта для этой головки, на макс. ток измерения 2А??

Шунт для вольтметра- всё правильно. Не важно- на клемму или на монтаж (хотя на монтахные лепестки лучше. Желательно поставить последовательно с подобранным шунтом небольшой подстроечный резистор- для точной подгонки; тогда сопротивление шунта можно взять ближайший номинал из стандартного ряда).
Шунт для амперметра подбирается так.
Ток отклонения головки умножается на сопротивление головки- получается падение напряжения на головке при полном отклонении стрелки.
Исходя из этого полученного напряжения находим сопротвление шунта, разделив найденное падение напряжения в вольтах на предел измерения тока в амперах.
Пример- сопротивление головки 350 Ом, ток 100 мкА.Падение напряжения получается 0,35 В. Разделим 0,35 В на 2 А получим сопротивление токового шунта 0,175 Ом.
Можно сопротивление шунта взять немного больше, а последовательно с головкой подключить небольшое дополнительное сопротивление для точной подгонки показаний амперметра. Мя именно так и поступал при изготовлении шунтов.

Все расчёты будут иметь погрешность и я всегда ставлю последовательно подстроечный резистор и параллельно включаю образцовый вольтметр. С помощью резистора выравниваю показания обоих приборов и потом просто измеряю полученное сопротивление.
В амперметре ставлю какой-нибудь шунт, с которым показания прибора немного больше. Потом последовательно с прибором ставлю подстроечный резистор и по образцовому амперметру подгоняю показания резистором.

_________________
Если хотите, чтобы жизнь улыбалась вам, подарите ей своё хорошее настроение


У важаемый Сэр Мурр, вообщето для вольтметров всегда подбирали добавочное сопротивление, оно же ничего не и ни чем не шунтируется.

Читайте также: