Как сделать из зарядного устройства 5в на 9в

Обновлено: 07.07.2024

Достать бывший в употреблении блок питания компьютера сегодня несложно, а стоит он сущие копейки. Но как его можно использовать без самого компьютера? В этой статье мы это выясним, а заодно сделаем своими руками зарядное устройство и лабораторный блок питания (ЛБП) из компьютерного блока питания.

Как включить блок питания (БП) от компьютера без компьютера

Итак, у нас в руках блок питания ATX компьютера. Прежде всего попробуем его включить. Но для этого нужно знать некоторые тонкости работы этого устройства. Предположим, перед нами компьютер. Включаем его в сеть, но внешне ничего не происходит. Это, казалось бы, понятно – машина отключена, а чтобы ее включить, нужно нажать кнопку питания на лицевой панели системного блока.

На самом деле это не совсем так. Как только мы вставили вилку в розетку, в блоке питания заработала небольшая часть схемы, вырабатывающая дежурное напряжение +5 В. Называется эта часть модулем дежурного питания. Напряжение поступает на материнскую плату и питает ее отдельные узлы, один из которых предназначен для включения компьютера.

Важно. В большинстве блоков питания ATX предусмотрен дополнительный служебный механический выключатель, расположенный на задней стенке ПК. Напряжение сети на БП этих моделей подается после включения этого тумблера.

механический выключатель

Нажимая кнопку на лицевой панели системного блока, мы тем самым подаем команду материнской плате (точнее, ее узлу включения) запустить блок питания. Узел подает на БП сигнал Power on , и БП, а значит, и сам компьютер включаются.

Поскольку компьютера у нас нет, этот сигнал нам придется подать самостоятельно. Сделать это несложно. Для этого достаточно найти разъем на блоке питания, который питает материнскую плату, и установить перемычку между зеленым и любым из черных проводов. Итак, устанавливаем перемычку, подключаем блок питания к сети, и он сразу же запускается – это слышно даже по шуму вентилятора.

Перемычка

Где 12 вольт, а где 5? Разбираемся с цветовой маркировкой

Как узнать, на каких проводах какие напряжения формируются? Где, к примеру, 12 вольт на блоке питания компьютера? Для этого не понадобится тестер, поскольку все провода, выходящие из компьютерного блока питания, имеют строго определенную общепринятую расцветку. Поэтому вместо тестера мы вооружаемся табличкой, приведенной ниже.

Табличка особых пояснений не требует. С зеленым проводом ( Power on ) мы познакомились в предыдущем разделе – на него материнская плата подает сигнал низким уровнем (замыканием на общий) на включение БП. Синий провод в новых моделях БП может отсутствовать, поскольку производители материнских плат отказались от интерфейса RS-232C (COM-порт), требующего -12 В.

Фиолетовый провод ( +5 VSB ) – это как раз дежурные +5 В, питающие дежурные узлы материнской платы. По серому проводу ( Power good ) блок питания сообщает, что все напряжения в норме и компьютер можно включать. Если какое-то из напряжений в процессе работы выходит за допустимые пределы или пропадает, то сигнал снимается. Причем это происходит до того, как успеют разрядиться накопительные конденсаторы БП, давая процессору время на принятие экстренных мер по аварийной остановке системы. Остальные провода – это провода питания материнской платы и периферийных устройств – дисководов, внешних видеокарт и т. д.

Как сделать блок питания или зарядное устройство из компьютерного БП ATX

Переделка БП ATX в регулируемый или лабораторный блок питания

А теперь самое время сделать из БП компьютера своими руками импульсный лабораторный блок питания. Дорабатывать будем блок питания, ШИМ-контроллер которого собран на специализированной микросхеме TL494 (она же: μА494, μPC494, M5T494P, KIA494, UTC51494, AZ494AP, KA7500, IR3M02, AZ7500BP, КР1114ЕУ4, МВ3759 и подобные аналоги).

Сразу оговоримся – хотя типовые схемы включения этих микросхем одинаковы, некоторые отличия в зависимости от модели БП все же есть. Поэтому универсального решения для переделки всех БП не существует.

Для примера мы доработаем блок питания, схема которого приведена ниже. Поняв идею вносимых изменений, подобрать алгоритм переделки любого другого блока не составит особого труда.

Разбираем БП, вынимаем плату. Сразу же отпаиваем все ненужные провода шлейфов питания, оставив один желтый, один черный и зеленый.

Лишние провода

Также выпаиваем сглаживающие электролитические конденсаторы по всем линиям питания. На схеме они обозначены как С30, С27, С29, С28, С35. Мы собираемся существенно (до 25 В по шине +12 В) поднять выходное напряжение, на которое эти конденсаторы не рассчитаны. На место того, что стоял по шине +12 В, устанавливаем конденсатор той же или большей емкости на напряжение не менее 35 В. Остальные места оставляем пустыми. Зеленый провод припаиваем на место, где был любой черный, чтобы разрешить блоку питания запускаться. Теперь можно заняться доработкой контроллера.

Взглянем на назначение выводов микросхемы TL494. Нас интересуют два узла – усилитель ошибки 1 и усилитель ошибки 2. На первом собран стабилизатор напряжения, на втором – контроллер тока. То есть нас интересует обвязка выводов 1, 2, 3, 4, 13, 14, 15, 16.

микросхема TL494

Изменим схему обвязки таким образом, чтобы усилитель ошибки 1 отвечал за регулировку выходного напряжения, а усилитель 2 – за регулировку тока. В первую очередь перережем дорожки, обозначенные на приведенной ниже схеме крестиками.

дорожки

Теперь находим резисторы R17 и R18. Первый имеет сопротивление 2.15 кОм, второй 27 кОм. Меняем их на номиналы 1.2 кОм и 47 кОм соответственно. Добавляем в схему два переменных резистора, один постоянный на 10 кОм (отмечены зеленым), клеммы для подключения внешнего потребителя, амперметр и вольтметр. В результате у нас получится вот такая схема.

схема ШИМ

Как видно из схемы, резистор на 22 кОм позволяет плавно регулировать напряжение в пределах 3-24 В, резистор 330 Ом – ток от 0 до 8 А. Кл1 и КЛ2 служат для подключения нагрузки. Вольтметр имеет предел измерения 25-30 В, амперметр – 10 А. Приборы могут быть как стрелочными, так и с цифровыми шкалами, главное, малогабаритными – ведь они должны войти в корпус блока питания. Можно начинать проверку и градуировку.

Приборы измерения

Первое включение нашего лабораторного блока питания производим через лампу накаливания 220 В мощностью 60 Вт. Это поможет избежать проблем, если мы наделали ошибок в монтаже. Если лампа не светится или светится вполнакала, а блок питания запустился, то все в порядке. Если лампа горит в полный накал, а блок питания молчит, то придется искать ошибки.

блока питания, через лампу

Все в порядке? Включаем БП напрямую в сеть, выводим движки резисторов в нижнее по схеме положение. К клеммам КЛ1, Кл2 подключаем нагрузку – 2 лампы дальнего света, включенные последовательно. Вращаем резистор регулировки напряжения и убеждаемся по встроенному вольтметру, что напряжение плавно изменяется от 3 до 24 вольт. Для верности подключаем к клеммам контрольный вольтметр, к примеру, тестер. Градуируем ручку регулятора напряжения, ориентируясь по показаниям приборов.

Возвращаем движок в нижнее по схеме положение, выключаем блок питания, а лампы соединяем параллельно. Включаем блок питания, устанавливаем регулятор тока в среднее положение, а регулятор напряжения – на отметку 12 В. Вращаем ручку регулятора тока. При этом показания амперметра должны плавно изменяться от 0 до 8 А, а лампы – плавно менять яркость. Градуируем регулятор тока, ориентируясь по показаниям амперметра.

Отключаем устройство и собираем его. Наш лабораторный блок питания готов. С его помощью мы можем получить любое напряжение от 3 до 24 вольт и устанавливать ограничение тока через нагрузку в пределах 0-10 А.

Как сделать зарядное устройство

Теперь займемся переделкой компьютерного блока питания в автомобильное зарядное устройство.

Прибор для зарядки постоянным напряжением

Это устройство заряжает аккумулятор постоянным фиксированным напряжением 14 В. По мере зарядки батареи зарядный ток будет падать. Как только напряжение на клеммах батареи достигнет 14 В, ток станет равным нулю, а зарядка прекратится.

Благодаря такому алгоритму аккумуляторную батарею невозможно перезарядить, даже если оставить ее на зарядке на неделю. Это полезно при обслуживании AGM и GEL автомобильных аккумуляторов, которые очень не любят перезарядки.

А теперь за дело, тем более, что схема доработки простая. Дорабатывать будем БП ATX на контроллере TL494 или его аналогах (см. раздел выше). Наша задача – повысить выходное напряжение по шине +12 В до 14 вольт. Сделать это несложно. Вскрываем блок питания, вынимаем плату и отпаиваем все провода питания, оставив лишь желтый, черный и зеленый.

провода

Впаиваем зеленый провод на место любого черного – подаем команду БП на безусловное включение при подключении к сети (см. раздел выше). Выпаиваем электролитические сглаживающие конденсаторы со всех линий питания. На место, где стоял конденсатор по шине +12 В устанавливаем конденсатор той же емкости, но на рабочее напряжение 35 В. Переходим к доработке контроллера. Находим резистор, который соединяет первый вывод микросхемы с шиной +12 В. На схеме ниже он обозначен стрелкой.

выходное напряжение

Нам нужно сменить его номинал. Но на какой? Выпаиваем, измеряем его сопротивление. В нашем случае его номинал – 27 кОм, но в зависимости от модели БП значение может меняться. На место выпаянного устанавливаем переменный резистор номиналом примерно вдвое большим. Движок резистора устанавливаем в среднее положение.

переменный резистор

Включаем блок питания и, измеряя напряжение на шине +12 В (желтый провод относительно черного), вращаем ползунок. Напряжение легко уменьшается, но увеличить его не получается – мешает защита от перенапряжения. Для того чтобы поднять напряжение до необходимых нам 14 В, ее нужно отключить. Находим на схеме резистор и диод, обозначенные на рисунке ниже стрелками, и выпаиваем их.

схема

Снова включаем БП, выставляем напряжение между черным и желтым проводами величиной 14 В. Выключаем, выпаиваем резистор, не трогая его движок, измеряем сопротивление. На место переменного устанавливаем постоянный того же номинала. Устанавливаем на корпус две клеммы, подпаиваем к ним черный и желтый провода, помечаем, где плюс и минус (желтый – плюс, черный – минус).

Снова включаем БП, теперь уже переделанное в зарядку для аккумуляторов устройство. К клеммам подключаем нагрузку – лампу дальнего света автомобиля. Измеряем на клеммах напряжение: если оно не снизилось более чем на 0.2 В, то доработка окончена. Собираем прибор и пользуемся.

Важно! Конечным напряжением зарядки AGM и GEL аккумуляторов является значение 13.8 В, поэтому выходное напряжение имеет смысл снизить с 14 В до 13.8 В.

Единственный, пожалуй, недостаток этой самодельной конструкции – она не имеет защиты от короткого замыкания и переполюсовки (мы ее отключили). Поэтому пользоваться прибором нужно внимательно.

Зарядник с регулировкой тока и напряжения

Теперь попробуем переделать компьютерный БП так, чтобы можно было плавно регулировать напряжение и ток зарядки. Это позволит обслуживать батареи любой емкости и на любое напряжение. Кроме того, это зарядное устройство имеет защиту от короткого замыкания, перегрузки и перегрева. С его помощью можно изменять зарядное напряжение от 0 до 25 В и ток от 0 до 8 А.

Теперь надо поднять напряжение на шине +12 В до величины 28 В. Для этого удаляем резисторы, соединяющие первый вывод ШИМ контроллера с шинами +5 и +12 В. На схеме ниже они обозначены стрелками.

узел защиты

Включаем блок питания и измеряем напряжение между желтым и черным проводами – оно должно увеличиться до указанных значений. С блоком питания все. Теперь перейдем к сборке узла регулировки напряжения и тока, представленного на схеме ниже.

узел регулировки напряжения

На транзисторах VT1 и VT2 собран простейший узел регулировки напряжения. Сама регулировка осуществляется при помощи потенциометра R14. В узле управления током используются микросхемы DA2 и DA4, представляющие собой интегральные регулируемые стабилизаторы напряжения/тока. Каждая из микросхем способна выдать ток до 5 А. Включив их параллельно, мы удвоили это значение. Регулировка тока производится потенциометром R17. Резисторы R7 и R8 – токовыравнивающие. Далее напряжение через амперметр PA1 подается на клеммы, к которым подключается заряжаемая батарея. Напряжение на батарее контролируется при помощи вольтметра PV1.

Вольтметр и амперметр можно использовать любые – хоть цифровые, хоть стрелочные. Первый должен иметь предел измерения 30 В, второй – 10 А. В качестве токовыравнивающих резисторов используются отрезки монтажного провода длиной 20 см и сечением 1 мм. кв. Если блок выполнен навесным монтажом, то в их качестве будут выступать монтажные провода.

Мощный полевой транзистор, который можно взять из неисправного компьютерного БП, и микросхемы стабилизатора устанавливаются на общий радиатор через слюдяные прокладки. Очень удобно использовать для этих целей радиатор от процессора ПК. Ниже представлен один из возможных вариантов монтажа блока регулировок.

транзистор и стабилизаторы

Если все готово, то включаем зарядное устройство, нагружаем его лампой дальнего света и проверяем работу, регулируя выходные ток и напряжение и контролируя их по приборам.

Что касается защиты, то она уже встроена в микросхемы DA2 и DA4. Эти приборы имеют внутреннюю защиту от перегрузки, короткого замыкания и перегрева.

Вот мы и разобрались с тонкостями доработки компьютерных блоков питания. Теперь нам не составит труда переделать их в зарядное устройство для автомобильного аккумулятора или лабораторный блок питания.

Срок жизни аккумуляторов шуруповерта намного меньше срока эксплуатации самого электроинструмента. После выхода АКБ из строя можно купить новые элементы питания, что недешево. Но иногда хорошим выходом будет изготовить самостоятельно блок питания от сети 220 вольт и забыть о проблеме аккумуляторов навсегда. При этом произойдет потеря в мобильности, но во многих случаях (условия стационарной мастерской и т.д.) это не имеет значения.

Общая схема и ток потребления шуруповертов 12, 14 и 18В

Из чего можно сделать блок питания для шуруповерта

Шуруповерты различных производителей построены на разной элементной базе, но структурная электрическая схема у всех примерно одинакова. Электроинструмент состоит из:

  • съемного аккумулятора;
  • платы управления;
  • куркового выключателя, совмещенного с регулятором оборотов;
  • переключателя диапазонов регулирования частоты (может отсутствовать);
  • электрического двигателя (коллекторного или бесщеточного).

При изготовлении своими руками источника питания для шуруповерта надо обращать внимание на два параметра:

  • напряжение;
  • номинальный выходной ток.

С напряжением все просто – новый источник питания должен иметь выходное напряжение, равное номинальному напряжению питания электроинструмента. Понижение ведет к потере крутящего момента, повышение – к снижению ресурса. Работа платы управления при пониженном напряжении не гарантируется, при повышенном – вероятен выход ее из строя.

Необходимый рабочий ток определить сложнее. Производители электроинструмента крайне редко указывают потребляемый ток. Немногим чаще указывают мощность в ваттах. Но на шильдиках шуруповертов можно найти следующие данные:

  • рабочее напряжение (в вольтах);
  • частота вращения (в оборотах в минуту);
  • вращаюший момент (в ньютонах на метр).

Эти данные выглядят достаточными для расчета рабочего тока.

Из чего можно сделать блок питания для шуруповерта

На самом деле не все так радужно. Если задаться данными с реального шуруповерта и попытаться рассчитать номинальный ток, то получится абсурдный результат.

Сначала рассчитывается выходная мощность по формуле:

P=T*RPM/9550, где:

  • P – мощность, кВт;
  • T – вращающий момент, Н/м;
  • RPM – частота вращения, об/мин;
  • 9550 – коэффициент, объединяющий перевод из одних единиц в другие.

Для указанных данных получается:

P=42*1350/9550=5,9 кВт.

Эту развиваемую мощность надо разделить на КПД (примерно равный 0,8), в итоге потребляемая мощность равна около 7 кВт. При напряжении 20 вольт аккумуляторы должны отдавать ток 350 А. При емкости 2 А*ч батарея разрядится за 20 секунд (если даже теоретически АКБ обеспечит такой ток). Это и есть обещанный абсурд. Причиной этого могут быть лукавые декларации по оборотам или крутящему моменту. Возможно, наибольший крутящий момент выдается только при определенной частоте вращения, но даже если ее знать, то практического смысла будет мало. Ведь шуруповерт работает на разных частотах.

Поэтому ориентироваться нужно на следующие цифры, полученные экспериментальным путем:

  • холостой ход – 1..2 ампера;
  • средняя нагрузка – 4..6 А;
  • максимальная нагрузка – 8..11 А;
  • броски тока при полном торможении – до 30 А.

Уточнить эти цифры для конкретного шуруповерта можно, замерив реальный потребляемый ток на разных режимах, собрав для этого несложную схему и погоняв электроинструмент на различных нагрузках.

Из чего можно сделать блок питания для шуруповерта

А можно не уточнять, а ориентироваться на цифры, указанные выше. Блок питания понадобится на наибольший ток 10 А (но никак не меньше 5..6), желательно с защитой от сверхтока.

Из чего можно собрать блок питания

Блок питания для зарядки шуруповерта можно сделать по различным схемам. Все зависит от квалификации, наличия приборов и имеющихся материалов.

Из БП компьютера

Неплохой блок питания для шуруповерта напряжением 12 в можно получить из БП для компьютера. Сначала надо проверить, подходит ли он по параметрам.

Из чего можно сделать блок питания для шуруповерта

В приведенном примере БП имеет два 12-вольтовых канала – на 11 А и на 13 А. Каждого канала достаточно для питания выбранного электроинструмента на 12 вольт. В интернете можно найти советы по параллельному соединению каналов до получения суммарного тока (в приведенном случае – 24 А). Делать это не рекомендуется, потому что из-за разницы в напряжениях один канал может стать потребителем для другого - весь риск на выбор хозяина. Из блока питания выходит шлейф проводов. Надо обрезать все, кроме:

  • двух черных (общий провод);
  • одного зеленого (провод управления);
  • одного или двух желтых (выход 12 вольт).

Из чего можно сделать блок питания для шуруповерта

Иногда надо оставить и красный провод – некоторые схемы требуют базовой нагрузки. Для этого между красным и любым черным надо подключить лампочку на 12 вольт. Если в ее отсутствие БП не выключается, значит, ее можно убрать. Зеленый провод надо подключить к любому черному. А 12 вольт снимать с желтого и черного (любого) проводников.

Из трансформатора

Из чего можно сделать блок питания для шуруповерта

Если есть подходящий трансформатор, можно построить источник питания на нем. Общая схема нестабилизированного источника питания показана на рисунке. Такое устройство состоит из:

  • понижающего трансформатора;
  • диодного моста;
  • сглаживающего конденсатора.

Если есть готовый промышленный трансформатор, надо по справочнику найти его данные. Если они устраивают, БП можно собрать на нем. Если нет – его можно переделать, предварительно проверив его пригодность для работы в требующихся условиях. Пригодность трансформатора определяется его мощностью. Если задаться выходным током в 10 А, напряжением 14 В и КПД системы (от трансформатора до выходного вала шуруповерта) равным 0,5, то потребуется трансформатор мощностью P=10 А*14 В/0,5=280 Вт (можно округлить до 300 Вт).

Из чего можно сделать блок питания для шуруповерта

Чтобы определить мощность трансформатора по железу, надо найти площадь сечения его сердечника в сантиметрах (в большинстве случаев можно снять размеры без разборки). Получившуюся площадь в квадратных сантиметрах Sc надо подставить в формулу:

Если полученный результат превышает 300 Вт, трансформатор пригоден для изготовления блока питания. Далее надо удалить все вторичные обмотки и намотать новую. Число витков можно определить экспериментально. Для этого надо намотать любое известное количество витков любым проводом и замерить выходное напряжение. Допустим, намотав 10 витков, на выходе получается 5 вольт. Значит, на один вольт приходится два витка, и для получения 14 вольт надо намотать 28 витков. Для 10 ампер сечение провода должно быть не менее 2,5 кв.мм, это соответствует толщине 1,8 мм.

После изготовления трансформатора надо выбрать диоды, способные работать при выбранном токе. Их надо поставить на радиаторы. И последнее – установить сглаживающий конденсатор. Он должен быть рассчитан на напряжение не менее 25 вольт и иметь емкость 4000-10000 мкФ (можно больше, но увеличатся габариты). Для таких задач трансформаторный блок питания получается достаточно громоздким и тяжелым.

Его можно дополнить стабилизатором напряжения, тогда он будет сохранять крутящий момент при любой нагрузке (но это необязательно – ведь в штатном режиме аккумуляторы также просаживаются при большом токе).

Из чего можно сделать блок питания для шуруповерта

Можно собрать стабилизатор на интегральной микросхеме серии 78ХХ (79ХХ для отрицательного плеча), умощнив ее внешним транзистором.

Важно! Линейный стабилизатор работает при определенном превышении входного напряжения перед выходным, поэтому в этом случае понадобится трансформатор с выходным напряжением 17..18 вольт. Габаритная мощность также должна быть увеличена – общий КПД схемы уменьшится. Это надо учесть при подборе или изготовлении.

Готовый источник надо поместить в корпус. Его можно сделать самостоятельно или подобрать готовым.

Из ноутбука

Неплохой результат можно получить, применив бок питания от ноутбука. Такие устройства рассчитаны на выходное напряжение 19 вольт и на различный ток нагрузки. Можно подобрать источник, выдающий ток до 6 ампер, этого хватит для большинства домашних работ. Перегружать такой источник не следует – сработает защита или отключится самовосстанавливающийся предохранитель на входе (самостоятельно восстанавливается он не всегда, и придется его заменять).

Из чего можно сделать блок питания для шуруповерта

Универсальный БП

Для питания шуруповерта можно использовать регулируемые и нерегулируемые источники питания постоянного тока, применяемые, например, в лабораториях. Их достоинство в том, что выходное напряжение можно регулировать, и установить, в зависимости от модели электроинструмента, как 12 В, так и 18 В. Проблема в том, что трудно найти лабораторный источник напряжения, рассчитанный на выходной ток 10 А. Так, представленный на фото блок на каждый канал имеет ограничение тока немногим более 3 А. Напряжение при этом около нуля, поэтому работать в таком режиме шуруповерт не сможет. В лучшем случае этот блок питания обеспечит холостой ход электроинструмента.

Из чего можно сделать блок питания для шуруповерта

Импульсный источник

Наилучшим вариантом является импульсный источник питания. легкий, компактный, не содержит мощного тяжелого трансформатора за счет того, что преобразование уровня напряжения происходит на более высокой частоте. Минус такого решения – сложная схемотехника. Чтобы изготовить импульсник своими руками, потребуется определенная квалификация.

Из чего можно сделать блок питания для шуруповерта

Схема одного из вариантов импульсного БП приведена на рисунке. Переменное напряжение выпрямляется мостом на VD1-VD4. Генератор на VT1 управляет работой ключей на VT3, VT4. В обмотке 1 трансформатора T2 создаются мощные импульсы тока высокой частоты. С обмотки 3 снимаются импульсы с пониженной амплитудой, выпрямляются мостом VD7, сглаживаются емкостью С5 и подаются на нагрузку. Намоточные данные трансформаторов указаны в таблице.

ТрансформаторМагнитопроводОбмоткаКоличество витковПровод
T1Феррит 1000 НМ (2000 НМ, 3000 НМ) 12х8х3 (кольцо)1,2,320ПЭВ 0.33
T2Феррит 1000 НМ (2000 НМ, 3000 НМ) 40х25х11 (кольцо)1100ПЭВ 0.54
29ПЭВ 0.33
313ПЭВ 0.96

Типовые ошибки при изготовлении

Типовые ошибки при изготовлению блоков питания сводятся к неправильному соединению элементов. Если вести монтаж внимательно, то этих проблем можно избежать. Также надо помнить, что шуруповерт сбалансирован по весу для работы с АКБ. Если батарею снять совсем, то работать будет очень неудобно. Поэтому надо оставить неработоспособный аккумулятор, удалив контактные пластины.

Из видео узнаете, что можно сделать из старого зарядного от шуруповерта.

Другой вариант – удалить из корпуса АКБ отработанные элементы, закрепив вместо них внутри соответствующий груз. В остальном изготовлении блока питания проблем вызвать не должно, и старый инструмент получит новую жизнь.

Нужна ли переделка?

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Переделывать шуруповерт или нет? Перед началом работы необходимо оценить достоинства и недостатки данного решения. Если говорить о первых, то в результате хозяин добьется:

  • исчезновения проблем с внезапно разрядившимся инструментом;
  • отсутствия зависимости от низкой температуры, ведь при таких условиях аккумуляторы разряжаются очень быстро;
  • получения стабильно крутящегося момента;
  • значительной экономии, так как покупка новой, довольно дорогой батареи не потребуется.

Важна ли мобильность?

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

После того как аккумуляторная батарея становится неспособной держать заряд, шуруповерт превращается в абсолютно бесполезный инструмент. Покупка нового зарядного устройства нецелесообразна, так как его цена нередко составляет до 50% стоимости новой модели. Поэтому мысль о переделке инструмента под сеть — совершенно оправданное решение.

Есть возможность восстановить характеристики аккумулятора, однако этот вариант все-таки полумера, потому что в дальнейшем ситуация повторится. Однако перед тем как выбрать решение, необходимо обдумать, что делать с мобильностью инструмента. Так ли она нужна? Есть 2 варианта потенциальной модификации шуруповерта:

  1. Инструмент с внешним блоком питания. В этом случае делают отдельное устройство. Это не так страшно, потому что даже громоздкую конструкцию можно расположить в непосредственной близости от розетки. Однако с ограничением, связанным с длиной кабеля БП и сетевого шнура, придется смириться.
  2. Шуруповерт с БП, вмонтированным на место аккумулятора. Такой способ модификации даст возможность избежать сборки габаритной конструкции, значительно ограничивающей применение инструмента. Но в этом случае проблему доступа тоже может создать длина сетевого кабеля. Зато использовать в таком качестве можно компактные устройства. Ими смогут стать покупные или имеющиеся блоки питания, если они подходят по характеристикам.

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Возможные источники питания

Чтобы любой шуруповерт мог функционировать от сети, ему необходимо обеспечить преобразование напряжения: инструмент требует всего 12, 16 либо 18 вольт. Все источники питания делятся на 2 большие группы: они могут быть импульсными либо трансформаторными.

Импульсные системы

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

В этих блоках питания входное напряжение сначала выпрямляется, затем преобразуется в высокочастотные импульсы. Их подают через трансформатор либо через обычные резисторы. Второй способ дает возможность получить малогабаритную конструкцию, так как в схеме отсутствует массивный силовой трансформатор.

Этот блок питания для шуруповерта обычно имеет довольно высокий КПД, достигающий 98%. Плюсом решения является защита от короткого замыкания, безопасность, которую гарантирует блокировка без нагрузки. Минусы у импульсных блоков есть. Это более низкая мощность, если сравнивать это значение с трансформаторным вариантом. Если нижний предел нагрузки минимален, то такой блок питания не сможет работать. Еще один недостаток — более сложный ремонт в случае выхода импульсного БП из строя.

Трансформаторный блок

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Это классическое устройство. В линейный источник питания входит понижающий трансформатор и выпрямитель, превращающий переменный ток в постоянный. Последний элемент бывает двух видов — однополупериодный, состоящий из одного диода, либо двухполупериодный, в его составе диодный мост, собранный из 4 электронных приборов.

В схему трансформаторного блока может входить конденсатор, стабилизатор, высокочастотный фильтр и защита от короткого замыкания. Достоинства устройства: простота, надежность, ремонтопригодность, отсутствие помех, а также очень дорогих элементов. Минусы — большие габариты и такой же вес, низкий КПД. Так как часть напряжения забирает стабилизатор, выходное значение обязано быть выше того, что требуется для работы шуруповерта. Например, для инструмента с питанием 12 В нужен БП, имеющий выходное напряжение от 12 до 14 вольт.

Что потребуется для модернизации?

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

В необходимый набор материалов и инструментов может войти:

  • изолента;
  • кабель (многожильный) и провода (для перемычек);
  • короб для БП (старый аккумулятор, покупное готовое устройство либо самодельная конструкция);
  • кусачки;
  • мультиметр;
  • отвертки;
  • пассатижи;
  • паяльник, припой, кислота;
  • строительный нож.

Перед тем как начать делать блок питания для шуруповерта, необходимо учесть размеры устройства: нужен такой корпус, чтобы собранная конструкция в него поместилась.

Блок питания для шуруповерта

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Чтобы инструмент смог работать от сети, потребуется блок, который выдает на выходе от 12 до 18 (14, 16) вольт. В этом случае ориентируются на модель шуруповерта. Сетевое зарядное устройство можно сделать из имеющегося корпуса аккумулятора. В этом случае сначала оценивают его габариты, чтобы понять, поместится ли зарядка внутри. Небольшие источники питания чаще помещают в корпус шуруповерта.

  1. Сначала разбирают аккумулятор, чтобы можно было вынуть все внутренности. Если корпус был склеен, то для этого пользуются ножом, которым вскрывают шов.
  2. Определяют силу тока и напряжение. Так как первый параметр часто не указывают, результат находят самостоятельно — делят мощность на напряжение (ватты на вольты).
  3. Припаивают электропровод к контактам зарядного прибора: латунные поверхности перед операцией обязательно обрабатывают кислотой.
  4. Соблюдая полярность, обратные концы провода соединяют с выходом батареи. В корпусе аккумулятора делают отверстие для кабеля.
  5. Провод фиксируют изолентой. На другом конце его должна быть вилка для включения в сеть.

Есть несколько вариантов получения блока питания. Самый простой выход — покупка готового устройства. Если планируют изготовить самодельный БП, то в данном случае схема — первое, в чем появляется необходимость. Чтобы избежать ошибок, нужно точно соблюдать последовательность соединения всех элементов, а также составить список необходимых мини-электроприборов.

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Эта самый простой способ получить необходимый источник, так как китайские приборы доступны почти повсеместно, к тому же недороги. Эти блоки питания рассчитаны на большее выходное напряжение — на 24 вольта. Поэтому первая задача мастера — понижение выходного напряжения до значений, необходимых инструменту (12-18 В).

Чтобы достичь цели, производят замену резисторов: родной R10 убирают, а в схему вставляют тот, который можно настраивать. Такая работа состоит из нескольких этапов:

  1. Сначала выпаивают постоянный резистор, имеющий перманентное сопротивление 2320 Ом.
  2. Затем вставляют настраиваемый резистор, на котором заранее выставляют значение 2300 Ом. Если этого не сделать, конструкция работать откажется.
  3. На блок подают электричество, чтобы определить значения выходных параметров. На измерительном приборе выставляют диапазон постоянного напряжения.
  4. Регулировкой сопротивления добиваются оптимального напряжения (12, 14, 16 или 18 вольт) и силы тока, не превышающей 9 ампер. Иначе преобразованный блок питания для шуруповерта из-за больших нагрузок вскоре выйдет из строя.

Модифицированную конструкцию крепят на место старого аккумулятора. Все токопроводящие элементы изолируют. Для вентиляции просверливают дополнительные отверстия, корпус закрывают. Последний этап — проверка работы шуруповерта.

Почти аналогичным образом можно переделать практически любой покупной блок питания. В этом случае помимо замены резистора может потребоваться другое преобразование — встраивание в схему дополнительных диодов.

Блок питания из адаптера для ноутбука

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Источником питания для инструмента сможет стать исправный зарядник для ноутбука. В этом случае мастера ждет минимальная переделка. Для нее подойдет любое устройство, предназначенное для эксплуатации с напряжением 12-19 В. Показатели выходного тока должны быть максимально близкими к требуемым.

  1. Подготавливают входной шнур от адаптера. Кусачками удаляют разъем, а концы провода зачищают от изоляции.
  2. Разбирают корпус шуруповерта, затем проводники, освобожденные от изоляции, припаивают к клеммам инструмента.

Все соединения изолируют, провод выводят наружу. Корпус собирают, потом проверяют шуруповерт на работоспособность. В этом случае работа не обещает никаких сложностей, поэтому с ней справится практически любой.

Блок питания шуруповерта из компьютерного БП

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Для преобразования лучше всего подходят приборы АТ-типа. Их мощности (350 Вт) и выходного напряжения (примерно 12-14 В) вполне хватает для бесперебойной работы инструмента. Еще один плюс — все технические характеристики, указанные на корпусе. Это устройство можно приобрести в магазине, либо использовать то, что прилагалось к старому компьютеру. К плюсам этого кандидата относится защита от перегрузок, кулер и тумблер включения, к минусам — габариты.

  1. Первым делом разбирают компьютерный блок, затем от платы отсоединяют зеленый проводник, отвечающий за включение.
  2. Отделяют все провода за исключением черного и желтого. Эти провода припаивают к кабелю, другой конец которого подключают к шуруповерту.

После изоляции блок собирают, следя за тем, чтобы шнур, находящийся внутри располагался без перекручивания. Если говорить о недостатках, то минус всего один: максимально возможное напряжение составляет 14 В, поэтому использование этого способа ограничивают характеристики шуруповерта.

Более современные компьютерные блоки питания (АТХ) не подходят для этой цели, так как они уже требуют серьезных переделок. Возможность включения у них организована по-другому — специальной схемой, расположенной на материнской плате компьютера. Такие кардинальные изменения рядовому пользователю не под силу.

Зарядное устройство автомобиля

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Это еще один из популярных вариантов для превращения аккумуляторного шуруповерта в электрический. В этом случае работа происходит почти аналогично преображению компьютерного блока, однако есть несколько нюансов. Главное отличие — возможность регулировки силы тока и напряжения, что делает зарядное устройство для автомобильного аккумулятора фаворитом среди кандидатов.

Все соединения тщательно изолируют. Сверлят отверстия для проводов, затем их выводят наружу. Крокодилами шуруповерт соединяют с зарядным устройством, строго соблюдая полярность. Такой простой способ позволяет получить блок питания, подходящий ко всем моделям инструмента из-за легкой регулировки параметров.

Трансформаторные устройства

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Это еще один потенциальный блок питания для шуруповерта. Такие источники на трансформаторах до сих пор не потеряли своей актуальности. Причины — простота сборки и надежность устройств. Самые большие недостатки таких конструкций — большой вес, а также значительные габариты. Однако эти минусы не так важны, если устройство становится отдельным блоком, который изготавливают для стационарного использования.

Составные части конструкции

Так как эти самодельные БП получили широкое распространение, на их особенностях надо остановиться подробнее. В состав блока питания входят следующие элементы:

  • силовой трансформатор;
  • выпрямитель;
  • стабилизатор напряжения;
  • фильтр питания.

Силовой трансформатор занимает самую большую, тяжелую и габаритную, часть устройства. Его задача — преобразование высокого входного напряжения в низкое, рассчитанное на подключаемую нагрузку.

Выпрямитель необходим для преобразования напряжения — из переменного в постоянное. Самыми эффективными устройствами являются те мостовые схемы выпрямления, которые состоят из 4 диодов, либо такие, что представляют собой монолитный выпрямительный мост. Работа фильтра питания — сглаживание пульсации напряжения после выпрямителя.

Этого набора теоретически хватает на то, чтобы гарантировать работу шуруповерта. Однако из-за скачков напряжения, его просадки вследствие увеличения нагрузки возможна нестабильная работа инструмента. Самый худший вариант — выход его из строя. Чтобы избежать такого сценария, необходим стабилизатор напряжения.

Следующая схема блока питания со стабилизатором проверена, требует минимума деталей и доступна тем, кто знаком с обращением с измерительными приборами и паяльником:

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

В этом случае есть возможность внести некоторые коррективы. Например, использовать транзисторы типа КТ807 и КТ819, но с любой буквой. Емкость конденсатора можно увеличить до 1000 или 2000 микрофарад (мкФ).

Необходимые условия

Главное требование — подбор трансформатора с нужным уровнем выходного напряжения. Идеал — значение немного выше того, которое требуется для работы шуруповерта. Причина — часть напряжения, которое будет оставаться на стабилизаторе. Разница между выпрямленным и стабилизированным значением должна быть в несколько вольт. Слишком низкое напряжение снизит выходное, излишек приведет к нагреванию ключевого резистора. Последний элемент обязательно крепят на радиатор охлаждения.

Необходимо обратить внимание на то, что постоянное напряжение после выпрямителя и фильтра будет в 1,4 раза превышать входное переменное. Поэтому блоку питания, предназначенному для инструмента на 12 В, нужен трансформатор, имеющий выходное напряжение переменного тока, равное 12-14 В.

Цены на различные блоки питания для шуруповерта можно узнать тут:

Самодельный блок питания для шуруповерта даст шанс значительно продлить жизнь инструмента, который, несмотря на отказ батареи, остается полностью пригодным для эксплуатации. Один из вариантов решения насущной проблемы можно увидеть в следующем видеоролике:

Компьютерный блок питания на микросхеме TL494

У каждого блока питания имеется защита от повышения напряжения и короткого замыкания, которую надо отключить.

Печатная плата компьютерного блока питания

Чтобы отключить защиту надо перерезать дорожку от Vref +5v которая подходит к 13, 14 и 15 ноге микросхемы. После этого блок питания будет запускаться автоматически при включении в сеть.

Теперь сделаем блок питания регулируемым. Удаляем два резистора R1 28,7 кОм и R2 5,6 кОм. На место резистора R1 ставим переменный резистор на 100 кОм. Напряжение будет плавно регулироваться от 4 до 16 вольт.

Схема переделки компьютерного блока питания в зарядное устройство

Полная схема блока питания на микросхеме TL494, KA7500.

Схема переделки компьютерного блока питания на микросхеме TL494, KA7500 в зарядное устройство

Осталось подключить вольт амперметр по этой схеме и зарядное устройство будет полностью готово.

Схема подключения вольт - амперметра к зарядному устройству

Схема подключения вольт амперметра к зарядному устройству

А теперь я расскажу, как работает готовое устройство, что бы вы могли реально оценить все плюсы этой самоделки. Напряжение этого зарядного устройства плавно регулируется от 4 до 16 вольт.

Это позволяет заряжать шести и двенадцати вольтовые аккумуляторы. С помощью встроенного вольт амперметра легко можно определить напряжение, зарядный ток и окончание процесса заряда аккумуляторной батареи.

Зарядное устройство из компьютерного блока питания

Для проверки мощности я решил подключить супер яркую 12-ти вольтовую галогеновую лампу на 55 ватт.

Подключение галогеновой лампы к зарядному устройству

Лампа горит полным накалом на вольтметре 12 вольт и сила тока 8,5 ампер и это еще не предел.

Тестирование зарядного устройства из компьютерного блока питания

Как заряжать аккумулятор? Красный крокодил плюс, черный минус. Если перепутать полярность или замкнуть, ничего страшного не произойдет, просто перегорит десяти амперный предохранитель.

Как заряжать аккумулятор?

В данный момент вольтметр показывает напряжение аккумулятора. Эту ручку надо повернуть влево до упора. Включаю питание и плавно поднимаю напряжение до 14,5 вольт. Начальная сила тока должна быть не более 10% от емкости аккумулятора. То есть для 60-го аккумулятора начальный ток заряда будет не более 6-ти ампер, для 55-го соответственно 5,5 ампер. И так далее.

Зарядное устройство для автомобильного аккумулятора из компьютерного блока питания

По мере заряда аккумулятора сила тока будет постепенно снижаться, когда сила тока снизится до 150 миллиампер, это будет означать, что аккумулятор полностью зарядился. Время зарядки полностью разряженного аккумулятора составит примерно 24 часа.

Друзья, желаю удачи и хорошего настроения! До встречи в новых статьях!

Индукционный нагреватель своими руками

Зарядное устройство из компьютерного блока питания

Зарядное устройство из компьютерного блока питания

Лабораторный блок питания с защитой от КЗ

Лабораторный блок питания с защитой от КЗ

Чем заменить аккумулятор для шуруповерта сделай так 24.ру

Чем заменить аккумулятор для шуруповерта

Пушка Гаусса своими руками

Универсальный блок питания своими руками

643 comments on “ Зарядное устройство из компьютерного блока питания ”

Здравствуйте!
Понимаю, не по теме, отчасти, но вот что нашёл:
У вас основа ИБП от системника, а я сейчас разобрал монитор LG.
так там с трансформатора выхода: -12; 15; 6.3; 51; 105 вольт.
посередине плата имеется белая полоса, чтоб отрезать высоковольтную часть питания кинескопа.
так вот, суть моего обращения: тут имеется блок питания с маркировкой:
6170TMZ103A ВА 00 39
не подскажите как определить ампераж?
стоят 5 диодов и с них соответственно вольтаж указанный выше.
я так думаю, что здесь ампераж должен быть больше(особенно учитывая что диоды стоят
GUF30F ; GUF50F ; GUF100F
конденсаторы: 16, 25, 63, 160 вольт
как думаете — стоит замарочиться под ИБП с переделкой и на сколько же тут ампераж?

Добрый вечер! Подключите нагрузку, например галогеновую лампу и просмотрите на просадку напряжения, так можно определить ампераж. Или соберите электронную нагрузку для тестирования блоков питания и аккумуляторов. По диодам точно не определите, могут стоять с запасом. Только нагружать. Даташита в интернете на ваш блок нет.

Огромное спасибо!
и как сам до этого не допёр с нагрузкой.

А диод в цепи точно в разрыв в этом месте должен быть?

Диод ставить не обязательно.

Я прочитал 2 ваши статьи и не могу понять замыкать 4-ю ногу или отрезать дорожку на 13.14.15, ножке? И удалять резисторы r1 и r2 или только один на который призодит 12в?

Я рекомендую Вам переделать БП с замыканием 4 ноги. Это самый простой способ отключения защиты, отрезать дорожку от 4 ноги и соединить ногу с GND. Удалять можно всего один резистор R1, больше 16В в таком случае поднять напряжение не получится. Удаление второго резистора R2 в некоторых (не во всех) БП позволяет поднять напряжение более 20В. Это делать необязательно, но можно. Надо заменить все выходные 16В конденсаторы на 25 или 35 вольтовые. Способ с отрезанием дорожки от 13, 14, 15 я не рекомендую, надо хорошо разбираться в схеме, слишком проблематично.

Я прочитал 2 ваши статьи и не могу понять замыкать 4-ю ногу или отрезать дорожку на 13.14.15, ножке? И удалять резисторы r1 и r2 или только один на который призодит 12в?

Я рекомендую Вам переделать БП с замыканием 4 ноги. Это самый простой способ отключения защиты, отрезать дорожку от 4 ноги и соединить ногу с GND. Удалять можно всего один резистор R1, больше 16В в таком случае поднять напряжение не получится. Удаление второго резистора R2 в некоторых (не во всех) БП позволяет поднять напряжение более 20В. Это делать необязательно, но можно. Надо заменить все выходные 16В конденсаторы на 25 или 35 вольтовые. Способ с отрезанием дорожки от 13, 14, 15 я не рекомендую, надо хорошо разбираться в схеме, слишком проблематично.

А 4 ножку пооучается трогать не надо? Один бп у меня походу сгорел все сделал как вы писали закоротил 4-ю ножку нашол 12 вольт на рещисторе выпаял его впаял переменник подключил к тестеру включил бп начал плавно регулировать ток и после 12 вольт ток поднимался аж до 20 вольт но бп сразу после этого сгорел!я взял второй бп сделал все также но ток нерегулируется переменником стоит на 11 вольтах в чем причина?

От 4 ноги отрезается дорожка и нога соединяется с GND. Поднимать напряжение более 16В можно, только если заменить все выходные конденсаторы на которых написано 16В на 25 или 35 вольтовые. Блок мог сгореть из-за пробоя выходного конденсатора. Он замкнул, а защиты нет. 4 нога с GND отключает защиту. Во втором блоке похоже изначально была неисправность. Я всегда перед переделкой измеряю выходное напряжение, оно должно быть 12.2В. Если напряжение изначально менее 12В, например 11.8В, даже 11.9В то все с этого блока ничего не получится. Это уже не исправность в блоке.

Сделал все как по инструкции, и остановился на том что выпаяв резисторы, и поставив переменник, выставив его на 28 кОм как и было на снятом. Отрезал дорожку на 13,14,15 ногу. Подключил на выходе мультик там где были 12В. А на выходе стал показывать 5В. С писком-треском в микросхеме. При поворачивании переменника очень плавно реакции нет. Было один раз, при снятии платы из корпуса и поворачивании ручки были большие скачки, и доходило до 19В, но было сразу убавлено, дабы не убить кондеры. для наглядности видио снизу.

АКБ не зарядился после достижения напряжения 14.5 в и снижения тока до -0.15А.Это можно проверить-проверив плотность!Она будет ниже чем 1.27

Внутренне сопротивление АКБ снизится только к концу заряда, поэтому в процессе заряда ток будет долгое время держатся в пределах 1.5А. За сутки полностью разряженный АКБ заряжается до полной плотности 1.27.

Читайте также: