Как сделать функциональный анализ

Обновлено: 07.07.2024

Один из возможных режимов вибрации идеализированной круглой головки барабана . Эти режимы являются собственными функциями линейного оператора в функциональном пространстве, общей конструкции в функциональном анализе.

Функциональный анализ - это раздел математического анализа , ядро ​​которого составляет изучение векторных пространств, наделенных некоторой структурой, связанной с ограничениями (например, внутренний продукт , норма , топология и т. Д.), И линейных функций, определенных в этих пространствах. и уважая эти структуры в подходящем смысле. Исторические корни функционального анализа лежат в изучении пространств функций и формулировании свойств преобразований функций, таких как преобразование Фурье, как преобразований, определяющих непрерывные , унитарныеи т.д. операторы между функциональными пространствами. Эта точка зрения оказалась особенно полезной при изучении дифференциальных и интегральных уравнений .

В современных вводных текстах по функциональному анализу предмет рассматривается как исследование векторных пространств, наделенных топологией, в частности бесконечномерных пространств . Напротив, линейная алгебра имеет дело в основном с конечномерными пространствами и не использует топологию. Важной частью функционального анализа является распространение теории меры , интегрирования и вероятности на бесконечномерные пространства, также известное как бесконечномерный анализ .

СОДЕРЖАНИЕ

Основным и исторически первым классом пространств, изучаемых в функциональном анализе, являются полные нормированные векторные пространства над действительными или комплексными числами . Такие пространства называются банаховыми . Важным примером является гильбертово пространство , где норма возникает из внутреннего продукта. Эти пространства имеют фундаментальное значение во многих областях, включая математическую формулировку квантовой механики , машинное обучение , уравнения в частных производных и анализ Фурье .

В более общем плане функциональный анализ включает изучение пространств Фреше и других топологических векторных пространств, не наделенных нормой.

Важным объектом изучения функционального анализа являются линейные непрерывные операторы, определенные в банаховом и гильбертовом пространствах. Это естественным образом приводит к определению C * -алгебр и других операторных алгебр .

Гильбертовые может быть полностью классифицировано: существует единственное гильбертово пространство до изоморфизма для каждой мощности на ортонормированном . [3] Конечномерные гильбертовы пространства полностью понимаются в линейной алгебре , а бесконечномерные сепарабельные гильбертовые пространства изоморфны . Разделимость важна для приложений, поэтому функциональный анализ гильбертовых пространств в основном имеет дело с этим пространством. Одна из открытых проблем функционального анализа - доказать, что каждый ограниченный линейный оператор в гильбертовом пространстве имеет собственное инвариантное подпространство . Многие частные случаи этого ℓ 2 ( ℵ 0 ) (\ алеф _ ) \,> проблема инвариантного подпространства уже доказана.

Общие банаховы пространства сложнее гильбертовых пространств, и их нельзя классифицировать так просто, как те. В частности, во многих банаховых пространствах отсутствует понятие, аналогичное ортонормированному базису .

Примерами банаховых пространств являются -пространства для любого действительного числа . Принимая во внимание также является мерой по совокупности , то , иногда также обозначается или , имеет в качестве векторов классов эквивалентности из измеримых функций которых абсолютное значение «s -й мощности имеет конечный интеграл, то есть функции , для которых один имеет L п > п ≥ 1 μ X L p ( X ) (X)> L p ( X , μ ) (X,\mu )> L p ( μ ) (\mu )> [ f ] p f

Если - счетная мера , то интеграл можно заменить суммой. То есть нам требуется μ

Тогда нет необходимости иметь дело с классами эквивалентности, и пространство обозначается , проще записывается в случае, когда - множество неотрицательных целых чисел . ℓ p ( X ) (X)> ℓ p > X

В банаховых пространствах большая часть исследования включает двойственное пространство : пространство всех непрерывных линейных отображений из пространства в лежащее в его основе поле, так называемые функционалы. Банахово пространство можно канонически отождествить с подпространством его двузначного числа, которое является двойственным к его двойственному пространству. Соответствующее отображение является изометрией, но, как правило, не на. Общее банахово пространство и его бидуальное пространство не обязательно должны быть каким-либо образом изометрически изоморфны, в отличие от конечномерной ситуации. Это объясняется в статье о двойном пространстве.

Кроме того, понятие производной может быть распространено на произвольные функции между банаховыми пространствами. См., Например, статью о производных Фреше .

Важные результаты функционального анализа включают:

Принцип равномерной ограниченности или теорема Банаха – Штейнхауза - один из фундаментальных результатов функционального анализа. Вместе с теоремой Хана – Банаха и теоремой об открытом отображении она считается одним из краеугольных камней этой области. В своей основной форме он утверждает, что для семейства непрерывных линейных операторов (и, следовательно, ограниченных операторов), область определения которых является банаховым пространством , точечная ограниченность эквивалентна равномерной ограниченности по операторной норме.

Теорема была впервые опубликована в 1927 году Стефаном Банахом и Хьюго Штайнхаусом, но также была независимо доказана Гансом Ханом .

Теорема (принцип равномерной ограниченности). Пусть X - банахово пространство, а Y - нормированное векторное пространство . Предположим , что F представляет собой совокупность непрерывных линейных операторов из X в Y . Если для всех x в X имеется

sup T ∈ F ‖ T ( x ) ‖ Y ∞ , \|T(x)\|_

тогда

sup T ∈ F ‖ T ‖ B ( X , Y ) ∞ . \|T\|_

Есть много теорем, известных как спектральная теорема , но одна, в частности, имеет множество приложений в функциональном анализе.

Теорема: [4] Пусть ограниченный оператор самосопряжен в гильбертовом пространстве H . Тогда существуют пространство с мерой ( X , Σ, μ) и вещественнозначная существенно ограниченная измеримая функция f на X и унитарный оператор U : HL 2 μ ( X ) такие, что

где T - оператор умножения :

[ T φ ] ( x ) = f ( x ) φ ( x ) .

Это начало обширной области исследований функционального анализа, называемой теорией операторов ; см. также спектральную меру .

Аналогичная спектральная теорема существует и для ограниченных нормальных операторов в гильбертовых пространствах. Единственная разница в выводе состоит в том, что now может быть комплексным. f

Теорема Хана-Банаха: [5] Если р : V → R является функцией сублинеен и φ : U → R представляет собой линейный функционал на линейном подпространстве UV , который преобладает по р на U , т.е.

φ ( x ) ≤ p ( x ) ∀ x ∈ U

то существует линейное расширение ф : V → R из ф на все пространство V , т.е. существует линейный функционал ф такой , что

Теорема открытое отображение , также известный как теорема Банаха-Шаудера (имени Стефана Банаха и Юлиуш Шаудером ), является фундаментальным результатом , который гласит , что если непрерывный линейный оператор между банаховых пространств является сюръективны то это открытое отображение . Точнее: [5]

Теорема об открытом отображении. Если X и Y - банаховы пространства и A : XY - сюръективный непрерывный линейный оператор, то A - открытое отображение (т.е. если U - открытое множество в X , то A ( U ) открыто в Y ).

Доказательство использует теорему Бэра о категории , и полнота как X, так и Y важна для теоремы. Утверждение теоремы больше не верно, если любое пространство просто предполагается, что является нормированным пространством , но верно, если X и Y взяты как пространства Фреше .

Замкнутый график теорема утверждает следующее: Если X является топологическим пространством , а Y представляет собой компактное хаусдорфово пространство , то график линейного отображения Т из X к Y замкнуто тогда и только тогда , когда Т является непрерывным . [6]

Большинство пространств, рассматриваемых в функциональном анализе, имеют бесконечную размерность. Чтобы показать существование базиса векторного пространства для таких пространств, может потребоваться лемма Цорна . Однако в функциональном анализе обычно более уместна несколько иная концепция, базис Шаудера . Многие очень важные теоремы требуют теоремы Хана – Банаха , обычно доказываемой с использованием выбранной аксиомы , хотя достаточно строго более слабой теоремы о булевом простом идеале . Теорема Бэра о категории , необходимая для доказательства многих важных теорем, также требует определенной аксиомы.

Функциональный анализ в его современном виде [update] включает следующие тенденции:

Программист факультета информационных технологий и программирования Денис Антипов рассказал, зачем нужен функциональный анализ будущим специалистам по прикладной математике и информатике.


Если Вам учиться легко, то Вы либо очень способны, либо Вас ничему не учат.

Меня недавно попросили написать текст о том, зачем на факультете информационных технологий и программирования Университета ИТМО нужен такой предмет, как функциональный анализ (как говорят студенты, функан), так как этот вопрос возникает не только среди студентов, но даже преподавателей. Существует и противоположная точка зрения: один наш выдающийся выпускник сказал, что никогда не стеснялся того, что окончил наш вуз, так как в программу, когда он учился, входили такие предметы, как функан и теория функций комплексной переменной. Другой незаурядный выпускник сказал, что после изучения функана, он лучше понял матан (математический анализ).

Правда, для всего этого надо знать английский язык. А тот, кто его не знает или не хочет знать, может затеять дискуссию, зачем в институте учить иностранный язык, и такое можно устроить с любым предметом, который дается весьма непросто, например, с физвоспитанием.

Меня удивило также и то, что люди не задали этот вопрос много лет преподающему функан Николаю Юрьевичу Додонову, который преподает его не только у нас, но и на матмехе СПбГУ, или хотя бы мне, так как многие знают, что я имею отношение к преподаванию математики на кафедре. Мы могли бы объяснить или хотя бы посоветовать посмотреть, например, книгу [3], которая хотя и была издана давно, но приведенные в ней примеры актуальны до сих пор.

Несмотря на это, я все-таки понимаю необходимость написания этого текста. При этом своей задачей ставлю именно сбор разобщенной информации в одном месте. Хорошо, что у меня под рукой есть много источников информации, и я могу просто цитировать людей, которые умнее меня, вместо того, чтобы формулировать какие-то мысли самому. Хотя ближе к концу я добавлю и некоторые свои рассуждения.

В наше время большинство ученых сходится в том, что ни экспериментальная, ни теоретическая наука не самодостаточны, а дополняют друг друга, и потому они обе необходимы для расширения человеческих знаний. Более подробное рассуждение на эту тему в области эволюционных вычислений можно найти в первой части [8].

Разумеется, стоит признать, что до сих пор даже среди ученых встречаются люди, не признающие чисто теоретические или чисто практические работы (первые встречаются чаще). В этом я убедился на недавней International Conference on Parallel Problem Solving from Nature (PPSN 2018), где потратил минут десять своего доклада на то, чтобы объяснить одному китайцу необходимость теории в области эволюционных вычислений. Однако десяти минут было недостаточно, чтобы изменить мнение убежденного эмпирика, так как, повторюсь, данные вопросы являются философскими.

Функциональный анализ, как это следует из его названия, является теоретической наукой, как и многие другие ветви математики, такие как топология, теория чисел, теория игр и другие. Однако, несмотря на то, что они все являются неприкладными по своей сути, каждая из них нашла применение при решении практических задач. Топология используется в анализе данных (TDA — Topological Data Analysis) [9], теория чисел — в криптографии [10], теория игр — в экономике [11]. Функциональному анализу также было найдено практическое применение. Самым ярким примером является его применение в квантовой механике [12]. Однако сегодня многие студенты нашей кафедры не считают нужным изучать квантовую механику (и, как ни грустно, физику в целом), поэтому более близкий пример для КТ-шников — применение функана для оценки погрешности вычислений численных методов при решении различных задач, в том числе нелинейных, что описано в [3]. Отмечу, что в этой книге содержится много ссылок на другие работы, посвященные практическому применению функционального анализа.

В случае если читателю недостаточно примеров применения функана, отмечу, что он широко используется в теории вероятностей для анализа стохастических процессов [13]. В своей работе я пользуюсь функаном именно в этом контексте. Например, в моей последней публикации с Бенжамином Доерром [14] знания функционального анализа очень помогли осознавать особенности анализируемого стохастического процесса и получить новые научные результаты, например, разработать оригинальный метод анализа эволюционных алгоритмов.

Здесь можно вновь привести примеры топологии, теории чисел и теории игр, так как сначала появились эти ветви математики, а только потом люди нашли им практическое применение. Однако наиболее интересным мне кажется пример Джорджа Буля.

Он одним из первых пришел к идее, что математик должен оперировать символами, представляющими некоторые объекты, а не самими объектами. Буль утверждал, что математика не должна привязываться к чему-то реальному и должна быть абстрактной. Это привело его к разработке матлогики и булевой алгебры в 1847 году [15]. И хотя Буль очень хотел, чтобы его алгебра была примером чистой, неприкладной математики, все мы знаем, что после развития вычислительной техники работы Буля стали настолько прикладными, что современный мир просто не мог бы без них обойтись.

Таким образом, математику и, в частности, функциональный анализ стоит изучать не только ради собственного интереса, но и для практической пользы, которая может быть получена позже, а, может быть, и не получена…

Три выдающихся математика имели результаты и в области функционального анализа. Это им не помешало, а, возможно, помогло, получить выдающиеся практические результаты. Первый из них — Джон фон Нейман (он считается основоположником современного функционального анализа), создавший структуру ЭВМ, которая повсеместно применялась до последнего времени. Второй — Норберт Винер (в функане известна теорема Пэли-Винера-Шварца) — создатель кибернетики, а еще известны фильтры Винера, которые совершенствовались сначала Хопфом, а потом — почетным доктором Университета ИТМО Рудольфом Калманом. Третий — Андрей Колмогоров (известна книга Колмогоров А. Н. , Фомин С. В. Элементы теории функций и функционального анализа. МГУ, 2006). Полученные им результаты в разных областях математики нашли многообразные применения в теории информации, теории вероятностей и теории алгоритмов.
И, наконец, даже если вы не хотите иметь ничего общего с квантовой физикой, численными методами и вероятностями, вам все равно целесообразно изучать функциональный анализ. Доктор физ-мат. наук, профессор Юрий Шполянский, выпускник Университета ИТМО 2000 года, сказал, что функциональный анализ был самым сложным предметом из всей учебной программы на кафедре, и что, хотя он сам не применяет его на практике, этот предмет, по мнению Юрия, является очень полезным для мозга.

Я полностью согласен с этими словами: в IT-индустрии, безусловно, много направлений, не требующих от программистов знаний в области функционального анализа, однако как можно добиться существенных успехов в этой области без хорошо развитого математического мышления? Павел Дуров наверняка не знает функана, но зато его брат Николай изучал функан точно, так как учился и защитил в свое время PhD по чистой математике [16]. Именно такая комбинация предпринимательского и математического талантов помогла братьям подняться до нынешних высот.

Если у Вас есть таланты Гейтса или Джобса, то вы, как и они, можете не учить математику, но в их компании на работу вас без знания математики вряд ли возьмут. Кстати, одно из часовых (!) собеседований Ивана Белоногова, когда он поступал на работу в компанию OpenAI [17], было посвящено теории вероятностей и линейной алгебре, и он нормально прошел это испытание, как, впрочем, и все остальные.

1. У функана есть множество практических применений [3, 12, 13].

2. Функан является сложным предметом, но это не причина не изучать его, хотя бы как предмет по выбору.

3. Функан, как и любая другая математическая дисциплина, может оказаться полезным в самых неожиданных областях.

4. Функан вносит неоценимый вклад в развитие математического мышления.

Я очень надеюсь, что данный текст поможет тем, кто учится на нашей кафедре, лучше понять, почему им нужен функан.
Текст написан мною при участии Анатолия Абрамовича Шалыто, который был также инициатором его написания. Мы благодарны коллегам за рецензирование текста.

[1] What is the main purpose of learning about different spaces, like Hilbert, Banach, etc?

[3] Коллатц Л. Функциональный анализ и вычислительная математика. Мир, М. 1969.

[5] Декарт Р. Рассуждение о методе, с приложениями: Диоптрика, Метеоры, Геометрия. Классики науки. Изд-во Академии наук СССР, 1953.

[6] Аристотель. Аналитики. Госполитиздат, Ленинград, 1952.

[7] Klein J., Bacon F. In The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, 2016.

[8] Doerr B., Doerr C. Theory for non-theoreticians / Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion (GECCO '16 Companion), p. 463−482, NY, USA, 2016.

[9] Appliedtopology — source material for topological data analysis.

[10] Goodrich M., Tamassia R. Algorithm design: Foundations, analysis, and Internet examples. 2002.

[11] Neumann J. Theory of games and economic behavior. Princeton University Press, Princeton, 2007.

[12] Neumann J., Beyer R. Mathematical Foundations of Quantum Mechanics. Investigations in physics. Princeton University Press, 1996.

[13] Bobrowski A. Functional Analysis for Probability and Stochastic Processes: An Introduction. Cambridge University Press, 2005.

[14] Antipov D., Doerr B. Precise runtime analysis for plateaus. CoRR, abs/1806.1 331, 2018.

[15] Boole G. The Mathematical Analysis of Logic: Being an Essay Towards a Calculus of Deductive Reasoning. Cambridge Library Collection — Mathematics. Cambridge University Press, 2009.

[16] Nikolay Durov in nLab.


Денис Антипов

Функциональный анализ — раздел высшей математики, в котором изучаются бесконечномерные топологические векторные пространства (в основном пространства функций [1] ) и их отображения.

Основные разделы классического функционального анализа — это теория меры и интеграла, теория функций, теория операторов, дифференциальное исчисление на бесконечномерных пространствах. Во второй половине 20 века функциональный анализ пополнился целым рядом более специальных разделов, построенных на базе классических.

Функциональный анализ находит применение во многих точных науках; многие важнейшие теоретические конструкции описаны языком функционального анализа. В частности, в начале 21 века функциональный анализ широко применяется в теории дифференциальных уравнений, математической физике, теоретической физике (см. квантовая механика, теория струн), теории управления и оптимизации, теории вероятностей, математической статистике, теории случайных процессов и других областях. Теория преобразования Фурье, используемая во многих областях науки и техники (например, в теории обработки изображений), также является частью функционального анализа.

Образно функциональный анализ естественно рассматривать как обобщение соединённых вместе линейной алгебры и математического анализа.

Содержание

Некоторые понятия функционального анализа

История

Развитие функционального анализа связано с изучением преобразования Фурье, дифференциальных и интегральных уравнений. Большой вклад в развитие и становление функционального анализа внёс польский математик Стефан Банах.

Изучение представления функций с помощью преобразования Фурье было привлекательно, к примеру, потому, что для определённых классов функций можно континуальный набор точек (значения функции) охарактеризовать счётным набором значений (набором коэффициентов).

Методы функционального анализа быстро приобрели популярность в различных областях математики и физики в качестве мощного инструмента. Значительную роль при этом сыграла теория линейных операторов:

Именно через теорию операторов функциональный анализ столкнулся с квантовой механикой, дифференциальными уравнениями, теорией вероятности, а также рядом прикладных дисциплин.

В конце 90-x годов XX в. в копилку функционального анализа добавилась тема, посвящённая вейвлет-преобразованиям. Эта тема пришла из практики как попытка построений новых базисов функциональных пространств, обладающих дополнительными свойствами, к примеру, хорошей скоростью сходимости приближений. Вклад в развитие внесла И. Добеши.

Ключевые результаты

  • Принцип равномерной ограниченности (также известный как теорема Банаха — Штейнгауза) применимый к набору операторов с точной границей.
  • Принцип oткрытости отображения. Как её следствия — теорема Банаха об ограниченности линейного оператора, обратного биективному линейному ограниченному оператору, теорема о замкнутом графике. о расширении функционала с подпространства на полное пространство, расширенное с сохранением нормы. Суть нетривиальный смысл в сопряжённых пространствах.
  • Одна из спектральных теорем (которых в действительности больше чем одна), дающая интегральную формулу для нормального оператора в Гильбертовом пространстве. Это теорема центральной важности для математического обоснования квантовой механики.

Направление исследований

Функциональный анализ в его современном состоянии включает следующие тенденции:

  • Мягкий анализ. Аппроксимация для анализа, основанного на топологических группах, топологических кольцах и топологических векторных пространствах.
  • Геометрия Банаховых пространств.
  • Некоммутативная геометрия. Разработанная Аленом Конном, частично построенная на более ранних представлениях, таких как аппроксимация Джоржа Макки (George Mackey) в эргодической теории.
  • Связь с квантовой механикой. Также более узко определённая как в математической физике, или истолкованное более обще, например Гельфандом, включается в более типичную теорию изображений.
  • Квантовый функциональный анализ Исследование пространств операторов, вместо пространств функций.
  • Нелинейный функциональный анализ. Исследование нелинейных задач, бифуркаций, устойчивости гладких отображений, деформаций особенностей, и др. в рамках функционального анализа.

Примечания

  1. ↑ На самом деле, любое линейное пространство, в том числе и конечномерное, может быть реализовано как пространство функций. Сделать это можно несколькими способами. Например, линейное пространство линейно изоморфно множеству функций на базисе Гамеля этого пространства (или любого равномощного ему множества), отличных от нуля лишь на конечном числе точек. Другой вариант: вложим линейное пространство V в его второе алгебраически сопряженное, то есть в пространство всех линейных функционалов над пространством всех линейных функционалов над V.
  2. Данфорд Н., Шварц Дж. Линейные операторы. — М.: ИЛ, 1962. — Т. 1.Общая теория. — С. 5-6.

См. также

Литература

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Функциональный анализ" в других словарях:

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ — один из основных разделов современной математики. Возник в результате взаимного влияния, объединения и обобщения идей и методов многих разделов классического математического анализа, алгебры, геометрии. Характеризуется использованием понятий,… … Большой Энциклопедический словарь

функциональный анализ — сущ., кол во синонимов: 1 • функан (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

функциональный анализ — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN function analysis … Справочник технического переводчика

Функциональный анализ — I Функциональный анализ часть современной математики, главной задачей которой является изучение бесконечномерных пространств и их отображений. Наиболее изучены линейные пространства и линейные отображения. Для Ф. а. характерно сочетание… … Большая советская энциклопедия

Функциональный анализ — разновидность анализа, характеризующегося как метод выявления функций рассматриваемого объекта и изучение их влияний на другие объекты. Функциональный анализ применим лишь к тем явлениям, которым приписываются функции, например, общественные… … Основы духовной культуры (энциклопедический словарь педагога)

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ — 1. Вообще – анализ сложной системы, при котором основное значение уделяется функциям различных аспектов системы и способу интеграционного оперирования. Такой анализ обычно преуменьшает значение фактической формы или структуры. Анализируемой… … Толковый словарь по психологии

функциональный анализ — один из основных разделов современной математики. Возник в результате взаимного влияния, объединения и обобщения идей и методов многих разделов классического математического анализа, алгебры, геометрии. Характеризуется использованием понятий,… … Энциклопедический словарь

Функциональный анализ — – способ выяснения цели конкретного вида поведения, развивающийся в рамках МОДИФИКАЦИИ ПОВЕДЕНИЯ. Большинство видов так называемого аномального поведения в действительности отвечают каким то целям человека, но не всегда удается определить смысл… … Словарь-справочник по социальной работе

функциональный анализ — funkcinė analizė statusas T sritis Standartizacija ir metrologija apibrėžtis Analizuojamosios medžiagos būdingų funkcinių grupių nustatymas. atitikmenys: angl. functional analysis vok. Funktionsanalysis, f rus. функциональный анализ, m pranc.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

функциональный анализ — funkcinė analizė statusas T sritis chemija apibrėžtis Organinės medžiagos funkcinių grupių radimas ir nustatymas. atitikmenys: angl. functional analysis; group analysis rus. функциональный анализ … Chemijos terminų aiškinamasis žodynas

Программист факультета информационных технологий и программирования Денис Антипов рассказал, зачем нужен функциональный анализ будущим специалистам по прикладной математике и информатике.


Если Вам учиться легко, то Вы либо очень способны, либо Вас ничему не учат.

Меня недавно попросили написать текст о том, зачем на факультете информационных технологий и программирования Университета ИТМО нужен такой предмет, как функциональный анализ (как говорят студенты, функан), так как этот вопрос возникает не только среди студентов, но даже преподавателей. Существует и противоположная точка зрения: один наш выдающийся выпускник сказал, что никогда не стеснялся того, что окончил наш вуз, так как в программу, когда он учился, входили такие предметы, как функан и теория функций комплексной переменной. Другой незаурядный выпускник сказал, что после изучения функана, он лучше понял матан (математический анализ).

Правда, для всего этого надо знать английский язык. А тот, кто его не знает или не хочет знать, может затеять дискуссию, зачем в институте учить иностранный язык, и такое можно устроить с любым предметом, который дается весьма непросто, например, с физвоспитанием.

Меня удивило также и то, что люди не задали этот вопрос много лет преподающему функан Николаю Юрьевичу Додонову, который преподает его не только у нас, но и на матмехе СПбГУ, или хотя бы мне, так как многие знают, что я имею отношение к преподаванию математики на кафедре. Мы могли бы объяснить или хотя бы посоветовать посмотреть, например, книгу [3], которая хотя и была издана давно, но приведенные в ней примеры актуальны до сих пор.

Несмотря на это, я все-таки понимаю необходимость написания этого текста. При этом своей задачей ставлю именно сбор разобщенной информации в одном месте. Хорошо, что у меня под рукой есть много источников информации, и я могу просто цитировать людей, которые умнее меня, вместо того, чтобы формулировать какие-то мысли самому. Хотя ближе к концу я добавлю и некоторые свои рассуждения.

В наше время большинство ученых сходится в том, что ни экспериментальная, ни теоретическая наука не самодостаточны, а дополняют друг друга, и потому они обе необходимы для расширения человеческих знаний. Более подробное рассуждение на эту тему в области эволюционных вычислений можно найти в первой части [8].

Разумеется, стоит признать, что до сих пор даже среди ученых встречаются люди, не признающие чисто теоретические или чисто практические работы (первые встречаются чаще). В этом я убедился на недавней International Conference on Parallel Problem Solving from Nature (PPSN 2018), где потратил минут десять своего доклада на то, чтобы объяснить одному китайцу необходимость теории в области эволюционных вычислений. Однако десяти минут было недостаточно, чтобы изменить мнение убежденного эмпирика, так как, повторюсь, данные вопросы являются философскими.

Функциональный анализ, как это следует из его названия, является теоретической наукой, как и многие другие ветви математики, такие как топология, теория чисел, теория игр и другие. Однако, несмотря на то, что они все являются неприкладными по своей сути, каждая из них нашла применение при решении практических задач. Топология используется в анализе данных (TDA — Topological Data Analysis) [9], теория чисел — в криптографии [10], теория игр — в экономике [11]. Функциональному анализу также было найдено практическое применение. Самым ярким примером является его применение в квантовой механике [12]. Однако сегодня многие студенты нашей кафедры не считают нужным изучать квантовую механику (и, как ни грустно, физику в целом), поэтому более близкий пример для КТ-шников — применение функана для оценки погрешности вычислений численных методов при решении различных задач, в том числе нелинейных, что описано в [3]. Отмечу, что в этой книге содержится много ссылок на другие работы, посвященные практическому применению функционального анализа.

В случае если читателю недостаточно примеров применения функана, отмечу, что он широко используется в теории вероятностей для анализа стохастических процессов [13]. В своей работе я пользуюсь функаном именно в этом контексте. Например, в моей последней публикации с Бенжамином Доерром [14] знания функционального анализа очень помогли осознавать особенности анализируемого стохастического процесса и получить новые научные результаты, например, разработать оригинальный метод анализа эволюционных алгоритмов.

Здесь можно вновь привести примеры топологии, теории чисел и теории игр, так как сначала появились эти ветви математики, а только потом люди нашли им практическое применение. Однако наиболее интересным мне кажется пример Джорджа Буля.

Он одним из первых пришел к идее, что математик должен оперировать символами, представляющими некоторые объекты, а не самими объектами. Буль утверждал, что математика не должна привязываться к чему-то реальному и должна быть абстрактной. Это привело его к разработке матлогики и булевой алгебры в 1847 году [15]. И хотя Буль очень хотел, чтобы его алгебра была примером чистой, неприкладной математики, все мы знаем, что после развития вычислительной техники работы Буля стали настолько прикладными, что современный мир просто не мог бы без них обойтись.

Таким образом, математику и, в частности, функциональный анализ стоит изучать не только ради собственного интереса, но и для практической пользы, которая может быть получена позже, а, может быть, и не получена…

Три выдающихся математика имели результаты и в области функционального анализа. Это им не помешало, а, возможно, помогло, получить выдающиеся практические результаты. Первый из них — Джон фон Нейман (он считается основоположником современного функционального анализа), создавший структуру ЭВМ, которая повсеместно применялась до последнего времени. Второй — Норберт Винер (в функане известна теорема Пэли-Винера-Шварца) — создатель кибернетики, а еще известны фильтры Винера, которые совершенствовались сначала Хопфом, а потом — почетным доктором Университета ИТМО Рудольфом Калманом. Третий — Андрей Колмогоров (известна книга Колмогоров А. Н. , Фомин С. В. Элементы теории функций и функционального анализа. МГУ, 2006). Полученные им результаты в разных областях математики нашли многообразные применения в теории информации, теории вероятностей и теории алгоритмов.
И, наконец, даже если вы не хотите иметь ничего общего с квантовой физикой, численными методами и вероятностями, вам все равно целесообразно изучать функциональный анализ. Доктор физ-мат. наук, профессор Юрий Шполянский, выпускник Университета ИТМО 2000 года, сказал, что функциональный анализ был самым сложным предметом из всей учебной программы на кафедре, и что, хотя он сам не применяет его на практике, этот предмет, по мнению Юрия, является очень полезным для мозга.

Я полностью согласен с этими словами: в IT-индустрии, безусловно, много направлений, не требующих от программистов знаний в области функционального анализа, однако как можно добиться существенных успехов в этой области без хорошо развитого математического мышления? Павел Дуров наверняка не знает функана, но зато его брат Николай изучал функан точно, так как учился и защитил в свое время PhD по чистой математике [16]. Именно такая комбинация предпринимательского и математического талантов помогла братьям подняться до нынешних высот.

Если у Вас есть таланты Гейтса или Джобса, то вы, как и они, можете не учить математику, но в их компании на работу вас без знания математики вряд ли возьмут. Кстати, одно из часовых (!) собеседований Ивана Белоногова, когда он поступал на работу в компанию OpenAI [17], было посвящено теории вероятностей и линейной алгебре, и он нормально прошел это испытание, как, впрочем, и все остальные.

1. У функана есть множество практических применений [3, 12, 13].

2. Функан является сложным предметом, но это не причина не изучать его, хотя бы как предмет по выбору.

3. Функан, как и любая другая математическая дисциплина, может оказаться полезным в самых неожиданных областях.

4. Функан вносит неоценимый вклад в развитие математического мышления.

Я очень надеюсь, что данный текст поможет тем, кто учится на нашей кафедре, лучше понять, почему им нужен функан.
Текст написан мною при участии Анатолия Абрамовича Шалыто, который был также инициатором его написания. Мы благодарны коллегам за рецензирование текста.

[1] What is the main purpose of learning about different spaces, like Hilbert, Banach, etc?

[3] Коллатц Л. Функциональный анализ и вычислительная математика. Мир, М. 1969.

[5] Декарт Р. Рассуждение о методе, с приложениями: Диоптрика, Метеоры, Геометрия. Классики науки. Изд-во Академии наук СССР, 1953.

[6] Аристотель. Аналитики. Госполитиздат, Ленинград, 1952.

[7] Klein J., Bacon F. In The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, 2016.

[8] Doerr B., Doerr C. Theory for non-theoreticians / Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion (GECCO '16 Companion), p. 463−482, NY, USA, 2016.

[9] Appliedtopology — source material for topological data analysis.

[10] Goodrich M., Tamassia R. Algorithm design: Foundations, analysis, and Internet examples. 2002.

[11] Neumann J. Theory of games and economic behavior. Princeton University Press, Princeton, 2007.

[12] Neumann J., Beyer R. Mathematical Foundations of Quantum Mechanics. Investigations in physics. Princeton University Press, 1996.

[13] Bobrowski A. Functional Analysis for Probability and Stochastic Processes: An Introduction. Cambridge University Press, 2005.

[14] Antipov D., Doerr B. Precise runtime analysis for plateaus. CoRR, abs/1806.1 331, 2018.

[15] Boole G. The Mathematical Analysis of Logic: Being an Essay Towards a Calculus of Deductive Reasoning. Cambridge Library Collection — Mathematics. Cambridge University Press, 2009.

[16] Nikolay Durov in nLab.


Денис Антипов

Читайте также: