Ультразвуковой паяльник своими руками

Добавил пользователь Евгений Кузнецов
Обновлено: 18.09.2024

Импульсные паяльники зарекомендовали себя как удобный, экономичный и безопасный инструмент радиомонтажника. Магазины предлагают множество моделей на любой вкус и кошелек.

Самостоятельное изготовление такого устройства может быть продиктовано не столько соображениями экономии, сколько жаждой познания и тягой к самореализации домашних мастеров. В этой статье мы расскажем об устройстве и особенностях импульсного паяльника и опишем несколько способов его самостоятельного изготовления.

Импульсный паяльник своими руками

Устройство паяльника работающего по импульсному принципу

Импульсный паяльник устроен относительно просто. Он состоит из:

  • Жало — рабочий орган, представляет собой V- образный отрезок медной проволоки толщиной от 1 до 3 миллиметров, закрепленный в держателе.
  • Источник питания — подает на жало электрический ток низкого напряжения .
  • Рукоятка пистолетного типа.
  • Кнопка включения устройства.
  • Сетевой кабель с вилкой.
  • Лампочка или светодиод подсветки рабочей зоны (необязательно, но очень удобно)

Устройство импульсного паяльника

Устройство импульсного паяльника

Источник питания может быть встроенным в рукоятку. Закрепленный в корпусе трансформатор обладает большим весом и заметными размерами. При длительной работе это будет сильно утомлять оператора. В некоторых вариантах исполнения источник питания выполняют в виде отдельного блока. Это повышает безопасность и удобство пользования прибором. Кнопка включения устройства вмонтирована в рукоятку.

Основные конструктивные отличия от обычного паяльника:

  • Наличие блока питания.
  • Наличие кнопки включения.
  • Отсутствие нагревательного элемента.
  • Нет необходимости в подставке — температура паяльника повышается только на время пайки, после отпускания кнопки он очень быстро остывает до комнатной температуры .

Конкретные конструкции самодельных импульсных паяльников могут отличаться друг от друга в зависимости от того, какие устройства легли в их основу.

Принцип действия

В основу работы устройства положен простой физический принцип нагревания проводника при пропускании через него сильного электрического тока.

При включении устройства нажатием кнопки кнопкой замыкается входящая цепь блока питания, высокое напряжение преобразуется трансформатором в низкое напряжение на вторичной обмотке, в выходной цепи возникает ток, который быстро нагревает жало. При отпускании кнопки цепь размыкается, ток перестает течь и нагрев прекращается.

Сила тока в рабочей цепи достигает 25-50 ампер при невысоком напряжении около 2 вольт. Вторичная обмотка трансформатора должна быть намотана проводом, должна иметь сечение в несколько раз больше, чем сечение проволоки жала. То же самое касается токопроводящих шин, соединяющих концы жала с вторичной обмоткой. Это предотвратит их перегрев и непроизводительные затраты энергии на их нагревание.

Вместо трансформатора в последнее время все шире стали применяться импульсные источники питания. Они позволяют в несколько раз снизить вес и габариты блока при той же производительности.

Источники тока для питания импульсных паяльников

Перед началом самостоятельного изготовления паяльника следует, исходя из доступных материалов, определиться с выбором типа источника.

Традиционно импульсный паяльник в качестве источника питания использовал мощный понижающий трансформатор и назывался так только из-за кратковременного режима работы.

Такое устройство просто по конструкции, но обладает большим весом и габаритами.

Источник питания

Ставшие доступными не так давно импульсные блоки питания устроены намного сложнее. Они сначала выпрямляют поступающее на их вход низкочастотное сетевое напряжение, далее преобразуют его в высокочастотное (20-40 килогерц) и уже его подают на первичную обмотку трансформатора. Высокочастотные трансформаторы в несколько раз меньше по массе и габаритам, чем низкочастотные, поэтому весь импульсный источник питания, несмотря на сложное устройство, занимает места в несколько раз меньше, чем один низкочастотный трансформатор.

Резюмируя, можно сказать, что трансформаторные источники просты и надежны, но тяжелы и громоздки.

Импульсные существенно сложнее по устройству, но позволяют сэкономить вес и габариты.

Процесс переделки понижающего трансформатора

Выбирая понижающий трансформатор, следует помнить, что его мощность должна быть от 50 до 150 ватт. Меньшая приведет к перегреву и выходу устройства из строя, большая — к неоправданному утяжелению и громоздкости.

Импульсный паяльник на основе трансформатора

Импульсный паяльник на основе трансформатора

Первичную обмотку переделывать не нужно, а вторичную следует удалить, разобрав пластины. Точный расчет вторичной обмотки не требуется, важнее обеспечить максимальное сечение ее провода или шины. Обычно наматывают от двух до шести витков. Сечение должно быть в пределах от 6 до 10 мм 2.

Важно! Витки вторичной обмотки не должны касаться друг друга и сердечника трансформатора.

Если вторичная обмотка выполняется медной шиной, ее концы можно оставить подлиннее и использовать в качестве токопроводов, закрепив жало непосредственно к ним. Отсутствие лишних соединений повысит надежность работы и улучшит температурный режим устройства.

После окончания намотки и монтажа обязательно проверьте обмотку тестером на отсутствие замыкания

Импульсный паяльник из понижающего трансформатора

Импульсный паяльник из понижающего трансформатора

Переделка электронного трансформатора

Поскольку в современных блоках питания используются неразборные тороидальные трансформаторы, намотанные на ферритовом кольце и прочно закрепленные на плате, то старую вторичную обмотку не удаляют, а просто отключают.

Новую вторичную обмотку делают из всего одного витка медной шины большого сечения, аккуратно просовывая ее в центральное отверстие выходного трансформатора.

Если у нашедшегося под рукой провода или шины сечение недостаточное, то следует сделать две вторичные обмотки из одного витка, подключив их к токопроводам параллельно.

В целом процесс переделки своими руками электронного трансформатора в импульсный паяльник получается проще, чем в случае низкочастотного трансформатора.

Изготовление жала паяльника

Жало — самый простой, но, тем не менее, ответственный узел паяльника.

Жало паяльника

Медная проволока должна быть диаметром 1-2 миллиметра, крепить ее к токопроводным шинам следует болтовыми соединениями с шайбами. Если под рукой найдутся цанговые соединения на такой диаметр- то паяльник приобретет намного более эстетичный вид.

После нескольких пробных паек, возможно, придется изменить диаметр проволоки. Слишком тонкая будет перегреваться сама, и перегревать припаиваемые детали, слишком толстая, напротив, будет медленно прогреваться, задерживая основную работу.

Подбором толщины проволоки надо добиться разогрева жала до стабильной температуры за 5-7 секунд. Чрезмерное увеличение толщины приведет к росту потребляемой мощности и к перегреву вторичной обмотки выходного трансформатора. В ходе пробных паек нужно обязательно проверять степень ее нагрева, не допуская тления или даже воспламенения изоляции.

Преимущества и недостатки

Импульсный паяльник, собранный своими руками, будет выгодно отличаться от других типов паяльников следующим:

  • Малый расход электроэнергии. Она не тратится на обогрев мастерской, а расходуется только в момент пайки.
  • Безопасность. Жало в нерабочем состоянии мгновенно остывает, таким устройством нельзя обжечься, поджечь что-либо на рабочем столе или проплавить изоляцию.
  • Удобство использования, ремонта и обслуживания. Жало можно изготовить заменить за считанные минуты. Кроме того, жалу можно придать любую форму для выпаивания деталей в труднодоступных местах или среди плотного монтажа.

Кроме достоинств, этому типу устройств присущ и недостаток: большой вес и размеры утомляют руку при длительном использовании. Чтобы избежать этого, применяют импульсный источник питания и даже выносят его в отдельный блок.

Изготовление импульсного микросхемного паяльника

Для изготовления паяльника, которым можно выпаивать и впаивать в печатные платы микросхемы и другие электронные компоненты, отличающиеся особой чувствительностью к перегреву, в конструкцию устройства добавляют специально переделанный резистор, играющий роль защитного устройства. Хорошо подойдет резистор типа МЛТ сопротивлением 8 ом и рассеиваемой мощностью 0,5-2 ватта

Паяльник для микросхем своими руками

Паяльник для микросхем своими руками

Кроме того, потребуется:

  • Полоска двухстороннего фольгированного текстолита 10Х30 миллиметров.
  • Кусок стальной проволоки толщиной 0,8 мм.
  • Медная проволока для жала.
  • Корпус шариковой ручки.
  • Импульсный блок питания 12-15 вольт 1 ампер.

Последовательность изготовления следующая:

  1. Снять лакокрасочное покрытие с резистора, нагрев его в муфельной печи или газовой горелкой.
  2. надфилем или лобзиком отпилить один из выводов .
  3. просверлить в этом месте отверстие диаметром 1,1 мм, достигнув внутренней полости. Второй вывод следует подключить к источнику питания, он же будет крепить устройство к ручке.
  4. Расширить отверстие в корпусе сопротивления на конус так, чтобы исключить контакт жала и внутренних стенок резистора, к этому месту надо будет припаять второй провод к блоку питания.
  5. Стальную проволоку надо согнуть пополам, выгнуть в месте сгиба кольцо по диаметру резистора (должно садиться очень плотно) и загнуть его под прямым углом.
  6. Кольцо залудить, надеть на резистор и припаять так, чтобы концы стальной проволоки были направлены в одну сторону с оставшимся выводом.
  7. Из полоски текстолита вырезать плату таким образом, чтобы на широкой части с разных сторон было две контактные площадки для припаивания концов проволоки и второго вывода резистора соответственно, средняя должна плотно входить в корпус ручки, а узкая — иметь контактные площадки для подпайки проводов от блока питания.
  8. Припаять концы проволоки и вывод сопротивления к плате, с дугой стороны припаять провода от блока питания
  9. В отверстие резистора плотно вставить кусочек термостойкого изолятора (той же керамики, например), чтобы исключит контакт жала со вторым выводом.
  10. Вставить медное жало в отверстие. Жалу можно придать любую удобную для пайки форму, изогнуть, сплющить, заточить и т.д.
  11. Пропустить провода через корпус ручки, вставить в него плату и подсоединить провода к блоку питания.

Устройство паяльника для микросхем

Устройство паяльника для микросхем

Работа таким импульсным микросхемным паяльником, сделанным своими руками, безопасна для микросхем и не утомляет руку.

Отличия от обычного паяльника

Основные отличия импульсного паяльника от обычного заключаются в следующем:

  • Нагревательный элемент как таковой отсутствует. Нагревается само жало за счет проходящего по нему сильного тока. Жало включают в цепь вторичной обмотки трансформатора.
  • Быстрый прогрев жала (несколько секунд).
  • Экономичность (электроэнергия расходуется только в момент пайки).
  • Безопасность. Паяльник нагревается на несколько секунд и так же быстро остывает.
  • Возможность регулировать мощность (в некоторых схемах)

Импульсный и обычный паяльники

Импульсный и обычный паяльники

Из негативных отличий следует отметить неприменимость такого устройства для пайки микросхем и других элементов, чувствительных к перегреву и к поражению статическими зарядами.

Делаем самодельный электропаяльник импульсного типа

Рассмотрим пошаговую инструкцию по самостоятельному изготовлению паяльника трансформаторного типа.

  1. Подобрать подходящий трансформатор. Подойдет любой силовой от блока питания старой электронной техники мощностью 50-150 ватт.
  2. Аккуратно разобрать его и снять обмотки. С вторичной можно не церемониться, а с первичной надо обойтись осторожно — она войдет в состав изделия.
  3. Изготовить и поместить поверх первичной вторичную обмотку из медной шины сечением не менее 20 мм Достаточно одного витка, надо оставить концы шины длиной не менее 15 см.
  4. Для изоляции следует использовать стеклоткань или термоусадочные трубки.
  5. К концам шин на болтовых креплениях присоединить V- образный кусок медной проволоки толщиной 1,5-2 мм (подбирается опытным путем)
  6. Из дерева или текстолита вырезать рукоятку, в ней закрепить кнопку включения. И трансформатор.
  7. Подсоединить к первичной обмотке сетевой кабель через кнопку.

Самодельный электропаяльник импульсного типа

Самодельный электропаяльник импульсного типа

Такой импульсный паяльник, сделанный своими руками, по сравнению с заводскими образцами будет хоть и выглядеть невзрачно, зато работать — ничуть не хуже.

Паяльник на базе энергосберегающей лампы

Домашние умельцы разработали еще одну схему создания импульсного паяльника — из энергосберегающей лампы. Сама лампа в конструкцию не входит, потребуются ее комплектующие.

Схема для сборки паяльника на базе энергосберегающей лампы

Схема для сборки паяльника на базе энергосберегающей лампы

Перечень необходимых узлов и материалов:

  • Преобразователь (или балласт) от люминесцентного светильника.
  • Трансформатор с 220 вольт на любое низкое напряжение.
  • Медная проволока толщиной 2-3 миллиметра.
  • Крепеж.
  • Провода.
  • Сетевой шнур с вилкой.

Первичная обмотка рабочего трансформатора подключается к выходным контактам балласта

Рабочий трасформатор следует намотать на любом доступном ферритовом кольце. Первичная обмотка содержит 10-120 витков прбода толщиной 0,5 мм.

Устройство электропаяльника

Вторичная- это один виток толстой медной проволоки сечением 3-3,5 мм 2 К ней на болтовых или цанговых зажимах крепится жало из V- образного куска медной проволоки диаметром 1,5-2 мм.

Важно: проволока вторичной обмотки должна быть толще, чем проволока жала. Иначе будет греться не жало, а обмотка.



5478

Некоторые модели импульсных паяльников может показаться рядовым пользователя слишком дорогим. Бюджетные варианты многие считают некачественными, поэтому иногда люди решаются сделать инструмент самостоятельно. Импульсный паяльник своими руками вполне возможно сделать, если иметь все необходимые инструменты и опыт в подобных делах. Не стоит рассчитывать, что по техническим характеристикам он будет соответствовать покупным моделям, а по удобству их превосходить, но благодаря относительно простому устройств, функциональную часть можно скопировать.

Принцип работы

Если кто-то планирует сделать электронный паяльник самостоятельно, то принцип его работы должен совпадать с оригинальным изделием. Точность соблюдения параметров тут не имеет большого значения. Главное, чтобы самодельный импульсный паяльник работал, как и покупной, а также выполнял те же функции.

Схема импульсного паяльника должна содержать в себе специальный переключатель, который и создает особенность работы устройства. При нажатии кнопки, паяльник переходит в рабочий режим. Здесь срабатывает емкость из нескольких конденсаторов, которая суммируется. Благодаря этому генератор начинает работать на понижение частоты до того момента, когда трансформатор полностью не насытится. После этого мощность импульсом подается в жало, которое моментально разогревается.

Материалы и инструменты для изготовления паяльника своими руками

Даже для самостоятельного производства требуются базовые элементы, без которых никак не обойтись во время подготовки и непосредственного создания изделия. Простейший импульсный паяльник можно сделать при помощи следующих компонентов:

  • Теплостойкий материал для создания рукояти инструмента;
  • Медная проволока, которая будет выполнять функцию жала (один конец желательно заточить в нужную форму);
  • Трансформатор, для создания нужного напряжения;
  • Медная шина.

При создании импульсного паяльника своими руками, простая схема является не единственным вариантом. Помимо этого есть и другие варианты производства, основанные на использовании подручных средств.

Импульсный паяльник из лампы экономки

Многие специалисты уверяют, что создать импульсный паяльник из энергосберегающей лампы своими руками оказывается очень просто. Это утверждение основано на том, что лампа экономка является готовым блоком питания для импульсных инструментов. Чтобы сделать из всего этого рабочий инструмент, потребуется немного преобразить схему.

Блок питания для паяльника из экономки

Блок питания для паяльника из экономки

На схеме указаны детали, которые потребуется устранить из нее:

Схема без изменений

Схема без изменений

На примере показана энергосберегающая лампа мощностью в 25 Вт. После удаления выделенных красным частей, контакты нужно соединить перемычкой. После этого процесса на трансформатор доматывается обмотка. Если в конкретной модели лампы на трансформатор не удается добавить обмотку, то его можно заменить на другой или поставить дополнительный трансформатор.

На схеме цветом выделено место подключения первичной обмотки:

Схема с подключением первичной обмотки

Схема с подключением первичной обмотки

Далее ко всему этому подключается нагревательный элемент с жалом, после чего уже можно приступать к тестированию инструмента. Это один из самых простых способов, как самому сделать импульсный паяльник, чтобы он получился легким и компактным.

Импульсный паяльник из китайского трансформатора

Для опытных мастеров сделать импульсный паяльник из электронного трансформатора, который можно найти во многих китайских изделиях, также не составит труда.

Конечный результат паяльника своими руками

Конечный результат паяльника своими руками

В отличие от других устройств, здесь часто встречается Ш-образный сердечник. На него не всегда удобно наматывать обмотку, так что порой его нужно предварительно выпаять и разобрать. Для паяльника подойдет обмотка из одного витка, которая выполнена проводом сечение около 6 мм. Чтобы сделать шину, пригодится экран от телевизионного кабеля. При таком количестве витков обмотка должна получить дополнительную стойкость. Чтобы он оставалась на месте, по бокам сердечника можно сделать картонные вставки. В схеме нет теплоотводов и прочих лишних вещей, что делает устройство максимально легким и простым в использовании. Здесь хорошо проявляется тепловыделение, так как концы шины запаиваются к держателю.

Для укрепления платы электронного трансформатора подойдет обыкновенный силикон, без использования каких-либо дополнительных приспособлений. Схема данного устройства выглядит следующим образом:

Схема паяльника на электронном трансформаторе

Схема паяльника на электронном трансформаторе

В схеме применяется стандартный трансформатор, который обладает стабильной работой. Все базовые обмотки ключей намотаны на него. При работе обмотка не нагревается, но при длительном сроке эксплуатации жало может прогревать обмотку, так что стоит выбирать для нее материалы со слабой проводимостью тепла. В среднем, прогревание жала у самодельных моделей, сделанных по такому типу, происходит за 5 секунд.

Какой паяльник эффективнее?

Для пользователей первоочередным фактором важности должна быть эффективность работы. Становится понятно, что импульсный паяльник на 220В своими руками вполне возможно сделать. Он будет нормально работать и выполнять свои функции, а также обойдется в несколько раз дешевле покупного. У него могут отсутствовать определенные функции, которые есть у покупных вариантов. Естественно, что каждая схема создания инструментов своими руками наделяет его особыми свойствами, но практически все из них не дотягивают даже до бюджетных моделей.

Любой специалист может с уверенностью заявить, что покупные модели, особенно в профессиональном сегменте, намного эффективнее самодельных.

Если сравнивать эффективность самодельных вариантов, то здесь уже будет играть роль не только выбранная схема, но и качество подобранных материалов. Оценить преимущества каждого варианта, без конкретных примеров, достаточно сложно.

Техника безопасности

Рассматривая варианты, как сделать импульсный паяльник своими руками, не стоит забывать о безопасности. Все работы по разбору старых устройств и сборке новых по схеме должны проводиться при отключенных от сети устройствах. Это первое элементарное правило. При работе с горячими материалами нужно соблюдать правила пожарной безопасности и убрать все легковоспламеняющиеся предметы. Все детали, с которыми соприкасается человек, должны быть заизолированы и выполненными из не проводящих ток термостойких материалов

Заключение

Несмотря на возможность создавать импульсные паяльники самостоятельно из подручных средств, намного проще и безопаснее обзавестись обыкновенной моделью, купленной в магазине. Самодельные паяльники имеют ограниченную сферу применения. Если для монтажных работ они вполне подойдут, то для более серьезных масштабных процедур потребуется использовать профессиональный инструмент.

Ультразвуковая пайка

Пайка с помощью ультразвукового паяльника

Ультразвуковая пайка – это технология бесфлюсовой пайки, не требующая никаких химических веществ и использующая энергию ультразвука для спаивания таких материалов, как стекло, керамика, композиционные материалы, а также металлы, с трудом поддающиеся или совсем не поддающиеся пайке с помощью традиционных средств.

Данная технология находит всё большее применение при спаивании между собой металлических и керамических деталей, входящих в конструкцию фотоэлементов солнечных батарей, а также деталей из медицинских сплавов с памятью формы, используемых в специализированных электронных модулях и блоках датчиков.

Ультразвуковая пайка упоминается с 1955 года как метод пайки алюминия и других металлов без использования флюса.

Эта технология существенно отличается от ультразвуковой сварки. В последней энергия ультразвука используется для соединения деталей без добавления каких бы то ни было наполнителей, в то время как в традиционной (и ультразвуковой) пайке для формирования соединения применяется внешний нагрев с целью расплавления металлических наполнителей, то есть припоев. При этом ультразвуковая пайка может выполняться с помощью либо специального паяльника, либо специальной паяльной ванны.

Этот процесс может осуществляться либо автоматически при серийном производстве либо вручную при изготовлении прототипов или проведении ремонтных работ.

Изначально ультразвуковая пайка была предназначена для соединения алюминия и других металлов, однако в наши дни с появлением активных припоев можно спаивать более широкий спектр металлов, керамики и стекла.

В данной технологии применяются либо ультразвуковые паяльники с наконечником диаметром 0,5-10 мм, либо ультразвуковые паяльные ванны. В этих устройствах используются пьезоэлектрические кристаллы для генерирования звуковых волн высокой частоты (20-60 кГц) в слоях расплавленного припоя или в ванне с расплавленным припоем с целью механического разрушения оксидных плёнок, образующихся на поверхностях расплава. При этом наконечники ультразвуковых паяльников одновременно соединены с нагревательным элементом, в то время как пьезоэлектрический кристалл термически изолирован во избежание его разрушения.

Наконечники ультразвуковых паяльников способны нагреваться до 450 °C при механических колебаниях с частотой 20-60 кГц. Такой наконечник способен расплавлять металлические наполнители припоя при возбуждении звуковых колебаний в расплаве припоя. При этом вибрация и кавитация (порообразование) в полученном расплаве позволяют припоям смачивать поверхности многих металлов и сцепляться с ними.

Энергия звуковых волн, вырабатываемая наконечником ультразвукового паяльника или ультразвуковой паяльной ванной, вызывает в расплавленном припое кавитацию, которая механически разрушает оксидные плёнки, расположенные поверх слоёв самого припоя и на соединяемых металлических поверхностях.

Технология ультразвуковой пайки находит всё большее применение, благодаря её чистоте, отсутствию флюса и сочетаемости с активными припоями, и предназначена для соединения деталей, не допускающих использования агрессивного флюса или состоящих из разнородных материалов (металлов, керамики или стекла).

Для эффективной адгезии к поверхностям должна быть разрушена собственная оксидная плёнка на активном припое, образующаяся при его плавлении, и ультразвуковая вибрация хорошо подходит для этой цели.

При необходимости выполнить короткое или узкое паяное соединение может быть очень эффективна ультразвуковая пайка с использованием паяльных наконечников диаметром 1-10 мм, так как объём расплавленного металла невелик и может быть эффективно приведён в колебание с их помощью. При большей площади паяного соединения применяются широкие нагреваемые ультразвуковые наконечники для распространения активных припоев по большей поверхности алюминия (а также других металлов, керамики и стекла) и её лучшего увлажнения этими припоями.

Ультразвуковая пайка представляет собой технологию бесфлюсовой пайки, не требующей каких-либо химических компонентов. В основе взаимодействия лежит энергия ультразвука, она позволяет спаивать такие материалы, как керамика, стекло, металлы и композиционные элементы, с трудом поддающиеся пайке стандартными способами.

Обо всех особенностях этой технологии мы расскажем в нашем обзоре.



Описание

Ультразвуковая пайка относится к категории низкотемпературных воздействий при помощи погружения заготовок в расплавленный до жидкого состояния припой. Для удаления оксидных пленок из соединяемых поверхностей, а также для улучшения их смачивания припоем используют энергию ультразвука. Такая технология стала эффективной альтернативой химической реакции на основе флюса.

Пайка ультразвуком включает в себя два этапа: предварительное ультразвуковое лужение обрабатываемых поверхностей и непосредственно саму пайку.

УЗ-лужение производят при помощи УЗ-паяльников либо выполняют в специализированных ваннах.

В процессе обработки оксидная пленка снимается со всей поверхности изделия так, чтобы обеспечить максимальное примыкание с расплавленным припоем. После лужения поверхность становится блестящей и чуть шероховатой.

Важно. Припаивать детали ультразвуком после подобной процедуры можно не позже, чем через 2 недели после проведения лужения.

УЗ-пайка металлических изделий из титана, хрома или вольфрама проводится после предварительной обработки в растворе этилового спирта, этиленгликоля и солянокислого гидроксиламина. Это обеспечивает исключительное качество паяного соединения при низких параметрах температуры и времени обработки.




После завершения всех предварительных работ производится непосредственно пайка. Эта процедура не предполагает нагрева соединяемых элементов. Принцип действия заключается в использовании вспомогательного устройства, которое облегчает ход пайки, но при этом никак не влияет на температуру паяемого узла. Ультразвук беспрепятственно проходит через жидкий сплав, но при его попадании на границу твердого металла и жидкости образуется кавитация.

Если все работы выполнены правильно, то прочность пайки доходит до 5 кГ / мм2. Это довольно высокий параметр, именно поэтому при тестировании образцов разрыв чаще проходит по материалу, а не в месте пайки.

Преимущества и недостатки

Преимущества подобного способа пайки очевидны.

  • При точечном подведении ультразвука в расплав энергия УЗ-волн концентрируется в небольшом объеме и тем самым помогает понизить степень окисления припоя в ванной.
  • Ультразвуковые колебания, направленные относительно соединяемых поверхностей параллельно, существенно повышают долговечность паяных соединений и обеспечивают максимальную стабильность процессов. Использование УЗ-волн уменьшает интенсивность механического воздействия на поверхности элементов.
  • Процесс пайки ультразвуком легко можно автоматизировать, задавая толщину слоя припоя заранее.
  • При УЗ-воздействии сводится к минимуму появление сосулек припоя и перемычек, снижается включение фрагментов оксидных пленок и существенно сокращается время работы.

Тем не менее воздействие ультразвука имеет и свои недостатки. Рассмотрим их.

  • В частности, во время лужения нейтрализация пленки окислов осуществляется неравномерно, поэтому контакт поверхности с расплавленным припоем происходит точечно. Если при этом жидкий припой имеет низкую растворимость, то выраженного отделения и диспергирования оксидов может и не произойти.
  • Серебро, индий и висмут, которые добавляют в состав сплавов для выполнения УЗ-пайки, являются довольно дорогостоящими материалами. А цинк на воздухе формирует большой объём шлака. Именно поэтому при обработке образуются интерметаллиды, они вызывают снижение предела выносливости материала.
  • Ультразвуковая активация не может создать защиту обрабатываемой поверхности до начала пайки, а также улучшить характеристики поверхностного натяжения жидкого припоя. Соответственно, УЗ-волны никак не влияют на растекание и последующее капиллярное проникновение припоя.

Используемые аппараты

Для выполнения лужения деталей из алюминия и его сплавов, а также ферритов и керамики легкоплавким припоем без применения флюса используют установку УЗУ-9П. Она состоит из ультразвукового паяльника и генератора. Разрушение оксидной пленки в этом случае происходит непосредственно под слоем расплавленного припоя. В результате металл попросту не успевает соединиться с кислородом из воздуха, и вся поверхность смачивается припоем равномерно. При помощи этой установки можно выполнить лужение выводов резисторов и конденсаторов. Ими сращивают алюминиевые кабели, паяют провода термофар и соединяют выводы корпусов из металлических сплавов.



Аппарат незаменим для фиксации крепежных лепестков и выводов с ферритами, керамикой, стеклом или полупроводниковыми материалами.

Для бесфлюсовой пайки электронных элементов легкоплавким припоем необходимо использовать ультразвуковые ванны. Они бывают двух типов: создающие возбуждение всего количества припоя и локально воздействующие ультразвуком. В первом варианте техника позволяет задействовать большую поверхность элемента, а во втором — сконцентрировать УЗ-энергию точечно, в малом объеме, и тем самым снизить окисление припоя.

Для локального ввода ультразвуковых колебаний в расплав припоя используют поршневые излучатели.



Области применения

Ультразвуковые лампы настольного типа используют для горячего лужения элементов и выводов разного рода электронных компонентов. Ультразвуковые паяльники оптимальны для спаивания деталей. Они незаменимы для металлизации ферритовых и керамических компонентов. Использование современных источников ультразвуковых колебаний делает пайку практичной, надежной и экологически безопасной. Кроме того, техника полностью исключает необходимость применения флюсов.

Бесфлюсовая пайка становится основным условием внутреннего монтажа, а также герметизации электронной аппаратуры. При помощи пайки и ультразвуковой металлизации можно соединить материалы, которые плохо поддаются стандартным способам пайки, — алюминиевые, титановые, магниевые и никелевые сплавы, а также ферриты, стекло, керамику, полиэтилен, пластмассу, мембраны и другие неметаллические материалы.

Об ультразвуковой пайке смотрите в видео ниже.

Читайте также: