Ультразвуковой датчик своими руками

Обновлено: 05.07.2024

При производстве ремонта очень часто необходимы точные замеры расстояния от точки до точки. Да и помимо ремонта подобная задача бывает актуальной. И хорошо, если эти расстояния небольшие – можно воспользоваться рулеткой. Иногда использование этого инструмента бывает попросту невозможным. И вот тут на помощь приходят лазерные или ультразвуковые приборы. Но приобретение такого высокоточного инструмента не всем по карману. Поэтому попробуем разобраться, насколько сложным может быть самостоятельное изготовление дальномера из запчастей с китайских ресурсов на базе ардуино.

Читайте в статье

Что потребуется приобрести для сборки ультразвукового дальномера

Для того чтобы изготовить ультразвуковой дальномер на базе ардуино, не придётся тратить большие суммы. На китайских ресурсах, которые стали столь популярны в последнее время, такие элементы стоят довольно дёшево.

Основным видимым элементом, позволяющим визуально считывать данные с прибора, будет, конечно же, жидкокристаллический дисплей.

Ультразвуковой дальномер своими руками на базе ардуино

Вторым элементом, который напрямую будет контактировать с дисплеем, отметим I2C модуль (1602) для arduino. По сути, это ЖК-адаптер. Он может продаваться отдельно, хотя намного удобнее приобрести жидкокристаллический дисплей уже в сборе с модулем.

I2C модуль для arduino – здесь он уже впаян на место и готов к работе

Ну, и напоследок ‒ оставшиеся мелочи, необходимые для работы ультразвукового дальномера, среди которых:

Остальные мелкие детали, которые понадобятся для работы

Первые шаги по изготовлению дальномера на ардуино

Начать работу следует с разметки коробки под приобретённые элементы. После разметки излишки пластика вырезаются. Для этого можно воспользоваться различными способами, но все они элементарны и не требуют подробного рассмотрения.

Излишки пластика вырезаются любым доступным способом

Дисплей и ультразвуковой дальномер устанавливаются на свои места, после чего можно переходить к более сложным действиям.

Элементы встали на место, пора поработать с ардуино

Программирование ардуино: как залить скетч

Те, кто уже сталкивался с подобным вопросом, знают, что ардуино работает со специальными программами. Их несложно скачать из сети интернет. А вот нужный именно для дальномера скетч мы не в праве не предоставить в рамках данной статьи. Его можно скачать на ПК.

Заливаем скетч на ардуино, после чего можно полностью собрать ультразвуковой дальномер

Окончательная сборка ультразвукового дальномера и оценка результата

Дальнейшая работа потребует некоторых навыков владения паяльником. При помощи подготовленных заранее отрезков проводов нужно собрать все детали в единый прибор. Схему сложной назвать нельзя, при определённой доле внимательности с ней справится даже школьник.

Схема ультразвукового дальномера на ардуино – ничего сложного, обозначена каждая точка

Что же должно получиться в итоге

После сборки схемы останется зафиксировать все детали внутри пластиковой коробки при помощи термоклея и закрыть её. Должен получиться аккуратный приборчик, который уже пора испытать.

Все элементы зафиксированы, можно закрыть коробку

Вот такой аккуратный прибор должен получиться в итоге

Проверка показаний ультразвукового дальномера

Для того чтобы проверить точность измерений и работоспособность собранного прибора, можно воспользоваться обычной линейкой. Здесь стоит учитывать, что измерения производятся прибором от уровня задней его стенки.

Точно, как в аптеке: 30 см линейки + 1 см по причине выхода границы за шкалу

Заключительная часть

Многим начинающим домашним мастерам может показаться, что работать с ардуино очень сложно и этому нужно учиться долгое время. На самом деле стоит только один раз попробовать, чтобы это занятие увлекло человека настолько, что он сам начнёт изобретать различные приборы, требующие наличия подобной микросхемы. Тем более что стоимость необходимых элементов минимальна, а найти в сети нужные скетчи для той или иной цели крайне просто. Что же касается дальномера, то его можно сделать не только ультразвуковым, но и лазерным. Второй вариант будет даже более предпочтительным – всегда можно увидеть, нет ли препятствия на пути луча.

Надеемся, что начинающие работать с ардуино домашние мастера возьмут на вооружение представленный сегодня способ изготовления ультразвукового дальномера. Редакция Homius с удовольствием ответит на все вопросы по сегодняшней статье, если таковые возникли в процессе ознакомления с информацией. Вам нужно лишь изложить их суть в комментариях ниже. Там же вы можете поделиться своим вариантом использования ардуино или даже указать на некомпетентность автора, если вдруг наличие таковой вами обнаружено. Да, и пожалуйста, не забывайте об оценке статьи. Ваше мнение крайне важно для нас. И, конечно же, в свете распространяющейся по миру инфекции берегите себя, своих близких и будьте здоровы!

Схемы датчиков движения и принцип их работы, схемы подключения

Датчик движения чаще всего используется для включения освещения, когда вы проходите или находитесь рядом с ним. С его помощью можно хорошо экономить электричество и избавить себя от необходимости щелкать выключателем.

Это устройство также используется и в системах сигнализации, для определения нежелательных проникновений. Кроме этого их можно встретить и на производственных линиях, они там нужны для автоматизированного выполнения каких-либо технологических задач. Датчики движения иногда называют датчикам присутствия.

Содержание статьи

Типы датчиков движения

Датчики движения различают по принципу действия от этого зависит их работа, точность срабатывания и особенности использования. У каждого из них есть сильные и слабые стороны. От конструкции и рода используемого элемента зависит и конечная цена такого датчика.

Датчик движения может быть выполнен в одном корпусе и в разных корпусах (блок управления отдельно от датчика).

Контактные

Самый простой вариант датчика движения – использовать концевой выключатель или геркон. Геркон (герметичный контакт) это переключатель который срабатывает при появлении магнитного поля.

Суть работы заключается в установки концевого выключателя с нормально-разомкнутыми контактами или геркона на дверь, когда вы её откроете и зайдете в помещение контакты замкнутся, включат реле, а оно включит освещение. Такая схема изображена ниже.

Инфракрасные

Срабатывают от теплового излучения, реагируют на изменение температуры. Когда вы входите в поле зрения такого датчика он срабатывает на тепловое излучение от вашего тела. Недостатком такого способа определения являются ложные срабатывания. Тепловое излучение присуще всему что есть вокруг. Приведем несколько примеров:

1. ИК датчик движения стоит в помещении с электрообогревателем, который периодически включается и отключается по таймеру или термостату. При включении обогревателя возможны ложные срабатывания.

2. При установке на улице возможны срабатывания от порывов тёплого ветра.

В целом эти датчики нормально работают, при этом это самый дешевый вариант. В качестве чувствительного элемента используется PIR-сенсор, он создает электрическое поле пропорционально тепловому излучению.

Но сам по себе сенсор не имеет широкой направленности, поверх него устанавливается линза Френеля.

Правильнее будет сказать – многосегментная линза, или мультилинза. Обратите внимание на окошко такого датчика, оно разбито на секции это и есть сегменты линз, они фокусируют попадающие излучения в узкий пучок и направляют его на чувствительную область датчика. В результате этого на маленькое приемное окошко пироэлектрического сенсора попадают пучки излучений с разных сторон.

Для увеличения эффективности детектирования движения могут устанавливать сдвоенные, или счетвертненные сенсоры или несколько отдельных. Таким образом, расширяется поле зрение прибора.

Исходя из вышесказанного нужно отметить и то, что на датчик не должен попадать свет от лампы, а также в поле его зрения не должно быть ламп накаливания, это также сильный источник ИК-излучения, тогда работа системы в целом будет нестабильной и непредвиденной. ИК-излучения плохо проходят через стекло, поэтому он не сработает, если вы будете идти за окном или стеклянной дверью.

Это самый распространённый вид датчика его можно купить а можно и собрать самому на основе, поэтому рассмотрим его конструкцию подробно.

Как собрать ИК-датчик движения своими руками

Самый распространенный вариант – это HC-SR501. Его можно купить в магазине радиодеталей, на али-экспресс, часто поставляется в наборах Arduino. Может использоваться как в паре с микроконтроллером, так и самостоятельно.

Он представляет собой печатную плату с микросхемой, обвязкой и одним ПИР-сенсором. Последний накрыт линзой, на плате есть два потенциометра, один из них регулирует чувствительность, а второй время которое на выходе датчика присутствует сигнал. При детектировании движения на выходе появляется сигнал и держится установленное время.

Он питается напряжением от 5 до 20 вольт, срабатывает на расстоянии от 3 до 7 метров, а сигнал на выходе держит от 5 до 300 секунд, вы можете продлить этот период, если использовать одновибратор на NE555, микроконтроллер или реле задержки времени. Угол обзора порядка 120 градусов.

На фото изображен датчик в сборе (слева), линзу (справа внизу), обратную сторону платы (справа вверху).

Рассмотрим плату подробнее. На её передней стороне расположен чувствительный элемент. На задней – микросхема, её обвязка, справа два подстроечных резистора, где верхний – время задержки сигнала, а нижний – чувствительность.

В нижней правой части джампер для переключения режимов H и L. В режиме L датчик выдает выходной сигнал только она период времени выставленного потенциометром. Режим H выдает сигнал, пока вы находитесь в зоне действия датчика, а когда вы её покидаете сигнал, исчезнет через время заданное верхним потенциометром.

Если вы хотите использовать датчик без микроконтроллеров, тогда соберите эту схему, все элементы подписаны.

Схема питается через гасящий конденсатор, напряжение питания ограничено на уровне 12В с помощью стабилитрона. Когда на выходе датчика появляется положительный сигнал реле Р включается через NPN транзистор (например BC547, mje13001-9, КТ815, КТ817 и другие). Можно использовать автомобильное реле или любое другое с катушкой на 12В.

Если вам нужно реализовать какие-то другие функции – можно использовать его в паре с микроконтроллером, например платой Ардуино. Ниже представлена схема подключения и программный код.

Телеметрическое управление многими производственными процессами предусматривает постоянную проверку уровня жидких веществ в резервуарах и трубопроводах. Для этого используют сенсоры, работающие на различных физических принципах: поплавковые, радарные, емкостные, гидростатичные. Ультразвуковой датчик обеспечивает контроль уровня жидкости в сложных условиях: в темноте, в пыли и дыму, при высокой и низкой температуре.

Принцип действия

Датчик работает на явлении отражения ультразвуковой волны от границы жидкой и газовой сред. Прибор излучает звуковые колебания частотой более 20000 герц, принимает эхо и измеряет время прохождения сигнала. Расстояние до границы сред рассчитывается по формуле: R= tV/2, где t – время от начала излучения до приема эха, V — скорость звука. Необходимо делить на 2, потому что звуковые волны проходят двойную дистанцию между поверхностью жидкости и излучателем.

Скорость звука в воздухе — 331 м/сек. При изменении температуры этот показатель также меняется. Поэтому ультразвуковые сенсоры уровня имеют в конструкции термометр, показатели которого учитывается электронной схемой прибора при расчете значения уровня жидкости.

Описание и назначение

Ультразвуковой уровнемер жидкости — прибор для бесконтактного автоматического дистанционного измерения уровня жидких сред. Основные элементы конструкции сенсора: ультразвуковой излучатель и приемник отраженной звуковой волны.

Излучатель

В измерителях уровня используются пьезоэлектрический эффект – изменение линейных размеров диэлектрика в зависимости от частоты переменного электрического поля, в которое помещен. В излучателе пьезоэлемент передает колебания мембране, которая при частоте более 20000 герц начинает излучать ультразвук.

  • простота конструкции;
  • получение ультразвуковых колебаний значительного диапазона;
  • компактность.

Излучатель

Приемник

Пьезоэлектрический эффект обратим: попадающие на мембрану отраженные акустические колебания вызывают образование в пьезоэлементе электрического тока. На этом принципе работают приемники ультразвукового излучения в уровнемерах: при получении отраженного сигнала в цепи прибора образуется электрический ток.

Применение пьезоэлектрической схемы позволило создать измеритель уровня жидкости, в которых излучатель и приемник — единый элемент. Это упрощает и удешевляет конструкцию прибора, его монтаж и обслуживание.

Приемник ультразвукового датчика

Типы ультразвуковых датчиков уровня жидкости, работающих на принципе эхолокации:

Сигнализаторы контрольных точек уровня

Прибор настраивается на два значения: минимальный уровень жидкости и максимальный. Если время прохождения отраженного сигнала соответствует минимальному заданному уровню жидкости, электронный блок формирует сигнал в соответствии с заданной программой. Это может быть включение сигнальной лампочки и звуковой сигнализации, команда насосам на отключение и т.п. Тот же алгоритм используется при достижении максимального уровня жидкости.

Сигнализаторы контрольных точек уровня

Датчики непрерывного мониторинга уровня

Измерители данного типа постоянно измеряют расстояния до уровня жидкости. Преобразует полученные данные в аналоговый сигнал и транслирует его в соответствии с заданной программой на собственный дисплей, центральный пульт управления и т.п. Могут быть запрограммированы события при предельных значениях уровня жидкости, как в сигнализаторах.

Датчики непрерывного мониторинга отличаются от сигнализаторов дополнительными возможностями: измеряют температуру жидкости, ее плотность, информируют об изменении агрегатного состояния и др.

Ультразвуковые бесконтактные сенсоры применяются на производствах, в которых получение, хранение и перевозка жидкостей, в том числе агрессивных – часть технологического процесса:

  • химическая, газовая и нефтеперерабатывающая промышленность;
  • водоснабжение и очистка воды;
  • сельское хозяйство;
  • металлургическая промышленность;
  • пищевая промышленность.
  • предотвращение переполнения и опустошения емкостей с жидкостью и возникновения связанных с этим аварийных ситуаций;
  • включение в цепочку телеметрического управления системами и агрегатами в качестве измерительных элементов;
  • мониторинг изменений физических и химических свойств жидких веществ в емкостях.

Преимущества и недостатки

Преимущества ультразвуковых уровнемеров:

  • производство измерений без непосредственного контакта с жидкой средой, что позволяет работать с агрессивными жидкостями. К приборам не предъявляются повышенные требования к защищенности от негативных факторов внешней среды;
  • возможность измерения уровня без проникновения внутрь емкости, размещая датчик снаружи;
  • цена ниже другого типа бесконтактных сенсоров — радарных датчиков, вследствие более простой конструкции и менее дорогих комплектующих;
  • отражение ультразвука происходит от границы жидкости и газа, поэтому точность измерения не зависит от плотности жидкой среды, ее химических и физических свойств;
  • компактность;
  • мультисенсорность. Датчик служит для получения дополнительной информации о состоянии жидкости и емкости. Зависит от конкретной модели прибора.

ультразвуковой уровнемер

Недостатки сенсоров уровня жидкости:

  • ошибочные данные из-за отражения ультразвуковых сигналов от конструктивных элементов емкости. Необходимо на стадии монтажа прибора не допускать нахождения элементов конструкции во фронтальной плоскости датчика. В узких баках ультразвуковые датчики не применяются;
  • показания прибора будут ошибочными при давлении газовой среды, большем или меньшем атмосферного. В вакууме прибор работать не будет. В подобных случаях необходимы сенсоры, использующие другие физические принципы;
  • зависимость точности измерений от температуры и состава газовой среды, ее влажности, загрязненности, запыленности;
  • искажения результатов измерений при образовании на поверхности жидкости пены либо турбулентных завихрений.

Сенсор уровня жидкости

Как подобрать нужный

При выборе ультразвукового измерителя уровня необходимо учитывать:

  • свойства жидкости;
  • материал, из которого изготовлен резервуар, его влияние на точность измерений;
  • используемую схему обработки измерительной информации;
  • оснащение сенсора дисплеем для отображения данных и изменения настроек;
  • наличие сертификатов;
  • влияние перепадов температуры и иных внешних факторов на точность измерения;
  • материал, из которого устройство выполнено.

ультразвуковой измеритель

Вещества

Большое преимущество ультразвуковых датчиков уровня – точность измерения не зависит от физико-химических свойств жидкости: плотности, химической активности, электропроводимости и др. Прибор будет работать с водой, с молоком, с серной кислотой, нефтью. Однако в некоторых случаях они не применяются:

  • для контроля уровня кипящих жидкостей. Образующиеся при кипении воздушные пузыри имеют отличные от жидкости параметры отражения акустических волн – результаты измерений искажается;
  • при образовании на поверхности жидкости пены, которая рассеивает и поглощает ультразвуковой сигнал;
  • при контроле жидкостей, требующих постоянного перемешивания. Образующиеся при этом кавитация и вихреобразные воронки искажают отраженный сигнал, и точность измерений снижается.

ультразвуковой датчик уровня

Материал резервуара

Материал резервуара, внутри которого установлен акустический датчик, не влияет на точность измерений прибора. Наиболее сильный отраженный сигнал приходит от границы сред, а вторичное эхо от стен емкости слабое и откалиброванным прибором не улавливается.

Когда в силу технологических факторов, соблюдения мер безопасности и т. д., датчик внутрь емкости установить нельзя, для измерения уровня жидкости используется метод многократного отражения звуковых колебаний от внутренних стенок. Метод подразумевает установку сенсора снаружи. Измерения возможны, если резервуар изготовлен из металла, стекловолокна, стекла, пластика. Эти материалы хорошо отражают ультразвук, поэтому измерение уровня будет точным.

Многие сорта пластмасс, пористая резина и т. п. имеют близкие к жидкостям характеристики отражения ультразвуковых сигналов.

Если емкость изготовлена из этих материалов, применять наружный акустический датчик уровня жидкости нельзя, так как результаты измерений будут некорректными.

Резервуар

Схема обработки сигнала

Получаемый от датчика сигнал обрабатывается несколькими способами:

  1. Используется встроенный электронный блок для обработки данных, получаемых при измерениях. Информация отображается в цифровом или графическом виде на дисплее. Схема не предусматривает включение прибора в телеметрическую цепь управления и предназначена для информирования оператора об уровне жидкости в обследуемом резервуаре. Используется в переносных ультразвуковых уровнемерах для мониторинга жидкостей в герметичных емкостях.
  2. Полученный аналоговый сигнал преобразуется в цифровой прибором или дополнительным оборудованием. Получаемый сигнал передается на централизованный пульт управления. Прибор включается в единую сеть автоматического управления;
  3. Сигнализаторов контрольных точек используется как реле. При достижении жидкостью минимального запрограммированного уровня, датчик формирует сигнал, который в соответствии с заданной программой включает световую и звуковую сигнализацию, насос и т. п. Когда жидкость поднимется до следующей контрольной точки, датчик формирует команду на отключение сигнализации или насоса.

Схема обработки сигнала

Наличие дисплея в комплектации

ЖК- дисплей отображает информацию о проводимых датчиком измерениях в реальном времени. Распространены 2 типа:

  • цифровой. Отображает цифровые значения измерений и простые статические графические изображения;
  • графический. Строит динамические графические изображения.

На дисплее отображается изменение уровня жидкости в виде динамической пиктограммы емкости. На экран выводится другая информация, получаемая сенсором: температура жидкости и газовой среды, давление, плотность и т.д.

С дисплеем удобно перепрограммировать прибор: последовательность шагов отображается на экране, подсвечиваются ошибки, выводится информация об успешном завершении процесса.

Промышленные образцы редко комплектуются дисплеями, так как рассчитаны на включение в единую систему управления.

ЖК- дисплей

Сертификаты на продукцию

Сертификация ультразвукового измерителя уровня – процедура, подтверждающая его соответствие определенным стандартам, подтверждаемая выдаваемыми свидетельствами:

Сертификация ультразвукового измерителя уровня

Реакция датчиков уровня на перепады температуры

Скорость звука в воздухе растет с увеличением температуры. Для устранения ошибок в измерениях промышленные уровнемеры снабжаются термодатчиком. Показатели температуры учитываются микропроцессором сенсора при расчете скорости прохождения ультразвуковых волн.

Формула зависимости скорости звука в воздухе от температуры, полученная опытным путем:

где С – скорость звука при измеренной температуре, С0 – скорость звука при температуре 0С°, t° — температура, измеренная термодатчиком, 0,59 – коэффициент, полученный на основании опытных измерений.

Если в сенсоре не предусмотрена автоматическая корректировка результатов измерений в зависимости от температуры, она проводиться вручную при каждом значительном перепаде температуры. В противном случае прибор будет показывать неправильные значения уровня жидкости.

Реакция датчиков уровня на перепады температуры

Влияние внешних факторов на работу

Кроме температуры газовой среды над жидкостью, на точность работы датчика влияют внешние факторы:

  • давление газовой среды. При его изменении скорость меняется, и датчик показывает неправильные значения;
  • сильная запыленность может нарушить работу измерителя;
  • из-за высокой влажности меняется скорость прохождения звуковых волн. Прибор покажет некорректные данные.

Расчет необходимых поправок в работу датчика – сложная задача. Над поверхностью жидкости создается газовая среда, насыщенная парами жидкости. Его физические свойства отличаются от характеристик атмосферного воздуха, который служил эталоном для калибровки приборов.

Для упрощения задачи часто применяются реперы – отражающие элементы, расположенные на строго фиксированных расстояниях от излучателя. Засекая время прохождения сигнала до репера и обратно, высчитывается скорость звука в газовой среде. Это значение используется для расчета уровня жидкости.

Наличие реперов усложняет и удорожает монтаж и эксплуатацию датчиков уровня.

Датчик

Материал исполнения устройства

Датчики работают в условиях агрессивной среды: повышенная влажность, пары химически активных веществ, повышенное давление. Для безотказной работы корпусы датчиков изготовлены из алюминиевых сплавом или специальных, химически стойких пластмасс. Для пожаро и взрывозащищенности и предотвращения агрессивного воздействия испарений электрические схемы и корпус приборов заливаются компаундом. В результате датчик уровня жидкости может длительное время работать без обслуживания.

Как изготовить своими руками

Для создания простейшего измерителя уровня понадобится ультразвуковой модуль HC-SR04 и микроконтроллер 8051. Устройство позволяет контролировать уровень жидкости в резервуаре глубиной до 2 метров. Для работы устройства нужно изолировать НС-SR04 от попадания влаги.

HC-SR04 устанавливается в верхней части резервуара, излучателем в сторону жидкости. Ультразвуковые колебания, излучаемые модулем, отражаются от поверхности воды. Приемник принимает эхо-сигнал, высчитывает задержку времени и передает сформированный сигнал о результатах измерений микроконтроллеру.

Микроконтроллер считывает сигнал и вычисляет расстояние.

При введении необходимой программы микроконтроллер будет включать насос, когда уровень воды опустится до минимального заданного значения, и выключать его при достижении максимального уровня.

Особенности применения

Использование ультразвуковых измерителей имеет ряд особенностей. Например, для устранения ошибок измерений необходимо следовать алгоритму:

  • проводить и калибровку прибора при изменении состава газовой среды для установления фактической скорости звука;
  • проводить калибровку при каждом существенном изменении температуры, записывая значения скорости;
  • в дальнейшей работе прибора при перепадах температуры калибровку не проводить, а пользоваться ранее записанными показателями скорости.

Процесс настройки сенсора достаточно трудоемок. Возможна ситуация, когда изменения газовой среды в резервуаре не связаны с изменением температуры. В данном случае придется повторно проводить калибровку прибора.

Фото 1

Всевозможные сенсоры позволяют автоматизировать множество процессов в быту.

Некоторые из них можно изготовить самостоятельно.

Сегодня научимся делать датчик движения для включения света своими руками.

Принцип работы устройства

К сведению. Специализированные системы дополняют пожарной сигнализацией. В этом варианте дополнительное оповещение получает дежурный сотрудник МЧС.

Область применения

Самоделки в виде датчиков движения чаще всего конструируются:

  1. В несложных системах сигнализации для гаражей, дач или домов.
  2. Для облегчения и создания дополнительного комфорта – для включения наружного и внутреннего освещения.
  3. Для контроля движения транспорта или людей через зоны невидимости.

Наверное, самостоятельно собранный датчик движения, включающий и выключающий освещение является наиболее распространенным вариантом использования этого устройства.

Такое применение этого электронного устройства позволит избежать дополнительных затрат на электроэнергию, существенно продлит срок службы ламп, создаст дополнительные комфортные условия жильцам.

Виды датчиков

Ремонт датчика движения своими руками

Рассматривать представленные ниже конструкции следует с учетом определенного технического задания. В закрытом отапливаемом помещении электронный модуль способен простоять длительное время без повреждений. На открытом воздухе понадобится защита от неблагоприятных природных воздействий. В некоторых ситуациях нужно предусмотреть эффективные антивандальные мероприятия. При значительных размерах охраняемого периметра существенное значение приобретает дальность.

К сведению. На земельном участке нужно исключить ложные срабатывания от перемещения домашних животных, птиц.

Контактный или магнитный

Без подробных пояснений понятен принцип действия простейшего устройства с механическими контактами. Кнопку (без фиксатора) устанавливают на раме дверного блока. При открывании замыкается подключенная цепь, сигнал поступает на контрольную лампу или специальный блок дистанционного оповещения. Кроме минимальных затрат, подобное устройство привлекает быстротой реализации планов. Для объективности нужно перечислить имеющиеся недостатки:

  • при монтаже повреждается дверная коробка;
  • функциональность охранной системы блокируется прижиманием кнопки (лезвием ножа, банковской карточкой);
  • механический переключатель при частом использовании быстро выйдет из строя.



Контактный датчик и схема с герконом

Вместо простейшего варианта можно применить усовершенствованную схему с герконом. Эта деталь замыкает цепь при удалении магнита. Кроме лучших эстетических параметров, обеспечивается возможность скрытого монтажа. Следует обратить внимание на автономность устройства и отсутствие потребления электроэнергии в режиме ожидания.

ИК-датчик

Рассмотренные варианты обеспечивают контроль дверного блока. Однако они бесполезны на открытом пространстве. Для фиксации перемещений в определенном объеме применяют другие решения.

Интуитивно понятный принцип – регистрация теплового излучения тела человека. Для усиления сигнала используют группу из нескольких линз. Этим же устройством обеспечивают широкую диаграмму направленности. Выбирают датчик, соответствующий определенному диапазону волн. Чувствительность и спектр корректируют фильтрами, дополнительными усилителями.

Такие устройства хорошо выполняют свои функции при отсутствии лишних помех. ИК датчики устанавливают в помещениях, не направляют при монтаже на осветительные и обогревательные приборы. Базовое условие – температура фона должна быть меньше, чем измеряемые параметры.

Лазерный или фотодатчик

Микроволновый

Важно! При выборе такого устройства настройка мощности выполняется с учетом безопасного для человека уровня электромагнитного излучения.



Принцип действия микроволнового датчика движения

Ультразвуковой

К сведению. Некоторые домашние животные реагируют на высокочастотные звуковые колебания. Этот диапазон применяют в специализированных устройствах для отпугивания собак.

Самоделка на Arduino

Для создания работоспособных конструкций удобно применять универсальный контроллер Arduino. Подключение периферийных устройств к этому функциональному блоку не вызывает затруднений.





Самостоятельное изготовление

Самостоятельное изготовление светового чувствительного прибора начинается с подготовки необходимого инструмента и материала. Для его сборки потребуются:

  • электрический паяльник;
  • измерительный прибор – мультиметр;
  • бокорезы и пинцет;
  • транзисторный фотоэлемент;
  • операционный усилитель (ОУ);
  • набор деталей: конденсатор, резисторы и реле РЭС55;
  • готовый блок питания, обеспечивающий подачу напряжения в схему.

Также необходимо запастись старой лазерной указкой, служащей источником светового сигнала и набором проводов.

Порядок сборки



Сборка датчика движения

Берется старый, но работающий блок питания от 4,5 до 12-ти Вольт, от него отрезается питающий разъем. Отвод оформляется в виде двух проводников (плюса и минуса), которые удобно впаивать в схему. Определиться с полярностью электропитания можно с помощью мультиметра.

Все последующие операции выглядят так:

  1. Из подготовленных деталей собирается несложная схема приемника светового луча от лазерной подсветки.
  2. Сама она подключается к блоку питания, для чего придется воспользоваться паяльником.
  3. Собранная часть с приемным элементом помещается в подходящую по размерам коробку; при этом шляпка светочувствительного элемента выводится наружу.

По завершении сборочных операций следует перейти к монтажу самодельного датчика и последующему его подключению.

Монтаж и подключение



Различные схемы подключения

Сделанный своими руками световой датчик удобнее всего встраивается в дверном проеме. В этом случае входящий в помещение человек обязательно пересечет линию, образованную лучом указки и приемником светового излучения (фотоэлементом).

Если система располагается на улице, помещенный в пластиковую коробку приемник при установке слегка затеняется самодельным козырьком. Иногда для этих целей используется кусок пропускающего свет материала, закрывающего приемное отверстие в коробке. Использование таких приемов позволяет снизить влияние других источников света, отраженных от белых поверхностей, например.

Высота установки указки и приемника внутри помещений выбирается равной одному метру. Такое расположение оптимально для большинства членов семьи и вместе с тем прибор не будет срабатывать при перемещении животных. Эта высота к тому же исключает возможность попадания лазера в глаза взрослого человека.

Реле герконовое рэс-55А (5 вольт)

Для включения и срабатывания схемы используется реле типа РЭС 55A, на обмотку которого напряжение подается с исполнительной части. Порядок работы самодельного устройства:

  1. Под действием светового луча в нормальном (не включенном) состоянии через фоторезистор протекает ток, приводящий к его отрыванию.
  2. На подключенном к выходу конденсаторе накапливается заряд, создающий на его обкладках определенный потенциал (система находится в равновесии).
  3. При появлении преграды в виде человека приемник-фоторезистор закрывается, а накопленный на обкладках заряд стекает через подсоединенное параллельно сопротивление.
  4. Это приводит к снижению потенциала в контрольной точке ОУ практически до нуля, в результате чего низковольтное напряжение поступает на обмотку реле.

Контакты реле замыкают цепь питания светильника, на который мгновенно подается сетевое напряжение 220 Вольт. После прохода человека система останется в неизменном состоянии до тех пор, пока выключатель остается с включенной кнопкой.



Схемы для самодельных датчиков движения

Схема стабилизатора напряжения 220в своими руками

Представленные варианты нужно рассматривать с учетом личного опыта. Травление печатных плат и другие сложные технологии следует освоить заранее. Слишком высокая температура и другие ошибки при монтаже способны повредить микросхемы и радиодетали.

Емкостной

В этой схеме представлен генератор (100 Гц), собранный на полевом транзисторе VT1. Соответствующим образом (на резонансную частоту) настраивают контур из катушки индукции (L2) и конденсатора (C2). Детектор – диод VD1.



Емкостной датчик

Резистором R3 в этой схеме устанавливают опорное напряжение. Если приблизиться к датчику (А), изменятся емкость и начальная настройка генератора. Уменьшение частоты нарушит работу резонансного контура, уменьшит амплитуду сигнала на входе транзистора. Для подключения периферийных устройств можно использовать переключатель нужной мощности (тиристор VS1).

Тепловой датчик на Arduino

Для сборки этой схемы нужно подготовить следующие функциональные компоненты:

  • датчик ИК диапазона;
  • серийный контроллер Arduino;
  • блок питания 5±1V.

Кольцевой выключатель

К самым простым датчикам движения можно отнести самовозвратные точки (кольцевые выключатели). Такое оборудование применяется при включении света в холодильнике. Для работы схемы используется:

  • геркон или герметизированный контакт, представляет собой колбу, внутри которой запаяны 2 ферромагнитных контакта;
  • магнит.

Во время приближения магнита к геркону контакты замыкаются, а при удалении – размыкаются. При разомкнутых контактах напряжение подается на лампу в холодильнике, и свет загорается. При замкнутых контактах лампочка обесточивается.

Такой самодельный датчик движения можно просто подключить к существующей охранной сигнализации или к звуковому извещателю. За счет этого при размыкании контактов, то есть открытии двери, система подаст звуковой сигнал. Схема применяется на дверях охраняемых объектов, но не подходит для открытых территорий.

Датчики движения с герконами

Для осуществления контроля на больших пространствах используются более сложные устройства, которые могут реагировать на различные изменения в окружающей среде. К подобным элементам относят:

  • фото,- и звуковые реле;
  • датчики поля;
  • пироприемники.

Как сделать лазерный датчик движения



Лазерная сигнализация с дистанционным оповещением

Условия для установки

Прежде чем создавать собственный датчик движения, необходимо определиться с рядом важных условий. Последние влияют на параметры будущего устройства. К числу таких условий относится:

  1. Выбор места установки. От этого параметра зависит конструкция датчика. В частности, если он используется на улице, то необходимо сделать для него влагостойкий корпус. Место установки также определяет уровень мощности, которым должен обладать сенсор.
  2. Наличие преград. Люстры, деревья и другие объекты мешают прохождению сигнала.

Подключение прибора и настройка чувствительности

Для примера можно использовать алгоритм действий при выборе типового пироэлектрического модуля HC-SR501. Первым переменным резистором настраивают чувствительность. Кроме дистанции (до 7 м), этим параметром можно ограничить размер детектируемых объектов. Вторым регулятором устанавливают необходимое время для задержки управляющего выходного импульса. Положением перемычки устанавливают режим:

  • H (по умолчанию) – отсчет времени начинается от момента обнаружения движения;
  • L – определение движения обнуляет таймер.



Элементы настройки

Платформы для конструирования

Датчик движения для включения света

Для создания более сложных и функциональных устройств можно использовать готовые платы для радиоконструирования, к примеру, Arduino. Так называется аппаратная вычислительная платформа с собственным процессором и памятью. Arduino выполняет сразу несколько важных задач:

  • считывает и обрабатывает сигнал с инфракрасного датчика;
  • реагирует на движение;
  • проводит оповещение.

Для создания датчика потребуются сама платформа, PIR-датчик, макетная плата и провода. Можно подключать датчик сразу напрямую к Arduino, но так сложнее обеспечить плотное прилегание. Поэтому удобнее воспользоваться бредбоардом.

Все инфракрасные датчики имеют одинаковое строение. Главным параметром, по которому можно отличить один сенсор от другого, является чувствительность, а, значит, и используемая оптика. Оптимальным PIR датчиком сегодня является устройство с линзами Френеля. Эти линзы могут концентрировать излучение, повышая порог чувствительности.

Датчик движения на Arduino

Главной задачей платформы является отправка данных по USB Serial при обнаружении движения через определенные промежутки времени. Отладка оборудования осуществляется за счет программного обеспечения Python и PySerial.

Такой датчик движения для включения света можно запрограммировать на создание определенного уровня освещенности. Это оборудование можно использовать для обустройства системы сигнализации в гараже, тогда детектор будет подключаться к звуковому модулю.


Работа многих систем охранной сигнализации основана на очень простом принципе: в охраняемом помещении в неурочное время не должно быть никакого движения. Чтобы обнаружить его, помещение "заполняют" излучением — чаще всего радио- или акустическим. Многократно отразившись от стен и находящихся в помещении предметов, лучи достигают приемника. Любое изменение обстановки вызовет модуляцию принятого сигнала, что и зафиксирует датчик.
Акустические (ультразвуковые) датчики такого типа имеют довольно существенное преимущество над использующими радиоволны — ничего не излучая в "эфир", они не требуют оформления разрешений на установку и эксплуатацию. Читателям предлагается описание одного из подобных датчиков, сравнительно простого и достаточно чувствительного для охраны помещения площадью до 20 м 2 .

В отличие от акустических датчиков, описания которых были ранее опубликованы в журнале "Радио" [1 — 3], предлагаемый действует по несколько иному принципу, защищенному патентом [4].

Основные технические характеристики

Частота звука, кГц . 10
Излучаемая акустическая
мощность, мВт, не более . 5
Напряжение питания (постоянное), В . 10. 16
Потребляемая мощность
в дежурном режиме, мВт. 120
Габариты, мм . 150x50x30

Выходная цепь — "сухие" контакты реле, кроме того, о срабатывании сигнализирует зажигание светодиода.

Схема прибора


Для увеличения кликните по изображению (откроется в новом окне)

К входу усилителя на ОУ DA1.1 и DA1.2 подключен пьезоэлектрический микрофон ВМ1, к выходу — пьезоэлектрический звукоизлучатель BF1. В результате усилитель охвачен акустической обратной связью через контролируемый газовый объем, за счет которой в системе возникают автоколебания. Их частота зависит от АЧХ и ФЧХ элементов (в первую очередь микрофона и излучателя) и от акустических свойств охраняемого помещения. Амплитуду колебаний поддерживает постоянной система АРУ из детектора на диодах VD2, VD3 и усилителя на одном из элементов микросхемы DA2 К176ЛП1. Регулирующими элементами АРУ служат имеющиеся в той же микросхеме отдельные полевые транзисторы, участки сток-исток которых включены в цепи местной обратной связи каскадов на ОУ DA1.1 и DA1.2.

Если в чувствительной зоне датчика движется какой-либо объект (нарушитель), изменяется затухание и задержка отраженных от него акустических волн, что приводит к изменению амплитуды генерируемых датчиком колебаний. Цепями R7C10 и R6C1C6 заданы частотные характеристики контура АРУ, необходимые для устойчивой работы датчика в различных условиях при эффективном слежении за изменениями амплитуды сигнала.

Переменная составляющая напряжения на выходе усилителя АРУ, вызванная движением, поступает на вход компаратора DA1.3. Порог срабатывания устанавливают подстроечным резистором R8. К выходу компаратора через буферный усилитель из двух соединенных параллельно элементов микросхемы DD1 подключен светодиод HL1, вспышками свидетельствующий о движении в охраняемом помещении.

Кроме того, сигнал с выходов элементов DD1.1 и DD1.2 запускает одновибратор на элементах DD1.3 и DD1.4, импульсы которого открывают ключ на транзисторе VT2, заставляя сработать реле К1. Одновибратор генерирует импульсы лишь при условии, что на входе 13 элемента DD1.4 — высокий логический уровень. Благодаря цепи R14C16 этот уровень будет достигнут лишь через некоторое время после включения питания, давая датчику возможность войти в установившийся режим, не подавая сигналов тревоги.

Если тревожные импульсы повторяются слишком часто, конденсатор С16 разряжается через резистор R16 и диод VD5, что блокирует запуск одновибрато-ра и предотвращает лишние срабатывания реле К1. Таким образом достигается значительная экономия ресурса реле и потребляемой мощности.

Стабилизатор напряжения питания построен по несколько необычной схеме с регулирующим транзистором VT1 в минусовой цепи, что позволило уменьшить число деталей в приборе. Диод VD1 защищает от неправильной полярности подключения к источнику питания.

Внешний вид датчика показан на рис. 2.


Он собран на печатной плате, помещенной в корпус из изоляционного материала, например, полистирола. На верхней крышке корпуса установлены микрофон ВМ1 и излучатель BF1, акустически изолированные от корпуса и друг от друга с помощью поролоновых шайб толщиной 3 мм. Чем больше расстояние между излучателем и микрофоном, тем выше чувствительность датчика. В авторской конструкции оно составило 100 мм. В той же крышке предусмотрено отверстие для светодиода HL1.

В датчике установлены оксидные конденсаторы К50-35, керамические К10-17, резисторы МЛТ-0,125, реле РЭС55А (паспорт РС4.569.600-01). Транзисторы КТ361Б можно заменить на КТ361Г, КТ361Е и другие маломощные кремниевые структуры р-п-р.

При регулировке чувствительности датчика (подстроечным резистором R8) иногда приходится для достижения нужного результата поменять местами выводы 12 и 13 элемента DA1.3.

ЛИТЕРАТУРА
1. Вилл В. Ультразвуковой автосторож. — Радио, 1996, № 1, с. 52—54.
2. Волков А. УЗ датчик охранной сигнализации. — Радио, 1996, № 5, с. 54—56.
3. Койнов А. Ультразвуковое охранное устройство. — Радио, 1998, № 7, с. 42.
4. Гуськов В., Гуськова М. Способ для определения изменения состояния объема, заполненного упругой средой, и устройства (варианты) для его осуществления. — Патент РФ № 2104494 МКИ 6G 01D1/18, заявлено 26 января 1995 г., опубликовано 10 февраля 1998 г.

Читайте также: