Турбина своими руками

Добавил пользователь Алексей Ф.
Обновлено: 05.10.2024

История гидроэнергетики берет начало от простого водяного колеса, которое нашим предкам пришло в голову установить на порогах реки. Сначала его использовали для мельницы, тем самым облегчив работу жерновов. Позднее люди научились использовать силу воды для самых разных нужд – изготовления бумаги, распиловки бревен, в кузнечном деле и даже для пивоварения. Венцом творения был электрогенератор, который удалось подключить к турбине. Так появились ГЭС, принцип которых используют сегодня и для домашних изобретений, в том числе и в сегодняшней самоделке.
Ее автору удалось собрать ее буквально из старой стиралки, слегка модернизировав и грамотно использовав ресурсы ближайшей речки на его загородном участке. Он утверждает, что живет уже несколько лет без подключения к электрическим сетям, и не платит за электричество ни копейки. Мощности от гидрогенератора хватает чтобы снабдить электричеством не только все электроприборы в доме, но и потянуть работу мастерской с электроинструментами. Как такое возможно? Давайте посмотрим вместе.

Принцип работы гидроэлектрогенератора


В данной домашней разработке используется родной корпус стиральной машины. Двигатель перемонтируется в режим генератора, и помещается обратно на свое посадочное место. Колесо Пелтона применяется как движущая турбина, аккумулирующая потоки воды, и передающая кинетическую энергию генератору. Переменный 3-х фазный ток, получаемый на выходе генератора, пропускается через выпрямитель из трех диодных мостов. Постоянный ток подается на зарядку аккумуляторов через контроллер, а от них на инвертор 12V/220V, снова получая переменную частотность.

Материалы, инструменты

  • Старая стиральная машина с инверторным двигателем;
  • Колесо Пелтона;
  • Небольшой отрезок тента;
  • Фанера;
  • Оргстекло или плексиглас;
  • Силикон;
  • Гидроизоляция для пластика - краска или мастика;
  • Саморезы, гайки, шайбы, болты и наждачная бумага.
  • Дрель с корончатой фрезой, сверлами и насадкой под саморезы;
  • Сабельная пила или электролобзик;
  • Ручной инструмент: гаечные ключи, плоскогубцы, малярный нож и пистолет для силикона.

Собираем гидроэлектрогенератор


Подготовительные демонтажные работы
Для начала необходимо разобрать стиральную машинку, оставив лишь нужные нам детали.


Машинка вертикального типа, поэтому снимаем торцевую крышку с лицевой стороны и демонтируем электронную панель контроля режимов стирки.


Как мы можем убедиться, перемонтированный инверторный двигатель уже выдает электричество при вращении вала.

Изготовление гидротурбины


Герметизировать наш вал поможет резиновая прокладка, вырезанная из старой камеры. Делаем в ней отверстие посередине, и насаживаем плотно на стержне вала.


Небольшое колесо Пелтона будет осуществлять забор воды. Этому изобретению почти полторы сотни лет, а оно все не теряет актуальности и применяется даже на некоторых ГЭС. Его необходимо закрепить на валу так, чтобы оно могло свободно двигаться и не касалось корпуса.


Лобзиком или сабельной пилой делаем сливное отверстие в форме прямоугольника, и закрываем его на саморезы отрезком водонепронецаемого тента. Должно получиться вот так (фото).


Далее нужно изготовить заглушку для бака нашей гидротурбины. Делаем ее из куска влагостойкой фанеры, выпиливая лобзиком окружность, равную внутреннему диаметру барабана. В самой заглушке делаем смотровое отверстие для контроля работы агрегата. Которое затем будет закрыто оргстеклом.


Обмазываем торец фанеры силиконом, и насаживаем ее внутрь. Закрепляем ее с помощью саморезов через корпус турбины.


Засверливаем четыре отверстия по сторонам прямоугольника окошка, и с внутренней стороны помещаем в них прижимные болты. На них и будем закреплять оргстекло, чтобы оно было съемным на случай непредвиденных поломок.


Для защиты электрической части агрегата, автор установил дополнительный кожух из пластика на край турбины с помощью саморезов. Сам пластиковый корпус прокрасил краской чтобы защитить пластик от растрескивания.


Для получения постоянного тока для зарядки аккумуляторов закрепляем планку из трех диодных мостов, по каждому на фазу.


Накрываем двигатель крышкой ротора, и затыкаем лишние сливные отверстия для шлангов, оставшиеся в корпусе.

Установка и подключение


Наш гидрогенератор практически готов. Остается закрепить его на рамочном каркасе из сваренных уголков, и приспособить с помощью гидрантов подачу воды. Выходную мощность генератора можно регулировать силой напора, или диаметром отверстия сопла крана, подающего воду непосредственно в саму турбину. Направленный слив также обеспечит возврат воды без вреда для реки.


Проверяем работу генератора, и замеряем ток и выходное напряжение тестером. Автор заверяет, что при напоре воды на его участке агрегат выдавал 21А при 29V, что равняется 600Вт. При увеличении сопла крана, мощность достигла 900Вт.


Электрическая схема, предложенная автором данной самоделки, не ограничивается одним лишь генератором. Для планомерного расхода электричества в сети необходимо стабильное напряжение и ток, которые способны выдавать накопительные емкости – аккумуляторы. Инвертируя небольшое напряжение в достаточное для бытового можно организовать подачу и распределение его по домовой разводке к электроприборам. Автор также советует применить электронный контроллер, который показывает степень заряда аккумулятора, потребляемый и выдаваемый ток, температурный режим и т.д.


Природные ресурсы, которые в избытке вокруг нас, действительно можно использовать во благо. Нужно всего лишь немного знаний электротехники и старых запчастей, валяющихся без дела на заднем дворе. А в остальном помогут смекалка и находчивость настоящего любителя изобретений, ведь именно за такими людьми движение и развитие технического прогресса.

Смотрите видео


турбина

1. Откуда берется мощность?
Турбину крутят выхлопные газы, быстро выталкиваемые из двигателя. Компрессор турбины нагнетает воздух в мотор. Больше воздуха — больше топлива можно сжечь, больше мощность.

2. Ой расход наверное конский?
Конечно, если выше максимальная мощность, то и расход воздуха/бензина выше. НО. Не всегда же вы будете ездить на максимальных режимах. Практика показывает, что грамотно построенный и настроенный эффективный турбомотор потребляет не больше обычного, а иногда (например на трассе) и меньше, причем что едет заметно лучше. К примеру уже настроил не один 16кл переднеприводник "обычный" (сток мотор, голова, только поршни нива с лужей, СЖ 7.8), расход по трассе 6-7 л. 95-го, по городу 11-12 л. Запуск в любой мороз. И пробег не 5 тыс до ремонта, один мотор уже отбегал 70 тыс, развозит СУШИ :)

3. Какие проблемы чаще всего возникают после постройки турбомотора?
а. перегревы, мотор сильно греется, нужен хороший обдув, большой радиатор и надежные вентиляторы
б. давит масло, тосол, откручиваются болты, нагрузка на двигатель то возросла, все что может проканать на обычном двигателе, на турбо моторе вылазит, причем постоянная череда этих косяков иногда доводит строителей до отказа или продажи проекта, были случаи, мотор нужно собирать очень надежным
в. слабое сцепление, крутящий значительно, зачастую в 2 раза больше, поэтому родная сцепа быстро сдается, особенно при наваливании на 3 и 4 передачах
г. кпп резко укорачивается, первые 2 передачи не информативны становятся, сложно контроллировать букс
д. ломает трансмиссию (шестрени) и привода
е. дует (поднимает) прокладку ГБЦ, нужно усиливать болты ГБЦ и применять надежные прокладки (например мет. приоропрокладку для 16кл ваза).

4. Пацаны сказали надо дуть 1.5 бара, типа меньше смысла нет?
На самом деле мотор с давлением выше 1.0 уже очень серьезное произведение, если он не сыпется каждый день. 0.5-0.6 давление вполне щедящее, можно без проблем ездить долгое время, а потом задуть под 1 бар и поломки полезут одна за одной. Основные проблемы это прокладка гбц, сцепление, привода, кпп. Так что мощный мотор выше 1 бара потянет за собой усиленное (возможно керамику, зависит от стиля езды) сцепление, хороший дорогой бенз, прочие усиленные моменты в кпп и приводах.
Опять же само по себе давление не показатель. То что в двигатель задули 1.5 бара и он не развалился еще не значит что он мощный. Мощность зависит от наполнения цилиндров и оборотов. Можно поставить маленькую турбину (как на многих сайтах советуют GT17) и иметь пик момента чуть ли не с холостых, зато на середине двигатель уже умрет, выпускные газы упрутся в маленькую горячу турбины и двигатель перестанет дышать. Да пинать будет знатно в спину, но после пинка нужно будет сразу перелючаться.
Я считаю, что нужно турбину подбирать по стилю езды в первую очередь. Не бывает с низов и до верхов. Да и конский момент с низов он не нужен, ездить будет не удобно, постоянные подрывы и переключения.
Лучше пусть принимает с 3000, но чтоб до 5000-6000 ехала. Будет эффективный диапазон с запасом на разгон. И тошнить до 3000 по городу можно.
К тому же не каждая турбина рассчитана на большое давление. Чем выше давление, тем сильнее давление на крыльчатки, быстрее изнашиваются подшипники, упорные кольца, масло давит наружу. Проще говоря турбина быстрее умрет, даже если двигатель не развалится.

5. Хочу поставить турбину на стоковый двигатель, что нужно сделать?
а. определиться с диапазоном работы двигателя
б. понять какое давление надо, выбрать турбину
в. возможно расжать двигатель, для большой мозщность разобрать, продефектовать, собрать надежный и с правильными зазорами, СЖ.
г. определиться с настройками блока управления, лучше это делать на доступных деталях и у опытных людей, т.е. сначала ищем кто будет все настраивать, а не наоборот, самый доступный вариант настраивать все на ЭБУ Январь в онлайне, если это возможно, карбюратор сразу в печь
д. найти откуда взять масло и тосол на турбину, врезать слив в поддон или блок выше уровня масла
е. установить форсунки и насос соответствующих мощности
ж. все установить, завести, обкатать, настроить

6. У меня впрыск, хочу поставить турбину, что-то нужно переделать?
Хорошо если такой вопрос возник. Бывали случаи, что сначала ставят, ломают, потом спрашивают. В чем собственно проблема? А проблема в выходе за рамки расчетной заводом мощности, поэтому многие компоненты мотора на это не рассчитаны. Если с железом более менее понятно, то на электронике остановимся подробнее.
Устаревшие системы типа моновпрыска рассматривать не будем.
Основная проблема при установке жутко не стандартного железа — как этим всем управлять?
У двигателя есть центральный процессор (ЭБУ, мозг, проц и пр.). Который смотрит в датчики, считает режимы, воздух и подает нужное количество топлива и вычисляет нужный момент зажигания.
Атмосферный двигатель изначально настроен на среднюю смесь между бедно и вроде едет. Т.е. в обычных режимах это в районе 14-15 (воздух/топливо), на переходных и экономичных может быть 15-17 или даже 18, что достаточно бедно. В нагрузочных режимах судя по таблицам может быть и даже 12.5, но на самом верху. У хонды например очень богатые смеси в режиме валилова. Для турбо же в режиме буста необходимо укладываться в рамки 10-12.5, т.е. штатный лямбда-зонд для этого не подходит однозначно, он настроен на 14.7. Для настройки понадобится использовать специальный прибор с широкополосной лямбдой.
И тут вырисовывается основная проблема — как настроить программу? Обычно в штатный мозг залеть или сложно или невозможно. Можно использовать полумеры-обманки, отдельные процессоры заменяющие сигналы основному процессору и таким образом заставляющие его выдавать что надо. В этом случае невозможно настроить все таблицы, запуск, прогрев, переходные какие-то режимы, отсечку и прочее. Да и стоят такие системы порядочно. Популярны для тюнинга иномарок, например при буст-апе или замене валов в ГБЦ.
Но мы то строим двигатель можно сказать с нуля. Поэтому лучше сразу продумать как это все будет управляться.
В России популярным, доступным и достаточно изученным методом является установка Января или Корвета. Эти мозги позволяют рулить многими параметрами, причем прошивка настраивается полностью под конкретный двигатель во всех режимах, все настройки открытые. Есть конечно и другие направления, но они не так распространены, банально можно много времени на их изучение убить недостроив проект, а спросить не у кого.
Для подсчета воздуха у процессора есть 2 направления:
а. ДМРВ считает напрямую пролетевший воздух через трубу, по кол-ву воздуха вычисляется сколько нужно топлива. Часто используется, позволяет точно посчитать воздух. Не надежный часто ломается, забивается, врет. При разрыве патрубков мотор работать не будет. Не любит хлопков и большого давления. При настройке придется по отдельным приборам смотреть давление, чтобы выставить смеси/зажигание на бусте. К тому же предела штатного ДМРВ может не хватить.
б. ДАД показывает давление во впускном коллекторе, кол-во воздуха вычисляется эмпирически через наполнение, объем и поправки по оборотам и пр. Очень удобный для турбо и надежный прибор. Стоит не дорого. Но требует переделки проводки и специального спортивного ПО, штатное с ним работать не будет.

Турбомощность затягивает, приравниваю к тяжелым наркотикам, деньги тратятся очень даже. Начать нужно со стабильного заработка.

Совет: настоятельно не рекомендуем проделывать данную процедуру на своем автомобиле, далеко не каждый автомобиль по своим техническим характеристикам ориентирован на большую мощность двигателя, всё это может привести к необратимым последствиям, а в случае ДТП, к фатальным. Кроме того, цена вопроса - более 3 тыс. у.е.


Всем привет, вот хочу поделиться идеей, которая меня когда-то в тёмном доме посетила, почему в тёмном? Потому что приходилось сидеть без света около четырех суток из-за проблем на подстанции.

Суть идеи полагает в том, чтобы собрать рабочую турбину и при этом затратить минимум времени/ресурсов буквально из ничего.



На фото показано из чего состоит, щуп как-то попал в руки случайно, но форсунка вышла из него нормальная.

Из такой конструкции можно было извлечь 200-300 (410 при КЗ) миллиампер и 4.5-5 Вольт в нагрузке (около 1 ватта).



Потом решил заменить корпус, а то бутылка была довольно шумной, шуму стало немного меньше но ватт не прибавилось, потом двигатель умер после купания. Да и к лучшему… потому, что я узнал, что от старых принтеров можно извлечь неплохой генератор только переменного тока — так называемый шаговый двигатель.


Крыльчатку собрал из CD диска и лопаток из пластиковой бутылки сложенных в двое и склеенных супер клеем.



Старая разбилась, собрал такую же крыльчатку:

Крыльчатку из CD-диска посадил на вал шаговика. Использование шаговика дало больше ватт нежели коллекторник, кроме того и долговечнее шаговики потому, что у них нет щёток… единственное — шаговик выдавал переменное напряжение и двумя катушками, что есть хорошо, можно суммировать напряжение или суммировать силу тока которую вырабатывала турбина, можно через трансформатор повышать или понижать, как душе угодно. Из одной катушки я мог взять столько же ватт, сколько и давал прошлый вариант.

Данные таковые: ток при КЗ был 0.4-0.45 А на катушке и по 9-10 вольт то есть я мог добыть 15-20 вольт и ток при этом 0.4 А тоесть 6 ватт(в теории)

Фильтр собирал по такой схеме:


Новая крыльчатка добавила несколько милиньютон/метров но обороты убавились немного.

Воды, данная форсунка из щупа, тянула 200 л/ч. Давление в тестируемом кране 1-1.5 кгс/см2(1-1.5 Атм). Я лично на воду счетчик не имею просто поэкспериментировал и всё.

Потом была ещё одна идея турбины, но тоже не лишенной недостатков:



Гелевая ручка служит передаточным валом. С другой стороны должен быть закреплен вал вашего двигателя.

Сейчас собрал ещё несколько моделей крыльчаток но тестить нет желания/времени.

Электро турбина на авто

ОГЛАВЛЕНИЕ СТАТЬИ

Задумка неплохая! Ведь можно избежать многих минусов механических систем, особенно турбин которые работают от отработанных газов, такие как:

2) Охлаждение турбины

3) Смазка моторным маслом

5) НУ и конечно же ресурс

Если подвести черту, можно понять что механические системы, далеки от идеала. Конечно компрессоры которые работают от приводов, будут надежнее. Однако и у них есть минусы, это тот же привод который использует для работы обычный ремень, который со временем изнашивается.

В общем, подумали разработчики и поняли, что механику можно заменить на электрику! Или нельзя?

Принцип строения

Нужно отметить, что сейчас некоторые немецкие производители имеют в строении своих моторов такие нагнетатели. И ставятся они как вы поняли, в системе забора воздуха. Первыми применили такие нагнетатели компании Mercedes, BMW и AUDI.

Устройтсво

Электро турбину стоит настраивать и на определенные обороты, например на холостых она должна работать медленнее, а на высоких оборотах соответственно быстрее. Получается чуть ли не идеальная система! Но в чем же подвох, где минусы? И знаете, они есть.

Минусы электрического варианта

китайские варианты

Однако ребята тут не все так просто. В нормальном (на холостых) режиме, атмосферный двигатель 1,6 литра потребляет примерно 300 – 400 литров воздуха за час работы. А на больших оборотах скажем в 4000 – 5000 умножаем эту цифру на 4 – 5, то есть 1200 – 1600 литров. Просто представите этот объем! Если вычислить минутное потребление 300/60 = 5 литров в минуту, или 20 при больших оборотах.

А теперь представьте, какой нужен электрический вариант двигателя для нагнетания такого объема! Повторюсь для повышения производительности нужно хотя бы 6 – 7 литров воздуха на холостых, и 25 на высоких и это для 1,6 литрового варианта, для больших объемов нужно больше.

мощный вариант

Если провести аналогию с немецкими производителями, то там применяется как минимум бесколлекторный 0,5 КВт электромотор, который вращается с бешенными оборотами, может достигать до 20 000 и его способности к давлению составляют от 1 до 5 атмосфер.

Для более мощных автомобилей, применяются более мощные двигатели до 0,7 КВт.

Как становится понятно штатный генератор может и не потянуть такое потребление электричества, поэтому его заменяют на более мощный, либо ставят дополнительный.

А как известно высокое потребление энергии просто тормозит генераторы, а значит и увеличивает торможение двигателя, что скажется на его отдаче, понижается КПД.

Однако, проведенные эксперименты выявили рост производительности, примерно на 20 – 30% это существенно. Но из-за сложности и дороговизны устройств, применение на автомобилях пока не имеет массового производства.

Например, механические компрессоры намного дешевле и производительнее. Иногда разница в цене может достигать 5 – 7 раз.

Пару слов о китайских электро турбинах

Электрическая

Сейчас конечно на тех же китайских сайтах начинают появляться другие электро турбины, многие сделаны даже в форме улитки – аля механический компрессор. Но опять же нет ни показателей давления, ни потребления, ни перекачки воздуха. Думайте, прежде чем покупать. Смотрим познавательный ролик.

Можно ли сделать электро вариант своими руками

Гипотетически можно, причем многие такое устанавливают на свой автомобиль. Лично я также задумывался над установкой на свой авто, но цена меня остановила.

Вам нужно решить рад пунктов:

1) Однозначно установка мощного генератора, что на иномарку уже дорого.

2) Мощный и компактный электромотор, желательно бесколлекторный именно он отдает большие обороты при оптимальном потреблении энергии. Лично я видел такие для компактных моделей, однако мощностью от 0,5 Квт стоит также не дешево.

3) Крыльчатка и корпус. Также нужно сделать самому либо купить, для максимального нагнетания воздуха. Также непростая задача.

4) Ну и конечно стабилизатор или инверторы, для питания электромотора.

Задачи не простые, на некоторые иномарки нет мощных генераторов, так что сделать очень сложно!

Но многие умельцы, в гараж устанавливают на свои автомобили, прирост мощности действительно можно достичь до 20 – 30 %.

пример своими руками


Думаю было интересно, искренне ваш АВТОБЛОГГЕР.

(17 голосов, средний: 4,65 из 5)

Читайте также: