Токамак своими руками

Добавил пользователь Владимир З.
Обновлено: 18.09.2024

Эта технология может решить все проблемы жителей Земли. Но она продолжает оставаться скорее фантазией ученых и инженеров, чем спасительным готовым решением.

Введение в термоядерный реактор

Для упрощения понимания физики процесса нужно сказать, что термоядерный реактор работает не так, как традиционная АЭС. Внутри термоядерного реактора (токамака) с помощью электричества разогревается специальный газ, который удерживается в тепловом контуре специальными особо мощными магнитами.

Больше фотографий термоядерного китайского Солнца смотрите в нашей галерее:

Современные термоядерные реакторы воспроизводят процессы, происходящие на Солнце, достигая температур, которые превышают температуру солнечного ядра в 6 раз.

Должен быть маленьким

В 2020 году во Франции, несмотря на мировую пандемию коронавируса, началась окончательная сборка корпусов первого термоядерного реактора ITER. Ключевым элементом реактора должен стать герметичный криостат и вакуумная камера, внутри которых будет поддерживаться процесс термоядерного синтеза. Закончить сборку обещают к 2025 году, а первый пуск намечен на 2026 – 2027 год.

ITER, по мнению многих учёных, — это проект, который обязательно провалится, но закрывать который категорически нельзя. Но тут важно понять, что международные распри даже внутри ЕС и научного сообщества в целом влияют на то, как понимают проблему и устройство термоядерного реактора в мире.

К слову, британцы, считающие ITER бесперспективным, испытывают сразу три реактора разных типов. Первый — Tokamak Energy, основан на классическом понимании принципа получения термоядерной энергии и в некотором смысле копирует решения ITER, только в слегка измененном виде.

Экспериментальный термоядерный реактор ITER. Фото: IOP Publishing / International Atomic Energy Agency / The ITER magnet systems: progress on construction

Второй — совместное решение британского Минэнерго и компании Westinghouse, основанное на быстром реакторе со свинцовым охлаждением.

Профессор физики Войцех Ковалик пояснил, что из-за такой неразберихи у научного сообщества нет точного понимания и единой концепции развития.

Топливное бешенство

Главная проблема состоит в том, что практического применения ни одна из этих топливных сборок, как и сами реакторы, могут не увидеть. Сложность кроется там, где всегда рождается множество споров. Бюрократические тонкости и разногласия учёных привели к тому, что до сих пор ни одной страной мира, ни ведущими агентствами по ядерной энергетике (например, МАГАТЭ) не утверждены рекомендованные к испытаниям термоядерные реакторы.

18 мая 2021 года человечество сделало первый шаг к неисчерпаемому источнику энергии будущего.

Ещё более приятным является тот факт, что к этому приложены усилия российских учёных и специалистов.

Официально запушен модернизированный термоядерный реактор типа ТОКАМАК Т-15МД.

Абляционный импульсный плазменный двигатель (АИПД) большой мощности, 100 и более кВт, сегодня активно разрабатываются в России и США. Однако прогрес во многом зависит от понимания физики плазмы и общего прогресса программы термоядерных исследований. В перспективе такие двигатели способны доставить 1000 тонный космический корабль на Марс за 30-60 дней.

Но самое главное – это открытие нового направления в ядерной энергетике. В ТОКАМАК "Т-15МД" при модернизации были заложены новые возможности по использованию полезной энергии нейтронов, которые высвобождаются в результате термоядерных реакций, что может решить проблему экономической целесообразности использования термоядерной энергетики.

Деле в том, что несмотря на казалось бы бурное развитие в 50-60-х годах 20 века новых видов термоядерных установок и общий прогресс в термоядерных исследованиях, мы до сих про не смогли получить самоподдерживающуюся термоядерную реакцию с чистым выходом энергии, превышающим затраченную на запуск термоядерной реакции.

Ситуацию осложняет физика плазменных процессов, которая ещё далека от нашего понимания. В 1980-х годах ТОКАМАки нового поколения: JET (Европейский союз), JT-60 (Япония), Т-15 (СССР) и TFTR (США) - по всем расчётам учёных должны были достичь критерия Лоусона, что позволило бы начать изучение термоядерной плазмы, собственно самоподдерживающейся реакции и способов управления ею.

Критерий Лоусона позволяет оценить, будет ли термоядерный синтез в заданном реакторе источником энергии. На диаграмме представлены разные поколения ТОКАМАКов и их соотношения к критерию Лоусона.

Критерий Лоусона позволяет оценить, будет ли термоядерный синтез в заданном реакторе источником энергии. На диаграмме представлены разные поколения ТОКАМАКов и их соотношения к критерию Лоусона.

Однако плазма оказалась куда более сложным агрегатным состоянием вещества, и этот факт поставил учёных в очередной технологический тупик.

Строительство "ITER", 2017 год. В настоящее время здание реактора достроено, идёт сборка самого реактора. Завершение строительства намечено на декабрь 2025 года; выход на планируемому мощность - 2035 год. В проекте участвуют 35 стран, сам проект реализуется во Франции.

Строительство "ITER", 2017 год. В настоящее время здание реактора достроено, идёт сборка самого реактора. Завершение строительства намечено на декабрь 2025 года; выход на планируемому мощность - 2035 год. В проекте участвуют 35 стран, сам проект реализуется во Франции.

Однако нужно учитывать тот факт, что учёные не дают гарантии положительного исхода этого самого грандиозного, сложного и дорогого научно-технического проекта в мире.

Итог запуска реактора может быть непредсказуемым. Например, мы сможет достигнуть критерия Лоусона, но безопасно управлять термоядерной плазмой при этом не сможем; либо и вовсе не сможем достигнуть нужных параметров для самодостаточной термоядерной реакции.

А может быть, у нас всё получится и тогда человечество сможет выполнить все поставленные перед "ITER" задачи. Но даже в таком случае есть проблемы. Первичная стенка реактора – самый дорогой элемент конструкции - за 5 лет превращается в решето, полностью утрачивая свою рабочую функцию. Это результат активного нейтронного излучения, которое воздействует на всё окружающее ТОКАМАК пространство.

Даже несмотря на новые специальные сплавы, которые в десятки раз устойчивее к нейтронному захвату, срок службы стенки составляет всего несколько лет.

Полностью обновлять стенки реактора через такие довольно короткие временные промежутки – совершенно невыгодно экономически и даже энергетически. Это делает термоядерную энергетику коммерчески нереализуемой, оставляя её в рамках лишь научных исследований.

И выхода тут два: либо увеличение размеров установки с сохранением мощности на прежнем уровне, что даст более эффективное распределение нейтронного потока по площади; либо реализация термоядерной энергетики с безнейтронным выходом.

Но есть и третий путь. Его основы заложены в ТОКАМАКе "Т-15МД".

Образованную в термоядерном реакторе плазму можно окружить "бланкетом". Бланкет заполнит ураном-238, или торием-232.

За первичной стенкой, которая изнашивается от нейтронного изучения, установлен бланкет, в котором располагается неактивное делящееся вещество (например, Уран-238 или Торий-232). Энергии нейтрона порождённых термоядерной реакцией дейтерия и трития достаточно, чтобы разделить ядро Урана-238 с выходом дополнительной энергии, или трансмутировать ядро атома Тория-232 в топливо для современных АЭС – Уран-233.

Деление изотопов Урана-238 полностью зависит от нейтронов, вылетающих из дейтерий-тритиевой плазмы. При этом не происходит цепной реакции, как в случае деления изотопа Урана-235. Следовательно, нет опасности возникновения ядерных аварий и связанных с ними последствий.

В ториевом цикле образуется уран-233, который прекрасно походит в качестве топлива для АЭС. Ядро унара-238 может захватить нейтрон и трансмутировать в плутоний-239, который тоже подходит в качестве топлива для АЭС. Но при энергиях свыше 10 МЭв, вероятность захвата нейтрона равна 1 к 10 миллионам, во всех остальных случаях ядро урана-238 будет делится производятся тепловую энергию.

Термоядерная реакция Дейтерия и Трития высвобождает 17,6 МэВ энергии. Деление одного ядра атома Урана-238, высвобождает в 10-11 раз больше энергии, чем при термоядерном синтезе одного ядра атома Дейтерия и одного ядра атома Трития.

Деление изотопов Урана-238 полностью зависит от нейтронов, вылетающих из дейтерий-тритиевой плазмы. При этом не происходит цепной реакции, как в случае деления изотопа Урана-235. Следовательно, нет опасности возникновения ядерных аварий и связанных с ними последствий.

Таким образом получается, что износ стенки провоцирует полезную работу, которая заключается либо в дополнительном выходе энергии (по расчётам в 10 раз превышающую энергию единичного акта термоядерной реакции дейтерия и трития), либо в выработке топлива для многочисленных АЭС, которые тоже будут производить тепловую и электрическую мощность.

В этом случае экономические и энергетические обоснования термоядерной энергетики будут положительными, даже если стенки реактора будут изнашиваться за 5 лет. А сами реакторы можно будет делать компактными, мощными и коммерчески выгодными.

Например, реактор "ITER" в гибридном режиме способен произвести в 10 раз больше энергии, чем заложено в его термоядерных параметрах. Сегодня это 500 МВт.

Однако расчёты показывают, что специфика ядерных процессов такова, что чтобы в бланкете начались реакции, реактору "Т-15МД" необязательно достигать максимальной термоядерной мощности и нагревать плазму до 100 миллионов градусов Цельсия. Реакции начинаются уже при 50 миллионах градусов Цельсия, то есть в том диапазоне температур, который сегодня относительно хорошо изучен.

Теорию, разумеется, проверят на практике, и если это подтвердится, то для полезной работы термоядерного реактора сама термоядерная реакция будет не столь обязательна. А вот это уже открывает совсем другие энергетические перспективы для всего человечества.

И пусть это будут даже не термоядерные гибридные реакторы, а ядерно-плазменные. Подобные энергетические технологии дадут ещё больше времени для полного освоения термоядерной энергетики, не отправив человеческую цивилизацию в пучину энергетического кризиса.

Реализовывать проект гибридного термоядерного реактора Россия начала с 2017 года, когда администрация президента одобрила инициативу модернизации ТОКАМАКа "Т-15МД" в гибридный реактор.

Термоядерная энергетика – это конечно святой Грааль, однако пока она для нас недостижима. Причём успех не гарантируют даже сами учёные проекта "ITER", хотя настроены они позитивно. В 1970-х годах тоже считали, что первые термоядерные электростанции появятся в конце 1980-х, ну или при самом пессимистичном прогнозе - в 2000 году. На деле оказалось, что при самом благоприятном исходе проекта "ITER" первая экспериментальная термоядерная станция появится не раньше 2045 года, а в широкую коммерческую эксплуатацию термоядерная энергетика войдёт в 2060-2080 годах.

Схема "ITER" — проекта международного экспериментального термоядерного реактора. На сегодня это самый сложный научный проект в истории человечества.

Схема "ITER" — проекта международного экспериментального термоядерного реактора. На сегодня это самый сложный научный проект в истории человечества.

Поэтому гибридные реакторы, как промежуточный этап в освоении термоядерной энергетики, имеют очень весомую энергетическую и экономическую важность. И Россия является лидером в этом направлении.

Энергетика – это ахиллесова пята нашей цивилизации. Даже замедление роста потребляемой энергии на душу населения способно вызвать кризисы. Что уж говорить о том, когда идёт спад в потреблении энергии, который сразу уменьшает количество благ, доступных человеку. Рецессия 2020 года и энергетический кризис в Японии и США начала 2021 года – яркое тому доказательство.

Гибридные реакторы – это своеобразная гарантия устойчивого энергетического развития человечества, некая альтернатива до достижения успехов в сфере безопасной и выгодной термоядерной энергетики.

Гибридный реактор типоразмера ТОКАМАКа "Т-15МД" одинаково хорошо подходит как для выработки электроэнергии, так и для производства водорода и кислорода методом высокотемпературного электролиза, либо только водорода методом паровой конверсии метана.

Учитывая то, что водород - это энергоноситель будущего, его получение в гибридном реакторе выглядит уже само по себе соблазнительно. Первые исследования в этом направлении уже опубликованы .

Работы по гибридным реакторам интересны нашему государству и имеют большую поддержку с перспективой внедрения новой энергетической технологии. Неудивительно, что в церемонии запуска реактора "Т-15МД" принял участие премьер-министр России Мишустин М.В.

Работы по гибридным реакторам интересны нашему государству и имеют большую поддержку с перспективой внедрения новой энергетической технологии. Неудивительно, что в церемонии запуска реактора "Т-15МД" принял участие премьер-министр России Мишустин М.В.

П.С. Сегодня растёт число скептиков, которые сомневаются в достижении термоядерного синтеза в перспективе на ближайшие 100 лет, а некоторые и вовсе не верят в возможность этого процесса в земных условиях. Винить их за это нельзя, ведь для нас тайна термоядерной энергетики ещё действительно не разгадана, а перспективы не ясны…

Если Вам нравится контент и тематика канала, вы всегда можете отблагодарить меня, нажав кнопку "палец вверх" (нравится) и оставив комментарий. Так вы помогаете продвижению канала. Спасибо, друзья!

Что такое токамак?

Под действием огромных температур и гравитации в глубинах нашего Солнца и других звезд происходит термоядерный синтез. Ядра водорода сталкиваются, образуют более тяжелые атомы гелия, а заодно высвобождают нейтроны и огромное количество энергии.

Современная наука пришла к выводу, что при наименьшей исходной температуре наибольшее количество энергии производит реакция между изотопами водорода — дейтерием и тритием. Но для этого важны три условия: высокая температура (порядка 150 млн градусов по Цельсию), высокая плотность плазмы и высокое время ее удержания.


Дело в том, что создать такую колоссальную плотность, как у Солнца, нам не удастся. Остается только нагревать газ до состояния плазмы посредством сверхвысоких температур. Но ни один материал не способен вынести соприкосновения со столь горячей плазмой. Для этого академик Андрей Сахаров (с подачи Олега Лаврентьева) в 1950-е годы предложил использовать тороидальные (в виде пустотелого бублика) камеры с магнитным полем, которое удерживало бы плазму. Позже и термин придумали — токамак.

Современные электростанции, сжигая ископаемое топливо, конвертируют механическую мощность (кручения турбин, например) в электричество. Токамаки будут использовать энергию синтеза, абсорбируемую в виде тепла стенками устройства, для нагрева и производства пара, который и будет крутить турбины.


Небольшие экспериментальные токамаки строились по всему миру. И они успешно доказали, что человек может создать высокотемпературную плазму и удерживать ее некоторое время в стабильном состоянии. Но до промышленных образцов еще далеко.


Преимущества и недостатки термоядерных реакторов

Типичные ядерные реакторы работают на десятках тонн радиоактивного топлива (которые со временем превращаются в десятки тонн радиоактивных отходов), тогда как термоядерному реактору необходимы лишь сотни грамм трития и дейтерия. Первый можно вырабатывать на самом реакторе: высвобождающиеся во время синтеза нейтроны будут воздействовать на стенки реактора с примесями лития, из которого и появляется тритий. Запасов лития хватит на тысячи лет. В дейтерии тоже недостатка не будет — его в мире производят десятками тысяч тонн в год.

Термоядерный реактор не производит выбросов парниковых газов, что характерно для ископаемого топлива. А побочный продукт в виде гелия-4 — это безвредный инертный газ.

К тому же термоядерные реакторы безопасны. При любой катастрофе термоядерная реакция попросту прекратится без каких-либо серьезных последствий для окружающей среды или персонала, так как нечему будет поддерживать реакцию синтеза: уж слишком тепличные условия ей необходимы.

Однако есть у термоядерных реакторов и недостатки. Прежде всего это банальная сложность запуска самоподдерживающейся реакции. Ей нужен глубокий вакуум. Сложные системы магнитного удержания требуют огромных сверхпроводящих магнитных катушек.


И не стоит забывать о радиации. Несмотря на некоторые стереотипы о безвредности термоядерных реакторов, бомбардировку их окружения нейтронами, образующимися во время синтеза, не отменить. Эта бомбардировка приводит к радиации. А потому обслуживание реактора необходимо проводить удаленно. Забегая вперед, скажем, что после запуска непосредственным обслуживанием токамака ITER будут заниматься роботы.

К тому же радиоактивный тритий может быть опасен при попадании в организм. Правда, достаточно будет позаботиться о его правильном хранении и создать барьеры безопасности на всех возможных путях его распространения в случае аварии. К тому же период полураспада трития — 12 лет.

Когда необходимый минимальный фундамент теории заложен, можно перейти и к герою статьи.

Самый амбициозный проект современности

В 1985 году в Женеве состоялась первая за долгие годы личная встреча глав СССР и США. До этого холодная война достигла своего пика: сверхдержавы бойкотировали Олимпиады, наращивали ядерный потенциал и на какие-либо переговоры идти не собирались. Этот саммит двух стран на нейтральной территории примечателен и другим важным обстоятельством. Во время него генсек ЦК КПСС Михаил Горбачев предложил реализовать совместный международный проект по развитию термоядерной энергетики в мирных целях.


Спустя год между американскими, советскими, европейскими и японскими учеными было достигнуто соглашение по проекту, началась проработка концептуального дизайна крупного термоядерного комплекса ITER. Проработка инженерных деталей затянулась, США то выходили, то возвращались в проект, к нему со временем присоединились Китай, Южная Корея и Индия. Участники разделяли обязанности по финансированию и непосредственным работам, а в 2010 году наконец стартовала подготовка котлована под фундамент будущего комплекса. Его решили строить на юге Франции возле города Экс-ан-Прованс.

Так что же такое ITER? Это огромный научный эксперимент и амбициозный энергетический проект по строительству самого большого токамака в мире. Сооружение должно доказать возможность коммерческого использования термоядерного реактора, а также решить возникающие физические и технологические проблемы на этом пути.

Из чего состоит реактор ITER?

Токамак — это тороидальная вакуумная камера с магнитными катушками и криостатом массой в 23 тыс. тонн. Как уже понятно из определения, у нас есть камера. Глубокая вакуумная камера. В случае с ITER это будет 850 кубометров свободного объема камеры, в котором на старте будет всего 0,1 грамма смеси дейтерия и трития.


1. Вакуумная камера, где и обитает плазма. 2. Инжектор нейтрального луча и радиочастотный нагрев плазмы до 150 млн градусов. 3. Сверхпроводящие магниты, которые обуздают плазму. 4. Бланкеты, защищающие камеру и магниты от бомбардировки нейтронами и нагрева. 5. Дивертор, который отводит тепло и продукты термоядерной реакции. 6. Инструменты диагностики для изучения физики плазмы. Включают манометры и нейтронные камеры. 7. Криостат — огромный термос с глубоким вакуумом, который защищает от нагрева магниты и вакуумную камеру


На внутренних стенках камеры расположены специальные модули, которые называют бланкетами. Внутри них циркулирует вода. Вырывающиеся из плазмы свободные нейтроны попадают в эти бланкеты и тормозятся водой. Из-за чего она нагревается. Сами бланкеты защищают всю остальную махину от теплового, рентгеновского и уже упомянутого нейтронного излучения плазмы.

Такая система необходима для того, чтобы продлить срок работы реактора. Каждый бланкет весит порядка 4,5 тонны, их будет менять роботизированная рука примерно раз в 5—10 лет, так как этот первый ряд обороны будет подвержен испарению и нейтронному излучению.

Но это далеко не все. К камере присоединяется внутрикамерное оборудование, термопары, акселерометры, уже упомянутые 440 блоков бланкетной системы, системы охлаждения, экранирующий блок, дивертор, магнитная система из 48 элементов, высокочастотные нагреватели плазмы, инжектор нейтральных атомов и т. д. И все это находится внутри огромного криостата высотой 30 метров, имеющего такой же диаметр и объем 16 тыс. кубометров. Криостат гарантирует глубокий вакуум и ультрахолодную температуру для камеры токамака и сверхпроводящих магнитов, которые охлаждаются жидким гелием до температуры –269 градусов по Цельсию.




Криостат уже собирают. Тут, например, вы можете видеть окошко, через которое в реактор будут забрасывать частицы для нагрева плазмы

Производство всего этого оборудования разделено между странами-участницами. Например, над частью бланкетов работают в России, над корпусом криостата — в Индии, над сегментами вакуумной камеры — в Европе и Корее.

Но это отнюдь не быстрый процесс. К тому же права на ошибку у конструкторов нет. Команда ITER сперва моделирует нагрузки и требования к элементам конструкции, их испытывают на стендах (например, под воздействием плазменных пушек, как дивертор), улучшают и дорабатывают, собирают прототипы и опять тестируют перед тем, как выдать финальный элемент.


Первый корпус тороидальной катушки. Первый из 18 гигантских магнитов. Одну половину сделали в Японии, другую — в Корее


18 гигантских магнитов D-образной формы, расставленные по кругу так, чтобы образовать непроницаемую магнитную стену. Внутри каждого из них заключены 134 витка сверхпроводящего кабеля


Но одно дело собрать. И совсем другое — все это обслуживать. Из-за высокого уровня радиации доступ к реактору заказан. Для его обслуживания разработано целое семейство роботизированных систем. Часть будет менять бланкеты и кассеты дивертора (весом под 10 тонн), часть — управляться удаленно для устранения аварий, часть — базироваться в карманах вакуумной камеры с HD-камерами и лазерными сканерами для быстрой инспекции. И все это необходимо делать в вакууме, в узком пространстве, с высокой точностью и в четком взаимодействии со всеми системами. Задачка посложнее ремонта МКС.

Причем это только часть оборудования самого реактора. Добавьте сюда здание криокомбината, где будут вырабатывать жидкий азот и гелий, здание выпрямителей магнитной системы с трансформаторами, трубопроводы системы охлаждения (диаметром по 2 метра), систему сброса тепла с 10 вентиляторными градирнями и многое-многое другое. На все это и идут миллиарды.



Зачем нужен ITER и кто за него платит?

Токамак ITER станет первым термоядерным реактором, который будет вырабатывать больше энергии, чем необходимо для нагрева самой плазмы. К тому же он сможет поддерживать ее в стабильном состоянии намного дольше ныне существующих установок. Ученые утверждают, что именно для этого и нужен столь масштабный проект.

С помощью такого реактора специалисты собираются преодолеть разрыв между нынешними небольшими экспериментальными установками и термоядерными электростанциями будущего. Например, рекорд по термоядерной мощности был установлен в 1997 году на токамаке в Британии — 16 МВт при затраченных 24 МВт, тогда как ITER конструировали с прицелом на 500 МВт термоядерной мощности от 50 МВт вводимой тепловой энергии.

На токамаке будут испытаны технологии нагрева, контроля, диагностики, криогеники и дистанционного обслуживания, то есть все методики, необходимые для промышленного образца термоядерного реактора.

Объемов мирового производства трития будет недостаточно для электростанций будущего. А потому на ITER отработают также технологию размножающегося бланкета, содержащего литий. Из него под действием термоядерных нейтронов и будут синтезировать тритий.

Однако не стоит забывать, что это пускай и дорогой, но эксперимент. Токамак не будет оборудован турбинами или другими системами конвертации тепла в электричество. То есть коммерческого выхлопа в виде непосредственной генерации энергии не будет. Почему? Потому что это только усложнило бы проект с инженерной точки зрения и сделало бы его еще более дорогим.


Пока ITER не ввели в эксплуатацию. Однако уже существует проект электростанции DEMO на термоядерном синтезе, задача которой как раз и продемонстрировать привлекательность коммерческого использования технологии. Этот комплекс должен будет непрерывно (а не импульсно, как ITER) генерировать 2 ГВт энергии.

Сроки реализации нового глобального проекта зависят от успехов ITER, но по плану 2012 года первый пуск DEMO произойдет не раньше 2044 года.

Быстрая связь с редакцией: читайте паблик-чат Onliner и пишите нам в Viber!

Как показывает энергокризис, охвативший этой осенью почти весь мир, человечество остро нуждается в эффективных, стабильных и безопасных источниках энергии. На горизонте уже виднеется возможное решение: ториевые или термоядерные реакторы. Ключевой прорыв в этих областях ожидается со дня на день. Но станут ли торий и термояд заменой углеводородам, которая так необходима миру?


По мере своего развития, человечество все чаще задумывалось о том, как получить дешевый и бесконечный источник энергии. Уголь, нефть, газ — все это были вехи на пути освоения наиболее энергоемких и дешевых ресурсов. Но даже АЭС по мощности были далеки до термоядерных процессов, которые идут в недрах звезд. В условиях глобального экологического кризиса к этим требованиям добавилось еще одно — энергия должна быть чистой: выбросы парниковых газов при её генерации должны быть сведены к минимуму, а еще лучше к нулю.

Ничего подобного системы традиционной генерации предложить не могут. Атомные электростанции оставляют после себя слишком большой мусорный след в виде отработанного топлива, которое требует особого подхода, мощностей для переработки и захоронения. Остаются только возобновляемые источники, которые массово вводятся в европейский энергобаланс. Но и у них есть недостатки: из-за низкой удельной мощности они требуют больших площадей, а генерация на их основе сильно зависит от погоды.

Теперь у нас есть альтернатива — атомная энергетика на основе ториевых реакторов и термоядерная энергетика. Считается, что оба варианта лишены недостатков традиционной энергетики. Действительно ли это так? Давайте разберемся.

Будущее ядерной энергетики?

Преимущества ториевого реактора потенциально должны понравиться любому человеку, озабоченному проблемами радиационной безопасности. Расплавы тория не требуют жидкого охлаждения — только воздушное. Они быстро затвердевают на воздухе, поэтому радиоактивные утечки исключены. Так что ториевые АЭС можно строить в пустынных местностях, подальше от крупных городов.

Но на этом их преимущества, как свидетельствуют многочисленные газетные заметки, не исчерпываются. Аварии по типу Чернобыльской с такими реакторами фактически не возможны. Радиоактивные отходы ториевого реакторы в массе своей имеют период полураспада в районе 500 лет, а нередко и 100 лет, что удобно в плане захоронения.

К тому же, тория в природе как минимум в три раза больше, чем урана. То есть, у нас огромные залежи безопасного топлива, которые только и ждут, когда их пустят на выработку энергии. Но как это часто и бывает, у такого замечательного решения есть свои темные стороны.


Мифы ториевой энергетики

Начнем с самого простого. Торий — это ядерный яд. То есть, сам по себе он не способен запустить цепную реакцию — торию в реакторе нужен инициирующий элемент. Таким может послужить только уран, в первую очередь изотоп уран-235, или плутоний-239.

Таким образом, уже в рамках проектирования реактора понадобятся урановые сборки. Отказаться от обогащения урана и его добычи не получится. Однако его количество будет в 3-10 раз меньше, чем для традиционных АЭС. А это означает, что нынешний уровень потребления урана — более 65 килотонн ежегодно, можно резко сократить.

Второй важный момент — проблема с повторным использованием отработанного ядерного топлива, которого накопилось очень много. Ториевому реактору просто не нужно такое количество урана и плутония. Так что получается палка о двух концах: да, мы снизим потребление урана и плутония, но от их переработки и захоронения ядерных отходов мы не сможем отказаться. Это отдельная проблема, которая не решается в рамках нового направления ядерной энергетики.


Проблема еще и в том, что ториевый реактор — это сильно корродирующая среда. Помимо этого, в результате реакции в нем образуется изотоп уран-232. Его продукты распада, висмут-212 и таллий-208, характеризуются жестким гамма-излучением, которое сложно экранировать. Поэтому уровень безопасности и защищенности персонала и электроники для ториевых реакторов по идее должен быть выше, чем на традиционной АЭС.

Однако, проверить эти теоретические выкладки можно только на действующих ториевых реакторах разных моделей. А их пока не так много. Вся надежда на китайскую установку и на то, что данные по ее эксплуатации не будут засекречены.

Россия тоже старается не отстать от ториевого клуба. В ближайшие 15-20 лет запланировано использование тория в уже существующих реакторах типа ВВЭР и БН. А после, в проектируемых реакторах Супер-ВВЭР, в котором значительная часть отработанного ядерного топлива будет использована для производства нового.


Остается вопрос с отходами ториевых реакторов. Согласно исследованию Минэнерго США за 2014 год, отходы торий-уранового цикла имеют такую же радиоактивность на отрезке времени в 100 лет, что и уран-плутониевые топливные циклы, и более высокую радиоактивность отходов на отрезке 100000 лет. К тому же, если мы знаем как работать с отходами уран-плутониевых циклов, то опыта работы с отходами ториевых реакторов у нас нет.

При всем положительном отношении автора этих строк к новым технологиям в области атомной энергетики, чтобы сказать, что торий — светлое будущее этой области понадобится еще как минимум лет 10. А сейчас здесь больше мифов, маркетинга и попыток найти инвесторов для проектов, которые вовсе не обязательно будут экономически и экологически более выгодными, чем повышение безопасности и технологичности уже использующихся атомных технологий.

Токамак, или как запрячь энергию Солнца

Над тем как заполучить термоядерный реактор, человечество ломает голову еще с середины 20 века. Всё дело в физике процесса. В отличие от атомных реакторов, в которых энергия выделяется за счет деления ядра тяжелых элементов, в термоядерных энергия получается за счет образования более тяжелых элементов из легких.

Для этого внутрь термоядерного реактора запускают дейтерий и тритий и разогревают до температур свыше 150 миллионов градусов Цельсия. Газ превращается в плазму, которая удерживается с помощью мощных магнитов в тепловом контуре реактора.


Схема реактора типа токамак (тороидальная камера с магнитными катушками).

Сразу решаются проблемы с захоронением отходов, нет нужды развивать промышленность по обогащению урана и его добыче. В качестве топлива должны служить тяжелые изотопы водорода — тритий и дейтерий, а также гелий-3 и бор. Экологическая нагрузка на планету резко снижается. В теории, термоядерные электростанции должны быть в несколько раз эффективней атомных, чище и безопасней. Дело за малым — создать термоядерную электростанцию и получить дешевую энергию. И вот тут нас подстерегают проблемы.

Температура плазмы в токамаках достигает десятков миллионов градусов по Цельсию. Например, в китайском токамаке EAST плазму удалось нагреть до 100 миллионов градусов. Это в 8 раз выше, чем в центре Солнца.

Второй момент: для управления термоядерным синтезом необходимо научиться удерживать плазму. Китайцам удалось сделать это в течении 101 секунды. Корейцы на токамаке KSTAR в 2020 году удерживали разогретые до 100 миллионов градусов ионы в течение 20 секунд. Это рекордные показатели. Но для полноценной работы реактора плазму необходимо удерживать в течение нескольких минут или даже больше. Пока что человечеству далеко от таких результатов.


Корейский токамак KSTAR. Фото: IsouM, Wikimedia Commons

Такое условие задает определенную планку качества при изготовлении материалов. Оно должно быть выше, чем для АЭС, многие из элементов которых уже освоены промышленностью. Например, для международного термоядерного реактора ITER, который сейчас находится на заключительной стадии сборки конструкций, сверхмощные магнитные катушки, которые удерживают плазму, являются уникальными изделиями.


KSTAR — вид изнутри. Фото: pinterest.es


В России решили пойти своим путем и создать гибрид ядерного и термоядерного реакторов. Плазма вместо урана послужит источником ионов, которым будут бомбардировать ядерное топливо — торий. Так что у нас тут два в одном — торий-термояд.

Но до коммерческой реализации пока все так же далеко, первые образцы мы получим в лучшем случае лет через 20, а то и все 50. Если не случится технологического прорыва.

Топливо для звезды

А вот с топливом для термоядерных реакторов нам повезло. Дейтерий в большом количестве содержится в океанической воде — в каждом кубометре 33 грамма. Ее понадобится очистить, так что заводы по производству тяжелой воды останутся. Производство дейтерия на современном этапе достаточно дешевое, в районе 1 доллара за грамм. Тритий стоит дороже. По оценкам американских военных, в 2017 году производство 1 грамма обходилось в 110-170 долларов. Для реакторов типа ITER, по официальным данным, понадобится 125 кг трития и 125 кг дейтерия. Это очень небольшие объемы, которые в сотни тысяч — десятки миллионов раз меньше, чем нужно для угольных или газовых электростанций. Более того сейчас речь идет об оптимизации и сокращении даже такого объема. К тому же, тритий теоретически можно будет производить в самом реакторе ITER. Что еще больше снизит потребности в его стороннем производстве.

У реактора ITER есть свой Youtube-канал, где можно наблюдать за ходом работ:

Получается, что хотя сейчас получение электроэнергии с помощью термоядерного реактора — это во многом фантастика, в области топлива, экологичности и безопасности все обстоит гораздо лучше, чем с ториевыми АЭС. Смущает только время реализации — 30-50 лет. Есть ли оно у нас? И не лучше ли сосредоточиться на решении тех проблем, которые у всех на виду — адаптация к экстремальным погодным условиям, снижение углеводородной генерации, охрана природы, переработка и повторное использование отработанных ресурсов и, наконец, восстановление разрушенных или разрушаемых эколандшафтов?

Ответ — эти меры необходимо совместить. Так как энергетика ответственна за 73% выбросов углерода в атмосферу, замена угольных электростанций в течение 10-20 лет жидкосолевыми реакторами позволила бы радикально сократить эмиссии и высвободила средства на реализацию стратегий адаптации к климатическим изменениям. Если же за это время удастся запустить выработку термоядерной энергии — человечество сорвет джекпот, который даст реальную надежду на выход из экологического кризиса.

Читайте также: