Темброблок для сабвуфера своими руками

Добавил пользователь Владимир З.
Обновлено: 04.10.2024

Для чего нужен сабвуфер, думаю, никому объяснять не нужно. А если и нужно, то, как говорится, интернет вам в помощь. Там всего этого добра так же много, как низов в хорошем сабе, ну или как схем и описаний усилителей, пригодных для работы с мощными и не очень сабвуферами.

Исходя из этих соображений, и была спроектирована схема НЧ фильтра для сабвуфера. Как обычно, повышенное внимание было уделено тому, чтобы схема получилась максимально простой, качественной и, при отсутствии ошибок, не требовала настройки.

Фильтр построен на микросхеме TL082, представляющей собой сдвоенный ОУ, плюс немногочисленная пассивная рассыпуха. ОУ содержит полевые транзисторы на входах, что обеспечивает его высокое входное сопротивление, необходимое для корректной работы устройства сдвига фазы.

Элементы R1, C2, R3, R4,C3, R5, C4 и DA1.1, образуют ФНЧ (фильтр нижних частот третьего порядка) с регулируемой частотой среза. Схему эту мы придумали на странице (ссылка на страницу). Её главным достоинством является наличие всего одного регулирующего элемента R5, позволяющего перестраивать частоту среза в диапазоне 60. 160 Гц.
Фильтр обеспечивает подавление внеполосных сигналов с затуханием −18дБ на октаву и имеет неравномерность АЧХ в полосе пропускания - менее 3дБ. Коэффициент передачи близок к 1.

Элемент DA1.2 с обвесом представляют собой классическую схему фазовращателя с величиной фазового сдвига, зависящей от номиналов элементов C5, 7, R8. Коэффициент передачи фазовращателя - также близок к 1.

Регулировку уровня фазового сдвига проще всего производить на слух при полностью подключённой акустической системе (основная АС + сабвуфер).

Выходное сопротивления каскада, к которому будет подключён данный фильтр, не должно превышать 1 кОм. Это может быть и выход любого ОУ, и выход эмиттерного или истокового повторителя.

Устройство может запитываться и от однополярного источника питания +Uп. В этом случае 4 вывод микросхемы следует посадить на землю, а соответствующие выводы R2, R8 и R10 - к средней точке резистивного делителя, имеющего выходное напряжение +Uп/2.
TL082 сохраняет работоспособность при снижении напряжения питания вплоть до однополярного +12В.

Описанный в данной статье фильтр может применяться в сабвуферах в связке с массовыми и очень простыми в использовании микросхемами-усилителями НЧ. Изобретать для сабвуфера радикально качественный усилитель на транзисторах, а тем паче, упаси нас Бог - на лампах большого смысла нет. Довольно удачным выбором окажутся микросхемы TDA7294 или TDA7293 (ссылка на страницу) или их умощнённые варианты (на 200 и 800Вт), приведённые на странице ниже в разделе "Это тоже может быть интересно".

Сделать самому фильтр для сабвуфера

Сделать самому фильтр для сабвуфера не так сложно, как кажется на первый взгляд. Решение изготовить его самостоятельно, приходит не просто.
Рано или поздно, все любители автозвука становятся профессионалами и стараются всеми способами усовершенствовать аудиосистему. Простейший нч фильтр для сабвуфера и его изготовление, как раз и станет одним из решений по модернизации.

Предназначение

Сделать фильтр для сабвуфера

Сделать фильтр для сабвуфера

Фильтр или кроссовер(см.Самодельные кроссоверы для акустики и их предназначение), как его еще называют, сегодня выполняет важнейшую функцию. Дело в том, что практически все современные динамики, включая и сабвуфер, воспроизводят эффективно только определенную долю частот.
К примеру, тот же басовик воспроизводить хорошо в состоянии только низкие басы.

Примечание. Объяснить такую ограниченность современных динамиков очень просто. Снизу этому мешает резонансная частота подвижной системы, а сверху – масса самого диффузора.

Фильтр для автомобильного сабвуфера

Фильтр для автомобильного сабвуфера

Типичные схемы расположения динамиков в авто и роль фильтров

Динамики в авто

Касательно автомобильной акустики хотелось бы выделить две типичные схемы построения системы звука, с которыми знакомы, наверное, все, кто много мало знаком с автозвуком.
Речь идет о следующих схемах:

  • Наиболее популярная схема подразумевает три динамика. Это басовик (нацеленный исключительно на низы), динамик средних и низких частот (мидбасс) и отвечающий за воспроизведение ВЧ, твитер.

Фильтр низких частот сделать самому для сабвуфера

Фильтр низких частот сделать самому для сабвуфера

Примечание. Такая схема используется в большинстве своем любителями и в любом автомобиле, где грамотно задействована акустическая схема, ее можно встретить.

  • Следующая схема – удел больше профи и участников соревнований по автозвуку. Здесь за каждый из частотных диапазонов отвечает отдельный динамик.

Примечание. Несмотря на существенные отличия, обе схемы подчиняются единому правилу: каждый динамик в ответе за воспроизведение своей полосы частот и другие он не затрагивает.

Типы фильтров

Фильтры(см.Как сделать самому фильтр для автомагнитолы) частот различаются по типам.
Принято выделять следующие варианты:

  • Обычные фильтры, принцип действия которых сводится к тому, чтобы у их катушек индуктивности сопротивление возрастало с ростом частоты сигнала и спадало у конденсаторов, которыми они наделены. Несложно догадаться, что в таких фильтрах эффективно пропускают НЧ катушки индуктивности, а ВЧ – конденсаторы.

Примечание. В результате этого обычный фильтр бывает ФНЧ (см. справочник) или ФВЧ.

  • Фильтры полосно-пропускающие или, как проще называть, полосовые. Уже из названия становится ясно, что они эффективнее пропускают по определенному полосу частот. Ве что находится вне их зоны, они нещадно подавляют. Применяются такие фильтры, как правило, для выделения диапазона СЧ с последующей передачей сигнала на динамик;
  • Режекторный фильтр – полная противоположность полосовому. Здесь та полоса, которая ПФ пропускается без изменений, подавляется, а полосы вне этого интервала усиливаются;
  • ФИНЧ или фильтр подавления инфранизких частот стоит особняком. Принцип его действия основывается на подавлении высоких частот с низким показателем среза (10-30Гц). Предназначение этого фильтра – непосредственная защита басовика.

Нч фильтр для сабвуфера самому

Нч фильтр для сабвуфера самому

Примечание. Сочетание нескольких фильтров называется в акустике кроссовером.

Параметры

Кроме типов фильтров, принято разделять и их параметры.
К примеру такой параметр, как порядок, свидетельствует о количестве катушек и конденсаторов (реактивных элементов):

  • 1-ый порядок содержит только один элемент;
  • 2-ой порядок два элемента и т.д.

Для сабвуфера

В принципе, любой фильтр, в том числе и этот, представляет собой сочетание нескольких элементов. Обладают компоненты эти свойством избирательно пропускать сигналы определенных частот.
Принято разделять три популярные схемы этого разделителя для басовика.
Они представлены ниже:

  • Первая схема подразумевает самый простой разделитель (изготовить который своими руками, не составит никакой сложности). Он выполнен в виде сумматора и стоит на одном транзисторе.
    Конечно, серьезного качества звука с таким простейшим фильтром не добиться, но из-за своей простоты, он прекрасно подходит любителям и начинающим радиоманам;

Простая схема

  • Две другие схемы намного сложны, чем первая. Построенные по эти схемам элементы, размещаются между местом выхода сигнала и входом усилителя басовика.

Каким бы ни был разделитель, простейшим или сложным, он должен иметь следующие технические характеристики.

Простой фильтр для 2 полосного усилителя

Этот разделитель не нуждается в особенной настройке и собрать его проще простого. Выполнен он на доступных ОУ.

Примечание. У этой схемы фильтра есть одно небольшое преимущество перед остальными. Заключается оно в том, что при перегрузке НЧ канала, искажения его неплохо маскируются СЧ/ВЧ звеном и следовательно, отрицательная нагрузка на слух заметно снижается.

  • Подаем входной сигнал на вход операционного усилителя МС1 (выполняет он функцию активного фильтра НЧ );
  • Подаем сигнал также на вход усилителя МС2 (в данном случае, речь одет уже о дифференциальном усилителе);
  • Подаем сигнал теперь с выхода ФНЧ МС1 на вход МС2.

Примечание. Таким образом, в МС2 из спектра сигнала (входного) вычитывается НЧ часть, а на выходе – ВЧ часть сигнала появляется.

  • Обеспечиваем заданную частоту среза ФНЧ, которая и станет частотой разделения.

Процесс изготовления фильтра своими руками потребует ознакомления с тематическим видео обзором. Кроме того, будет полезно изучить подробные фото – материалы, схемы, другие инструкции и многое другое.
Цена самостоятельного изготовления и установки фильтра минимальна, ведь никаких расходов делать практически не нужно.

Григорий с детства обожал машины, а в подростковом возрасте, когда самостоятельно подключил автомагнитолу в отцовской девятке, понял, что машины будут его работой, хобби, призванием.


Вещь, о которой мы сейчас расскажем, как понятно из названия статьи, является самодельным усилителем для сабвуфера, в народе называемом “Саб”. Устройство имеет активный фильтр НЧ, построенный на операционных усилителях, и сумматор, обеспечивающий ввод сигнала с выхода стерео.

Поскольку сигнал для схемы берется с выходов на акустические системы, нет необходимости вмешательства в работающий усилитель. Получение сигнала с динамиков имеет еще одно преимущество, а именно – позволяет сохранить постоянное соотношение громкости сабвуфера к стереосистеме.

Естественно, усиление канала сабвуфера можно регулировать с помощью потенциометра. После отфильтровывания высоких частот и выделения низких (20-150 Гц), звуковой сигнал усиливается с помощью микросхемы TDA2030 или TDA2040, TDA2050. Это дает возможность настройки выходной мощности басов по своему вкусу. В этом проекте успешно работает любой динамик НЧ с мощностью более 50 Ватт на сабвуфер.

Схема фильтра с УМЗЧ сабвуфера

Усилитель с фильтром для сабвуфера - простая схема

Схема принципиальная ФНЧ и УМЗЧ сабвуфера

Описание работы схемы усилителя

Стерео сигнал подается на разъем In через C1 (100nF) и R1 (2,2 М) на первом канале и C2 (100nF) и R2 (2,2 М), в другом канале. Затем он поступает на вход операционного усилителя U1A (TL074). Потенциометром P1 (220k), работающем в цепи обратной связи усилителя U1A, выполняется регулировка усиления всей системы. Далее сигнал подается на фильтр второго порядка с элементами U1B (TL074), R3 (68k), R4 (150к), C3 (22nF) и C4 (4,7 nF), который работает как фильтр Баттерворта. Через цепь C5 (220nF), R5 (100k) сигнал поступает на повторитель U1C, а затем через C6 (10uF) на вход усилителя U2 (TDA2030).

Конденсатор С6 обеспечивает разделение постоянной составляющей сигнала предусилителя от усилителя мощности. Резисторы R7 (100k), R8 (100k) и R9 (100k) служат для поляризации входа усилителя, а конденсатор C7 (22uF) фильтрует напряжение смещения. Элементы R10 (4.7 k), R11 (150к) и C8 (2.2 uF) работают в петле отрицательной обратной связи и имеют задачу формирования спектральной характеристики усилителя. Резистор R12 (1R) вместе с конденсатором C9 (100nF) формируют характеристику на выходе. Конденсатор C10 (2200uF) предотвращает прохождение постоянного тока через динамик и вместе с сопротивлением динамика определяет нижнюю граничную частоту всего усилителя.

Сборка сабвуфера

Вся система паяется на печатной плате. Монтаж следует начинать от впайки двух перемычек. Порядок установки остальных элементов любой. В самом конце следует впаивать конденсатор C11 потому что он должен быть установлен лежа (нужно согнуть соответствующим образом ножки).

Усилитель с фильтром для сабвуфера - простая схема

Плата печатная для устройства

Схему следует питать от трансформатора через выпрямительный диодный мост, фильтрующий конденсатор стоит уже на плате. Трансформатор должен иметь вторичное напряжение в пределах 16 – 20 В, но чтобы после выпрямления оно не превышало 30 В. К выходу следует подключить сабвуфер с хорошими параметрами – от головки очень многое зависит.

Фильтр низких частот-1


Рис.1 Фильтр низких частот сабвуфера — готовая плата

Фильтр низких частот — в этой статье представлен активный ФНЧ второго порядка с регулируемой частотой среза от 20 Гц до 200 Гц. Схема, в которой используется один источник питания, работает с аудио сигналом малой мощности (то есть с линейными уровнями аудио сигнала) и предназначена в качестве фильтрующего элемента перед усилителем мощности звука, управляющим громкоговорителем сабвуфера.

Конструкция основана на традиционной топологии Саллена-Ки, которая предлагает простые вычисления и реализацию, хотя коэффициент качества невысок. Более простой альтернативой этой схеме является пассивный фильтр нижних частот сабвуфера. Поведение фильтра было проверено как методом моделирования LTSpice, так и с помощью необработанных измерений, используя звуковую карту ПК и программное обеспечение визуального анализатора.

Активный фильтр низких частот сабвуфера

1 — Характеристики схемы

Принципиальная схема ФНЧ


Рис.2 Принципиальная схема

На следующих изображениях модули передаточных функций представлены в случае установки потенциометра на самую низкую частоту среза (Рисунок 3) и максимальную частоту среза (Рисунок 4). Можно отметить, что две кривые в основном равны, за исключением высоких частот, где низкая чувствительность звуковой карты и шум не позволяют провести точное измерение. Наклон всегда составляет -40 дБ за декаду из-за фильтра второго порядка.

Фильтр низких частот-3


Рис.3 Модуль передаточной функции схемы в дБ при частоте среза 20 Гц, полученный путем измерения в реальной цепи с помощью звуковой карты ПК и программного обеспечения визуального анализатора. Разница между двумя кривыми на высоких частотах связана с низкой чувствительностью и шумом звуковой карты компьютера. По оси абсцисс использована логарифмическая шкала.

Если частота среза составляет 20 Гц, резонансный пик отсутствует; напротив, этот пик появляется при fc = 200 Гц. Это согласуется с процессом проектирования, описанным в разделе 2, поскольку неравенство, которое допускало отсутствие пика, было оценено для RP = Rtot, то есть для fc = 20 Гц. Пик резонанса в любом случае приемлем.

Фильтр низких частот-4


Рис.4 Модуль передаточной функции схемы в дБ в случае частоты среза 200 Гц, полученный путем измерения реальной цепи с помощью звуковой карты ПК и программного обеспечения визуального анализатора. Разница между двумя кривыми на высоких частотах связана с низкой чувствительностью и шумом звуковой карты компьютера. По оси абсцисс использована логарифмическая шкала.

Отрицательной стороной фильтра является плохо сбалансированный потенциометр: линейное изменение его сопротивления не соответствует линейному изменению частоты среза. Ниже представлена ​​зависимость частоты среза от сопротивления потенциометра.

Фильтр низких частот-5


Рис.5 Изменение частоты как функция потенциометра

2 — Как построить устройство фильтр низких частот

Реализация схемы не сложна, так как использовались очень распространенные компоненты, ее размер небольшой, а сложность невысока. Плата, показанная на рис. 1, имеет размеры 4 см x 5 см и, следовательно, является частью европейского стандарта Eurocard, который имеет размер 160 мм x 100 мм. Разъемов три: один для аудиовхода, один для аудиовыхода и один для источника питания.

Загрузите проект KiCad полностью (68,3 КБ)
В архиве: схема, печатная плата, файлы Gerber и pdf для этого проекта.

Фильтр низких частот-6


Рис.6 Фильтр низких частот — шелкография и печатная плата

3 — Модификация стерео входа

Схема изначально была разработана с моно-входом. Самые низкие частоты, обозначенные значком, обычно одинаковы для правого и левого стерео каналов, поскольку наши уши не могут различить их пространственное происхождение. По той же причине обычно используются два динамика, один для правой стороны, другой для левой стороны, для средних и высоких частот, но только один сабвуфер в центре. По просьбам в комментариях предлагается два решения:

  • Подключите ко входу фильтра низких частот только левый канал (L канал), так как басовые сигналы одинаковы на обоих каналах;
  • Измените схему, как показано на рис.7;

Для модификации схемы входное сопротивление Rz и конденсатор CP1 не следует припаивать, а вместо них ставить два резистора с удвоенным значением вместе с их разделительными конденсаторами.

Модификация входа фильтра для получения стерео входа-7


Рис.7 Модификация входа фильтра для получения стерео входа. Rz и CP1 необходимо заменить двумя резисторами, включенными параллельно удвоенному значению, вместе с их разделительными конденсаторами

4 — Конструкция: каскад развязки и поляризации

Первый каскад схемы — это неинвертирующий усилитель, который обеспечивает развязку входных напряжений фильтра и смещение сигнала путем суммирования половины напряжения питания. В традиционном неинвертирующем усилителе VIN подключается непосредственно к неинвертирующему выводу операционного усилителя; в этой конфигурации усиление составляет:

В этом случае VIN — это напряжение после резистивной цепи, состоящей из R1, R2 и Rz. Чтобы вычислить VIN1, мы можем использовать наложение эффектов, следуя процедуре, аналогичной той, которая обычно используется для определения поляризации в схемах традиционных биполярных транзисторов. Напряжение будет суммой двух элементов: составляющей V 1 IN, связанной с входным напряжением VIN, и V 1 alim, полученной из напряжения источника питания Valim:

В этом случае VIN — это напряжение после резистивной цепи, состоящей из R1, R2 и Rz. Чтобы вычислить VIN1, мы можем использовать наложение эффектов, следуя процедуре, аналогичной той, которая обычно используется для определения поляризации в схемах традиционных биполярных транзисторов. Напряжение будет суммой двух элементов: компонента V 1 IN, относящегося к входному напряжению VIN, и V 1 alim, полученного из напряжения источника питания Valim:

Чтобы найти значение V 1 alim, мы можем рассматривать конденсатор CP1 как разомкнутую цепь, так как Valim — это постоянное напряжение:

В то время как для определения напряжения V 1 IN можно считать Valim = 0V, то мы можем в цепь источника питания поставить перемычку, то-есть закоротить,(как того требует метод наложения):

Суммируя два результата, мы получаем:

Фильтр низких частот-5

Коэффициент усиления неинвертирующего усилителя не зависит от сопротивлений, которые появляются в выражении VIN1, и поэтому для простоты мы можем поставить его равным константе:

Таким образом, общий коэффициент усиления неинвертирующего каскада равен:

Фильтр низких частот-7

4.1 — Выбор значений компонентов

Чтобы найти значения компонентов, мы можем сделать некоторые краткие соображения: мы решаем, что напряжение VIN сообщается без изменений на выходе; для правильной поляризации сигнала необходимо суммировать половину напряжения источника питания с VIN; наконец, мы выбрали α=2, поскольку это позволяет нам использовать RF = RG. Теперь мы можем написать систему уравнений на основе прироста VIN e Valim:


И, решая ее, получаем:


Чтобы завершить информацию о системе, мы можем вычислить входное сопротивление всей цепи:


Выбирая R2 = 33 кОм и учитывая приближение серии E12, получаем хорошие значения: R1 = 100 кОм, Rz = 22 кОм, Rin = 63 кОм.

4.2 — Конденсаторы развязки

Конденсатор CP1 блокирует ток поляризации цепи, поэтому он не течет в устройство, подключенное ко входу. Другими словами, это фильтр верхних частот со следующей частотой среза:


Мы предполагаем, что частота среза этого фильтра намного ниже минимальной рабочей частоты схемы, например 1 Гц. Поскольку Rin = 66 кОм, получаем C=2,5 мкФ. Конденсатор емкостью 47 мкФ более чем достаточен для развязки. Аналогичные соображения можно сделать для CP2, заменив Rin сопротивлением нагрузки; это сопротивление будет довольно высоким, так как это вход усилителя.

5 — Конструкция: фильтр

Следующий этап — настоящий фильтр. В Интернете существует множество доказательств для вычисления его передаточной функции, среди которых одно из Википедии: топология Саллена-Ки. Вот оно:

где Rp — значение, принимаемое потенциометром P1. Анализируя этот многочлен, можно извлечь некоторые математические выражения, полезные в процессе проектирования.

5.1 — Расчетные уравнения

Если знаменатель имеет два реальных полюса, диаграмма Боде передаточной функции начнет понижаться на первом полюсе с наклоном -20 дБ/декада; на втором полюсе крутизна уменьшится до конечного значения -40 дБ/декада. Если, наоборот, знаменатель имеет два полюса комплексного сопряжения, будет присутствовать только одна частота среза с асимптотическим наклоном -40 дБ/декада. Это лучшее состояние для фильтра. Чтобы получить это с математической точки зрения, мы предполагаем, что знаменатель имеет отрицательный дискриминант:

в этом случае частота среза равна:


Для определения размера компонентов фильтра мы можем использовать выражение его частоты среза. Когда потенциометр находится в конце или в начале, Rp будет равным Rtot, что является общим сопротивлением потенциометра, или будет 0 Ом. В этих двух случаях результирующие частоты среза будут соответствовать минимальному или максимальному допустимому, то есть f = 20 Гц и f1 = 200 Гц. Формула частоты среза сводится к следующему: Подставляя предельные частоты и решая систему уравнений, составленную из двух предыдущих уравнений, мы получаем:

Другое расчетное условие может быть получено с помощью выражения добротности. Если передаточная функция имеет комплексно сопряженные полюса, может возникнуть резонансный пик на частоте среза. Чтобы удалить этот пик, необходимо ограничить добротность фильтра Q:


5.2 — Графический выбор значений компонентов

Давайте вернемся к полезным уравнениям написанным выше:


по порядку, это уравнение, полученное из минимальной и максимальной частоты среза, условие о дискриминанте для наличия комплексно сопряженных полюсов и условие о добротности для избежания резонансных пиков.

Первое из трех уравнений содержит все значения компонентов, которые необходимо вычислить. Чтобы выбрать их легко и интуитивно, кривая была построена графически, задав параметры C1 и C1, RA по оси абсцисс и RB по оси ординат.

На том же графике область, где верно первое неравенство об отрицательном дискриминанте, была окрашена в зеленый и желтый цвета; область, окрашенная только зеленым цветом, — это место, где проверяется второе неравенство об ограничении добротности. Два неравенства оцениваются в предположении, что потенциометр имеет максимальное значение, то есть Rp = Rtot = 99RA. Окончательный график показан на следующем рисунке в случае C1 = 4,7 мкФ и C2 = 100 нФ:

График можно построить, задав параметрические значения для C1 и C2. Значения RA и RB можно выбрать в зеленой зоне, то есть в зоне, где оба неравенства верны. Значения, например, равны RA = 1,2 кОм, RB = 1,2 кОм , Rtot = 120 кОм.

Представленное ниже устройство обладает хорошим качеством звучания и низким уровнем шумов, а также имеет функцию обхода темброблока (прямая АЧХ), в тоже время простота схемы не отпугнет начинающих радиолюбителей. В основу пассивной части схемы входит разработка, описанная E.J.James'ом еще в 1948 году, а все устройство вместе смахивает на работу Baxandall'a образца 1952 года :) Смахивает использованием усилительного каскада, в данном случае ОУ, которым можно поднять амплитуду, "съеденную" (у этого регулятора амплитуда падает в пять раз или -13дБ!) темброблоком. Анализируя широко известные любому радиолюбителю источники (в коих наблюдается некоторая историческая неточность), было принято решение поэкспериментировать с этой вещичкой:

Схема простейшего блока тембров

Схема простейшего блока тембров

К сожалению, реальные графики АЧХ так и не успел снять, однако приведем результат моделирования в программе Tone Stack Calculator. Данная схема примечательна использованием R5-R6, которые обеспечивают более узкий подъем частот, не затрагивая середину. Этих резисторов нет в разработке E.J.James'a, поэтому симуляция произойдет без них :). Однако на общее впечатление от графика это не скажется, просто полоса подъема высоких частот будет более широкой.

полоса подъема высоких частот

Но мне хотелось бы большего: ещё больший подъем на НЧ и в особенности ВЧ, так сказать с запасом, хотя в вашем случае все может быть совершенно иначе. Вернее не в вашем случае, а в случае вашей акустики :). К примеру из опыта эксплуатации продукции бердского радиозавода ВЕГА 50АС-106 регулировка низких частот темброблока в RRR УП-001 совсем не подходила, поскольку поднимала лишь область верхнего баса (200-250 Гц, басом это трудно назвать, скорее гул). Однако на акустических системах производства рижского радиозавода Radiotehnika RRR S50b, можно было добиться приемлимого качества звучания. Хотя все это считается баловством, поскольку корректирует лишь впечатление от прослушивания, корректировку АЧХ колонок и, если усилитель ущербен, проводят другими схемотехническими изысканиями, к примеру параметрическими эквалайзерами с регулировками не только по усилению, но и с возможностью перемещения подымаемой частоты и добротности. Но мы же здесь не собрались исправлять огрехи дорогой акустики?

АЧХ ТЕМБРОБЛОКА

Итого +6 дБ на основной низкой частоте, и +5 дБ на высокой. Спад -3 дБ в области средних частот решено поднять усилением на ОУ. Признаюсь, стало немного многовато. В схеме поворотом регуляторов трудно добиться ровной АЧХ (вернее совсем не добиться), поэтому решено добавить устройство, отключающее темброблок. Это может оказаться полезным при эксплутации с вашим усилителем более "продвинутого" эквалайзера. Простым замыканием входа и выхода пассивной части или же всего темброблока (в первом случае замыкается конденсатор С3 и как следствие заваливаются верха, во втором - регулировка ВЧ и НЧ сохраняется, правда в небольших пределах) здесь не обойтись. Поэтому можно осуществить элементарную коммутацию на реле с перекидными контактами (типа РЭС-9, РГК-14 и т.д.).

Стоит отдельно затронуть изъезженную тему конденсаторов в блоке тембров. По своему субъективному опыту эксплуатации известного предусилителя Шмелева [2], в конструкции которого применял незадумываясь керамику импортного производства, широкораспространенную в магазинах, выходной сигнал был насыщен гармониками, что ощущалось на слух. Быть может в слепом тесте этого темброблока с другими конденсаторами я бы этого и не заметил, но тем не менее у меня это глубоко отложилось в памяти. В данной конструкции решил использовать исключительно конденсаторы на бумажной основе. Конечно, здесь я не буду описывать опыт использования импортных конденсаторов за сотни долларов, но как говорится, чем богат :). Из накопленных запасов были вытащены конденсаторы серий БМТ-2, БМ-2 и МБМ.

Итак, при использовании данных конденсаторов, первое что необходимо сделать, это измерить их емкость и осмотреть на внешние повреждения (в особенности для БМТ-2). Среди десятка образцов конденсаторов серии МБМ, 90% имели превышение номинальной емкости на 40-50%, что в двое больше их допуска. Измерение емкости позволяет подобрать конденсаторы в пары для 2-х каналов для обеспечения симметричной регулировки. Первое включение и вердикт - однозначно предпочтительнее использования китайской керамики. К своему стыду, мне не удалось отыскать бумажный конденсатор в цепи ВЧ, поэтому применил конденсатор серии КТК, широко использовался в ламповых телевизовах и прочей аппаратуре. Кроме всего прочего данный конденсатор обладает хорошей термостабильностью. Обкладки из серебра на звуке никак не сказались :) (хотя после пополнения багажа знаний о данном конденсаторе, звук постепенно стал становиться краше и. :) ). Графики, которые получилось снять:

Регуляторы повернуты на максимум:

ТЕМБРОБЛОК - максимум регуляторов

Регуляторы повернуты на минимум:

ТЕМБРОБЛОК - регуляторы минимум

Схема получившегося устройства:


Характеристики данного темброблока:

Показатели по КГ, сигнал/шум зависят от примененного ОУ. Выбор пал на TL072, (это сдвоенный ОУ фирмы ST) в силу его дешевизны и распространенности. Отлично сюда впишутся и такие операционники, как NE5532, NJM4558, LM358. Поэкспериментировать можно и с одиночными ОУ (с дальшейшей переделкой ПП) TL071, NE5534, КР544УД1,2, К157УД2 (с цепями коррекции) и так далее. С бумажными конденсаторами и ОУ в золотом корпусе, чем не раритет? Для оперативной замены микросхемы (если отдали предпочтение другому ОУ), рекомендуется предварительно установить на соответствующее место панельку DIP-8.

Для питания активной части устройства используется параметрический стабилизатор напряжения на два плеча + и - без использования каких-либо усилительных элементов, поскольку в данной схеме общий ток потребления меньше номинального тока стабилитронов. Для сглаживания остатков пульсаций, вызванных пульсациями блока питания УМЗЧ, в схеме присутствуют два электролита. Их емкость невелика для обеспечения низкой инерционности. Такой небольшой набор дает низкий уровень фона при эксплуатации устройства.

ТЕМБРОБЛОК - печатная плата

Разумеется, для обеспечения минимального уровня фона этого бывает недостаточно. Снизить фон может помочь заземление корпусов переменных резисторов. У некоторых групп регуляторов для этого есть отдельный вывод (например СП3-33-23). В моем распоряжении оказались широко распространенные резисторы В-группы (для регулировки баланса они не подходят), корпус которых после обработки наждачкой я и заземлил. Земли свел к одной выбранной точке (корпус регулятора низких частот), откуда направил их земле блока питания УМЗЧ. Фотография устройства и печатная плата:

ТЕМБРОБЛОК - детали

Размер печатной платы 140х60 мм, здесь можно скачать файлик в формате .lay. Желаю успехов в повторении! Автор: sheriff.

Форум по обсуждению материала ТЕМБРОБЛОК


В каком направлении течет ток - от плюса к минусу или наоборот? Занимательная теория сути электричества.


Переделываем игрушку обычный трактор в радиоуправляемый - фотографии процесса и получившийся результат.


Про использование технологии беспроводного питания различных устройств.


Приводятся основные сведения о планарных предохранителях, включая их технические характеристики и применение.

Читайте также: