Таймер на кр1006ви1 своими руками

Добавил пользователь Morpheus
Обновлено: 19.09.2024

Однажды в студенную зимнюю пору
Нет, просто однажды, понадобился мне надежно работающий одновибратор.
Классикой жанра в этом вопросе считается микросхема таймера NE555.
Нужно ли говорить, что, несмотря на простоту конструкции, из схем, "переползающих" из сайта на сайт, 100% рабочую найти не удалось? — все были по тем или иным причинам неработоспособны.
Поэтому, пришлось рисовать (если уж она окажется похожей на где -то уже приведенную схему — "звиняйте бананів в нас нема")

Экскурс в историю (нагло стыренный, но измененный)
Наверное нет такого радиолюбителя, который не использовал бы в своей практике эту замечательную микросхему. Ну а уж слышали о ней так точно все.

Её история началась в 1971 году, когда компания Signetics Corporation выпустила микросхему SE555/NE555 под названием "Интегральный таймер" (The IC Time Machine).
На тот момент это была единственная "таймерная" микросхема доступная массовому потребителю, поэтому сразу после поступления в продажу, микросхема завоевала бешеную популярность и среди любителей и среди профессионалов. Появилась куча статей, описаний, схем, использующих сей девайс.
За прошедшие 35 лет практически каждый уважающий себя производитель полупроводников считал свои долгом выпустить свою версию этой микросхемы, в том числе и по более современным техпроцессам. Например, компания Motorola выпускает CMOS версию MC1455. Но при всем при этом в функциональности и расположении выводов никаких различий у всех этих версий нет. Все они полные аналоги друг друга.
Наши отечественные производители тоже не остались в стороне и выпускают эту микросхему под названием КР1006ВИ1.
А вот список заморских производителей, которые выпускают таймер 555 и их коммерческие обозначения:


В некоторых случаях указано два названия. Это означает, что выпускается две версии микросхемы — гражданская, для коммерческого применения, и военная. Военная версия отличается большей точностью, широким диапазоном рабочих температур и выпускается в металлическом или керамическом корпусе. Ну и дороже, разумеется.

Описание микросхемы
Много писать не буду — все это легко гуглится, приведу только назначение выводов



Простой одновибратор
Сказать здесь особо нечего проще привести то, что наваял


Данный девайс выдает на выходе OUT напряжение равное (напряжениe питания минус 1,7 Вольта) в течении времени пока вход IN замкнут на землю или времени удержания Т, которое вычисляется как произведение сопротивления резистора R1 в Омах и конденсатора С1 в Фарадах (или МегаОмах и микоФарадах, соответственно). Тут нужно помнить, что R1 может быть в дипазоне от 10кОм до 15Мом (на различного вида форумах рекомендуют до 300кОм) С1 — от 95пФ.
Как видно по приведенному расчету, на рисунке приведена схема задержки на 1,1 секунды.
Схема была опробована на макетке


но на печатную плату не переносилась, так как "концепция поменялась".

"По просьбам трудящихся" добавляю осциллограмму работы одновибратора с временем задержки 0,61с
Измерения производились на 2 (входной) и 3 (выходной) ножках микросхемы


Универсальный таймер от 1 до 26c
Так как плата универсального таймера со временем задержки от 1 до 26с была прорисована, то привожу ее для "общего блага"

В статье рассмотрен вариант построения регулятора мощности с широтноимпульсным управлением на основе таймера КР1006ВИ1. Благодаря своей "гибкости" эта микросхема успешно работает и в регуляторе мощности.

Мощность выходного сигнала микросхемы КР1006ВИ1 достаточна для непосредственного управления такими тринисторами, у которых открывающий ток не превышает 200 мА. Кроме того, в составе таймера — два компаратора и RS-триггер, что дает возможность простыми средствами обеспечить режим управления, приближающийся к наиболее экономичному — импульсному, когда открывающий ток спадает до нуля сразу после открывания тринистора. С описанием таймера можно ознакомиться в [1—6].


Рассмотрим исходную функциональную схему включения таймера, изображенную на рис. 1 ,а. Здесь передаточная характеристика прибора имеет гистерезисный вид (рис. 1,б).

Ширину гистерезиса (точнее, верхнее пороговое напряжение) можно изменять в широких пределах переменным резистором R1. Следует учитывать, что уровни переключения напрямую зависят от напряжения источника питания (5. 15 В).

На рис. 2 показана схема узла с таймером DA1, непосредственно управляющим тринистором VS1, а на рис. 3 — временные диаграммы, ил-

люстрирующие его работу (они, кроме последней, сняты относительно минусового вывода диодного моста VD2). Управляющий сигнал подают на вход Е таймера, хорошо согласующийся с выходом многих цифровых микросхем, в том числе с открытым коллектором. Вытекающий ток низкого уровня — около 0,5 мА.

Пока напряжение на управляющем входе таймера не превышает 0,3. 0,4 В, на ее выходе (вывод 3) — сигнал низкого уровня. Поэтому трини-стор VS1 закрыт, и нагрузка в его анодной цепи обесточена. При входном напряжении более 1 В таймер формирует на выходе импульсы амплитудой не менее 3,8 В (при Uпит=5 В), следующие

с частотой 100 Гц. Длительность этих импульсов определяется положением движка подстроечного резистора R1 и сопротивлением резистора R2.

Пульсирующее напряжение с диодного моста VD2 поступает через делитель R2R1 на вход внутреннего компаратора таймера. Диод VD1 ограничивает напряжение на этом входе до уровня Uпит+0,6 В. Как только напряжение на входе S уменьшится до

Uпит/3 (см. диагр. 2 на рис. 3), внутренний RS-триггер переключится в единичное состояние, и на выходе таймера возникнет импульс высокого уровня, который откроет тринистор и включит нагрузку. После того, как напряжение на входе R, пройдя через "нуль" и вновь увеличиваясь, достигнет уровня 2U пит/3, напряжение, поступающее на управляющий электрод тринистора, снизится до нуля, но он останется открытым. При очередном переходе сетевого напряжения через "нуль" тринистор закроется и обесточит нагрузку.

Минимальную длительность импульса на выходе таймера, необходимую для открывания тринистора, устанавливают подстроечным резистором R1. Длительность управляющего импульса при верхнем по схеме положении движка резистора R1 равна 0,2 мс. Максимальная длительность импульса, при которой устройство работает устойчиво, — около 2 мс.

При указанных на схеме номиналах резисторов R1 и R2 узел работоспособен при напряжении питания микросхемы более 6 В. Если сопротивление резистора R1 уменьшить до 220 кОм, минимальное напряжение питания снизится до 4 В.

Несмотря на то что в описанном узле принцип импульсного управления тринистором реализован не в полной мере и формируемый импульс шире минимально необходимого, этот режим существенно экономичнее по сравнению с управлением постоянным током. Так, средний управляющий ток тринистора КУ202Н при указанном на схеме сопротивлении резистора R3 близок к 1 мА, тогда как для открывания того же тринистора постоянным током необходимо 10. 20 мА. Собственный же потребляемый таймером ток при напряжении питания 5 В не превышает 3 мА.

Удобство узла управления на таймере КР1006ВИ1 проявляется еще и в простоте его схемы. Довольно большая мощность на выходе микросхемы позволяет отказаться от дополнительного транзисторного усилителя управляющего тока тринистора. Отметим также, что описанный узел обеспечивает регулирование мощности без помех.


Рассмотренный принцип практически применен при разработке регулятора мощности, принципиальная схема

которого показана на рис. 4. Устройство реализует широтно-импульсный способ управления. В результате, в зависимости от установленной мощности, в нагрузку поступает то или иное

число целых полупериодов сетевого напряжения. Регулятор предназначен для работы с инерционными нагревательными приборами, паяльниками и т. п. Регулировать яркость ламп накаливания этим устройством нельзя, так как они будут мигать.

Формирование управляющих импульсов для открывания тринистора выполняет таймер DA2, а сигнал, разрешающий его работу, формирует генератор прямоугольных импульсов на таймере DA1. Частота импульсов — около 5 Гц. Скважность, от которой зависит мощность, потребляемая нагрузкой, можно изменять переменным резистором R1. При крайнем левом по схеме положении его движка нагрузка

будет отключена, а при крайнем правом — включена на полную мощность.

Когда на выходе таймера DA1 присутствует напряжение высокого уровня, в нагрузку поступает пульсирующее

напряжение частотой 100 Гц с выпрямителя VD5. Если же на выходе таймера низкий уровень, тринистор VS1 закрыт и напряжение на нагрузку не поступает.

Микросхемы питаются от параметрического стабилизатора напряжения R6R7VD3.

Регулятор собран на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм. Чертеж платы представлен на рис. 5.

Диоды КД522Б заменимы на КД522А или любые из серии КД521. Диодный мост — любой из КЦ405А— КЦ405В. Если мощность нагрузки превышает 200 Вт, мост должен быть собран из более мощных диодов, напри-

мер, из четырех КД202 с буквенными индексами Ж, К, М, Р.

Тринистор VS1 может быть либо КУ201К, КУ201Л (для маломощной нагрузки), либо КУ202К—КУ202Н. Если во время работы тринистор будет сильно нагреваться, его необходимо установить на теплоотвод. Переменный резистор — СП-1.

Следует заметить, что отдельные экземпляры тринисторов серии КУ202 в регуляторе могут работать нечетко, особенно при пониженной температуре. Такие тринисторы нужно заменить на другие, с меньшим значением тока открывания.

Выход регулятора мощности гальванически связан с сетью, поэтому при его налаживании и эксплуатации необходимо соблюдать осторожность.

1. Пецюх Е., Казарец А. Интегральный таймер КР1006ВИ1. — Радио, 1986, № 7, с. 57, 58.

2. Зельдин Е. Применение таймера КР1006ВИ1. — Радио, 1986, № 9, с. 36, 37.

3. Хоровиц П., Хилл У. Искусство схемотехники. — М.: Мир, 1993, т. 1,с. 303—307.

4. Коломбет Е. А. Микроэлектронные средства обработки аналоговых сигналов. — М.: Радио и связь, 1991, с. 181—220.

5. Горошков В. И. Элементы радиоэлектронных устройств. — М.: Радио и связь, 1989, с. 118, 119.

6. Шитов А. Генераторы на таймере КР1006ВИ1. - Радио, 1999, № 8, с. 54, 55.

В предыдущей статье был рассмотрен одновибратор построенный на логических элементах микросхемы К155ЛА3. В данной статье изучим функционирование одновибратор на 555 таймере.

В первоначальном состоянии емкость C1 заряжена от транзистора входящего в состав таймера 555. В момент поступления на вход 2 таймера 555 короткого импульса отрицательного характера, переключается триггер, выключая короткозамкнутую цепь конденсатора C1.

Одновременно с этим на выходе 3 таймера 555 появляется напряжение высокого уровня. По экспоненциальному закону на емкости C1 растет напряжение заряда с постоянной времени Т = С1*R1.

Описание работы одновибратора на NE555

При достижении потенциала на конденсаторе примерно 60 % от напряжения питания схемы, компаратор переводит триггер в свое первоначальное положение. Сам триггер, тем временем, резко разряжает конденсатор, в результате чего на выходе 3 таймера 555 появляется электрический сигнал низкого уровня.

Подобная схема одновибратора активизируется импульсом отрицательного характера, имеющего около 30% напряжения источника питания. Одновибратор будет находиться в таком состоянии на протяжении всего заданного временного периода, даже если в этот момент на вход будут поступать еще импульсы. Временной интервал, в процесс которого на выходе 3 таймера 555 будет находиться высокий логический уровень, можно вычислить по следующей формуле: Т = 1,1*R1*С1.

Следует отметить, что быстрота заряда конденсатора и величина напряжения, при котором срабатывает компаратор, прямо пропорциональна Uпит которое не оказывает никакого действия на продолжительность выходного импульса.

При подаче отрицательного сигнала на вывод 4 (сброс) микросхемы 555, конденсатор С1 будет разряжен и цикл работы одновибратора начнется заново. Положительный фронт импульса поступающего на вывод сброса является началом нового цикла работы одновибратора. До тех пор пока отрицательный импульс находится на выводе сброса, на выходе одновибратора будет низкий уровень. В случае если в режим сброса нет необходимости, то данный контакт нужно подсоединить с плюсом источника питания, для того чтобы предупредить возможные нестабильные состояния схемы.

Пример №12 — Генератор, управляемый напряжением (ГУН) на NE555

Данный генератор иногда называют преобразователь частоты напряжением, так как частота может быть изменена путем изменения входного напряжения.

Как известно вывод 5 таймера 555 предназначен для управления длительностью импульсов на выходе путем подачи на него напряжения, которое должно составлять 2/3 от Uпит. При увеличении управляющего напряжения, увеличивается время заряда/разряда конденсатора и как следствие уменьшается частота на выходе генератора.

Микросхема NE555 (аналог КР1006ВИ1) — универсальный таймер, предназначена для генерации одиночных и повторяющихся импульсов со стабильными временными характеристиками. Она не дорогая и широко используется в различных радиолюбительских схемах. На ней можно собрать различные генераторы, модуляторы, преобразователи, реле времени, пороговых устройств и прочих узлов электронной аппаратуры…

Размеры для разных типов корпусов

КОРПУС — РАЗМЕРЫ PDIP (8) — 9.81 мм × 6.35 мм SOP — (8) — 6.20 мм× 5.30 мм TSSOP (8) — 3.00 мм× 4.40 мм SOIC (8) — 4.90 мм× 3.91 мм

Структурная схема NE555


Электрические характеристики

ПАРАМЕТРУСЛОВИЯ ИСПЫТАНИЙSE555NA555 NE555 SA555ЕД. ИЗМ.
MINTYPMAXMINTYPMAX
Уровень напряжения на выводе THRESVCC = 15 В9.41010.68.81011.2В
VCC = 5 В2.73.342.43.34.2
Ток (1) через вывод THRES3025030250нA
Уровень напряжения на выводеTRIGVCC = 15 В4.855.24.555.6В
TA = от –55°C до 125°C36
VCC = 5 В1.451.671.91.11.672.2
TA = от –55°C до 125°C1.9
Ток через вывод TRIGпри 0 В на TRIG0.50.90.52мкA
Уровень напряжения на выводе RESET0.30.710.30.71В
TA = от –55°C до 125°C1.1
Ток через вывод RESETпри VCC на RESET0.10.40.10.4мA
при 0 В на RESET–0.4–1–0.4–1.5
Переключающий ток на DISCH в закрытом состоянии2010020100нA
Переключающее напряжение на DISCH в открытом состоянииVCC = 5 В, IO = 8 мA0.150.4В
Напряжение на CONTVCC = 15 В9.61010.491011В
TA = от –55°C до 125°C9.610.4
VCC = 5 В2.93.33.82.63.34
TA = от –55°C до 125°C2.93.8
Низкий уровень напряжения на выходеVCC = 15 В, IOL = 10 мA0.10.150.10.25В
TA = от –55°C до 125°C0.2
VCC = 15 В, IOL = 50 мА0.40.50.40.75
TA = от –55°C до 125°C1
VCC = 15 В, IOL = 100 мА22.222.5
TA = от –55°C до 125°C2.7
VCC = 15 В, IOL = 200 мA2.52.5
VCC = 5 В, IOL = 3.5 мATA = от –55°C до 125°C0.35
VCC = 5 В, IOL = 5 мA0.10.20.10.35
TA = от –55°C до 125°C0.8
VCC = 5 В, IOL = 8 мA0.150.250.150.4
Высокий уровень напряжения на выходеVCC = 15 В, IOH = –100 мA1313.312.7513.3В
TA = от –55°C до 125°C12
VCC = 15 В, IOH = –200 мA12.512.5
VCC = 5 В, IOH = –100 мA33.32.753.3
TA = от –55°C до 125°C2
Потребляемый токНизкий уровень на выходе, без нагрузкиVCC = 15 В10121015мA
VCC = 5 В3536
Низкий уровень на выходе, без нагрузкиVCC = 15 В910913
VCC = 5 В2425

Таймер 555 (КР1006ВИ1) – для новичков в радиоделе

ВИДЕО ПО ТЕМЕ: Задающий генератор на микросхеме NE555
NE — аналоговая интегральная схема, универсальный таймер — устройство для формирования генерации одиночных и повторяющихся импульсов со стабильными временными характеристиками. Впервые выпущен в году компанией Signetics под обозначением NE Сдвоенная версия выпускается под обозначением , счетверенная — под обозначением Представляет собой асинхронный RS-триггер со специфическими порогами входов, точно заданными аналоговыми компараторами и встроенным делителем напряжения.

Генератор можно использовать во многих случаях при работе со схемами Дополнив прибор колебательным контуром, настроенным на радиочастоту, можно получить как мы получали ранее генератор биений, с помощью которого можно проверять радиоприёмники Полученный высокочастотный сигнал — это амплитудно-модулированные колебания.

Таймер на включение — выключения в автомобиле NE 555 (видео)

В автомобиле очень много устройств призванных работать временно, то есть не постоянно а время от времени. Это и различные подогреватели и указатели поворотов (ленивый указатель поворотов) и турботаймеры и устройства включающие камеры заднего хода не сразу, а через какое-то время, то есть с задержкой. Так вот, везде в этих случаях используется таймер, который и задет для исполняющего устройства период его работы или отключения. То есть таймер в машине применяется часто и много где. Мы даже уверены в том, что не все случаи смогли упомянуть и еще несколько вариантов вы можете предложить сами, а может ради них и зашли к нам на страничку. Если это действительно так, то вы здесь как раз и найдете что вам надо, то есть таймер для включения, а равно и отключения исполнительного устройства на машине, в автомобиле.

Таймер включения — отключения в автомобиле на микросхеме NE555

Схема таймера включения — отключения в автомобиле

Вот так работает эта микросхема. Некоторые уже догадались, что заряжается электролитический конденсатор фактически через резистор 1 мОм и 10 кОм, то есть именно от их потенциала, номинала и будет зависеть время зарядки конденсатора, а значит и время срабатывания таймера. В итоге есть два пути изменения время срабатывания таймера. Первый, это изменять номинал резисторов. Второй, изменять емкость конденсатора. Сразу скажем, что изменение емкости конденсатора дает более значимый результат. А вот весь алгоритм срабатывания таймера реализован в самой микросхеме. Вот собственно и вся схема и принцип ее работы. Осталось лишь сказать, что если вам необходимо управлять большими токами, то здесь как раз и используется сборка на транзисторе (можно взять КТ815Б) и реле 12 вольт, которая так неумело подрисована к рисунку. Само собой реле можно использовать с нормально замкнутым или разомкнутыми контактами, а значит на выходе можно получить включение или отключение. То есть нужным образом коммутировать цепь. Это как раз и будет подтверждать наш заголовок, что микросхема – таймер может обеспечивать как включение, так и отключение каких – либо устройств в автомобиле.

Видео о работе таймера на микросхеме

Одновибраторы — Прикладная электроника

Одновибратор — это устройство, которое по внешнему сигналу вьдает один-единственный импульс определенной длительности, не зависящей от дли­тельности входного импульса. Запуск происходит либо по фронту, либо по спаду входного импульса. При этом длительность запускающего импульса особой роли не играет, лишь бы она была не больше длительности вырабатываемого одновибратором импульса, т.е. tи зап

Для одновибратора без перезапуска возникновение на входе нового перепада напряжений той же полярности во время действия выходного импульса игнорируется, для одновибратора с перезапуском дли­тельность выходного импульса в этот момент начинает отсчитываться зано­во. Как и в случае мультивибраторов, существует огромное количество схе­мотехнических реализаций этого устройства.

Схема одновибратора приведена на рис. 4.8, а. Он выполнен на двух элементах логики типа 2И-НЕ путем введения положительной обратной связи (выход второго элемента соединен с входом первого).

В исходном состоянии на выходе элемента Э2 имеется уровень “1”, а на выходе элемента Э1- “0”, так как на обоих его входах имеется “1”(запускающие импульсы представляют отрицательный перепад напряжения). При поступлении на вход запускающего отрицательного перепада напряжения на выходе первого элемента появится уровень “1”, т.е. положительный скачок, который через конденсатор С поступит на вход второго элемента. Элемент Э2 инвертирует этот сигнал и уровень “0” по цепи обратной связи подается на второй вход элемента Э1. На выход

элемента Э2 поддерживается уровень “0” до тех пор, пока не зарядится конденсатор С до уровня Uc пор = U1 — Uпор, а напряжение на резисторе R не достигнет порогового уровня Uпор (рис. 4.8, б).

Длительность выходного импульса одновибратора может быть определена с помощью выражения

При работе с цифровыми устройствами достаточно часто требуется формировать импульсы определённой длительности. Эту задачу выполняют специальные устройства — формирователи импульсов. Простейшие формирователи импульсов могут быть реализованы на логических элементах.

Укорачивающие одновибраторы

Рассмотрим схему, приведённую на рисунке 1.

Рисунок 1. Схема укорачивающего одновибратора (ждущего мультивибратора)


Рисунок 2. Временные диаграммы укорачивающего одновибратора

Как видно из этих временных диаграмм, одновибратор, схема которого приведена на рисунке 1, вырабатывает одиночный импульс по переднему фронту входного сигнала. Длительность импульса на выходе такой схемы будет равна времени задержки инвертора.

Если требуется длительность выходного импульса, большая времени задержки одиночного инвертора, то можно применить дополнительные элементы задержки на пассивных RC элементах. Пример подобной схемы одновибратора приведён на рисунке 3, а временные диаграммы этой схемы — на рисунке 4.

Рисунок 3. Схема укорачивающего одновибратора с использованием RC элементов задержки

Длительность импульса равна времени разряда конденсатора до порогового значения Uпор

Рисунок 4. Временные диаграммы укорачивающего одновибратора с использованием RC элементов задержки.

Таймер (от англ. time — время)КР1006ВИ1 представляет особую разновидность универсальных микросхем, совмещающих в одном кристалле аналоговые и цифровые функции. Основное назначение таймеров — формирование импульсов различной длительности и периодичности. На их базе очень легко организовать одновибраторы, мультивибраторы, реле времени, формирователи, различные преобразователи и многие другие узлы аппаратуры. Отдельные типы таймеров различаются точностью, временным диапазоном, режимом питания, конструктивным оформлением и т. п. Таймеры широко используют в импульсных устройствах.

Таймер КР1006ВИ1 выполнен на биполярных транзисторах. Его функциональная схема изображена на рис. 2.36. Он состоит из пяти основных узлов: двух компараторов напряжения DA1 и DA2, асинхронного RS-триггера DD1, транзисторного ключа VT1 с открытым коллектором и двухтактного выходного усилителя на транзисторах VT2 и VT3. Делитель напряжения Rl—R3 обеспечивает образцовое напряжение на входах компараторов. Сопротивления резисторов Rl—R3 выполняют с большой точностью, благодаря чему значения опорного напряжения у разных экземпляров таймеров одинаковы и равны соответственно 1 /зUп и 2 /зUп.

NE555

Делитель напряжения выполнен так, чтобы иметь возможность изменять образцовое напряжение, например, подключением внешних резисторов параллельно резисторам R1 или R2, R3 таймера.

Отметим важную особенность таймера — при работе во временном режиме напряжение питания не влияет на длительность формируемых импульсов. Объясняется это тем, что с изменением питающего напряжения пропорционально меняется образцовое напряжение, а значит, и порог срабатывания компараторов.

Выходной усилитель — двутактный, благодаря чему нагрузка, подключаемая к выходу 1, вторым выводом может быть присоединена как к общему проводу, так и к плюсовому проводу питания. Допустимый выходной ток (при обоих состояниях выхода) I вых mах = 100 мА. Выходное сопротивление Rвых ≈10 Ом.

Транзистор VT1 с открытым коллектором работает синхронно с тран зистором VT2. Выход 2 используют для подключения внешних цепей обратной связи, а также как дополнительный выход. Максимальный коллекторный ток транзистора VT1 — 100 мА.

Временные характеристики устройств, создаваемых на основе таймера, задаются параметрами внешней RC-цепи, конденсатор которой подключают к выводу 7 и к общему проводу, а резистор — выводам 8 и 7. При закрытом транзисторе VT1 происходит зарядка конденсатора, после открывания транзистора VT1 конденсатор разряжается.

Напряжение питания таймера КР1006ВИ1 Uп = 5. 15 В. Таймер допускает сопряжение с микросхемами ТТЛ и КМОП, а также с мощными транзисторами, реле, светодиодами и т. д. В отсутствие нагрузки таймер потребляет ток =3,5 мА при Uп = 5 В и 10 мА при 15 В.

Как отмечалось, таймеры являются универсальными приборами. На основе таймеров может быть реализовано множество устройств, как связанных с временными процессами (одновибраторы, генераторы импульсов, реле времени и т. п.), так и мгновенного действия,— исполнительные устройства, триггеры и др.

Читайте также: