Свип генератор до 150 мгц своими руками схема

Добавил пользователь Владимир З.
Обновлено: 04.10.2024

Собираем генератор сигналов – функциональный генератор. Часть 1.

На этом занятии Школы начинающего радиолюбителя мы с вами продолжим наполнять нашу радиолабораторию необходимым измерительным инструментом. Сегодня мы начнем собирать функциональный генератор. Данный прибор необходим в практике радиолюбителя для настройки различных радиолюбительских схем – усилителей, цифровых устройств, различных фильтров и множества других устройств. К примеру, после того как мы соберем этот генератор, мы сделаем маленький перерыв в ходе которого изготовим простое светомузыкальное устройство. Так вот, что бы правильно настроить частотные фильтры схемы, нам как раз очень пригодится этот прибор.

Почему данный прибор называется функциональный генератор, а не просто генератор (генератор низкой частоты, генератор высокой частоты). Прибор, который мы изготовим, генерирует на своих выходах сразу три различных сигнала: синусоидальный, прямоугольный и пилообразный. За основу конструкции мы возьмем схему С. Андреева, которая опубликована на сайте в разделе: Схемы – Генераторы.

Для начала нам необходимо внимательно изучить схему, понять принцип ее работы и собрать необходимые детали. Благодаря применению в схеме специализированной микросхемы ICL8038 которая как раз предназначена для построения функционального генератора, конструкция получается довольно-таки простой.





Конечно, цена изделия зависит и от производителя, и от возможностей магазина, и от многих других факторов, но в данном случае мы преследуем одну цель: найти необходимую радиодеталь, которая была бы приемлемого качества и главное – по карману. Вы наверное заметили, что цена микросхемы сильно зависит от ее маркировки (АС, ВС и СС). Чем дешевле микросхема, тем хуже ее характеристики. Я бы порекомендовал остановить свой выбор на микросхеме “ВС”. У нее характеристики не очень сильно отличаются от “АС”, но намного лучше чем у “СС”. Но в принципе, конечно, пойдет и эта микросхема.

Собираем простой функциональный генератор для лаборатории начинающего радиолюбителя


А так же выкладываю даташит (техническое описание) микросхем ICL8038 и КР140УД806:

Даташит ICL8038 (151.5 KiB, 6,871 hits)


Даташит КР140УД608 (130.7 KiB, 4,016 hits)

Я уже собрал необходимые детали для сборки генератора (часть у меня была – постоянные сопротивления и полярные конденсаторы, остальные куплены в магазине радиодеталей):


Самыми дорогими деталями оказались микросхема ICL8038 – 145 рублей и переключатели на 5 и 3 положения – 150 рублей. В общей сложности на эту схему придется потратить около 500 рублей. Как видно на фотографии, переключатель на пять положений – двухсекционный (односекционного не было), но это не страшно, лучше больше, чем меньше, тем более, что вторая секция нам возможно пригодится. Кстати, эти переключатели абсолютно одинаковые, а количество положений определяется специальным стопором, который можно установить на нужное число положений самому. На фотографии у меня два выходных разъема, хотя по идее их должно быть три: общий, 1:1 и 1:10 . Но можно поставить небольшой переключатель (один выход, два входа) и коммутировать нужный выход на один разъем. Кроме того хочу обратить внимание на постоянный резистор R6. Номинала в 7,72 МОм в линейке мегаомных сопротивлений нет, ближайший номинал – 7,5 МОм. Для того, чтобы получить нужный номинал придется использовать второй резистор на 220 кОм, соединив их последовательно.

Хочу обратить ваше внимание также на то, что сборкой и наладкой этой схемы собирать функциональный генератор мы не закончим. Для комфортной работы с генератором мы должны знать какая частота генерируется в данный момент работы, или нам бывает необходимо установить определенную частоту. Чтобы не использовать для этих целей дополнительные приборы, мы оснастим наш генератор простым частотомером.

Во второй части занятия мы с вами изучим очередной способ изготовления печатных плат – методом ЛУТ (лазерно-утюжный). Саму плату мы будем создавать в популярной радиолюбительской программе для создания печатных плат – SPRINT LAYOUT.

Как работать с этой программой, я вам пока объяснять не буду. На следующем занятии, в видео файле, покажу как создать нашу печатную плату в этой программе, а также весь процесс изготовления платы методом ЛУТ.

Генератор синусоидальных сигналов частотой от 1 Гц до 40 МГц с регулировкой уровня выходного сигнала и встроенным измерителем уровня выходного сигнала (Up/p), а также с режимом генератора качающейся частоты (ГКЧ) с произвольным выбором границ в диапазоне от 1 Гц до 40 МГц







Предлагаю наборы для сборки генератора (GEN) синусоидальных сигналов 1 Гц - 40 МГц с режимом генераторы качающейся частоты (ГКЧ/WOB), дополнительным выходом пилообразного напряжения для синхронизации осциллографа, а также выходом 0/5 В прямоугольных импульсов с частотой качания генератора. Данное устройство разработал польский радиолюбитель Adam Sobczyk (SQ5RWQ). Данная конструкция была опубликована в журнале ELEKTRONIKA PRAKTYCZNA.

Устройство собрано с применением готового модуля DDS синтезатора AD9850, что значительно упрощает монтаж. Причём использоваться могут оба существующих в продаже модуля DDS AD9850. Конструктивно устройство состоит из двух печатных плат - основной и контроллера. На основной плате установлены разъёмы для платы контроллера, разъёмы для модулей синтезаторов (одновременно может использоваться только одна плата синтезатора), контактные штыри для внешних подключений, винтовой клеммник подачи питания, собраны стабилизаторы питающих напряжений +5В и +9В, в также широкополосный усилитель ВЧ сигнала. На плате контроллера установлен двухстрочный ЖКИ дисплей, энкодер выбора режимов работы и настройки, переменный резистор регулировки уровня выходного сигнала.

Выбор режима работы GEN - генератор или WOB - Wobbulator/ГКЧ выбирается при включении прибора нажатием и удержанием кнопки энкодера. При появлении приветственного меню нужно нажать кнопку энкодера и дождаться появления меню в котором вращением энкодера нужно выбрать режим GEN или WOB и затем подтвержить выбор нажатием на кнопку энкодера. В следующем меню аналогично выбирается режим работы цифрового выхода прямоугольных импульсов 0-5 В, т.е. вращением энкодера выбирается режим ON или OFF и нажатием на кнопку энкодера подтверждается выбор. Выбранные режимы будут сохраняться в энергонезависимой памяти при последующих включениях. Чтобы выбрать другой режим работы нужно обесточить прибор и снова подать напряжение, войти в меню выбора режимов работы и выбрать нужный режим. В режиме генератора шаг перестройки изменяется по кругу нажатием на кнопку энкодера. В режиме ГКЧ нажатием на кнопку энкодера выбирается активный пункт меню - напротив активного (который можно изменять в данный момент) в данный момент параметра светится звёздочка "*". При вращении энкодера значение выбранного параметра будет изменяться. Переключение между параметрами подлежащим изменению происходит по кругу. Прибор находится в режиме генерации колебаний когда на экране нет звёздочки, т.е. все параметры выбраны.


Схема принципиальная платы управления/индикации приведена ниже, а также здесь >>>


Принципиальная схема основной платы приведена ниже, а также здесь >>>


Прибор работает в двух режимах:
1) Генератор синусоидальных сигналов частотой 1 Гц - 40 МГц
2) Генератор качающейся частоты с диапазоном качания синусоидального сигнала от 1 Гц - 40 МГц.

В первом режиме на дисплее отображается частота выходного сигнала с точностью до 1 Гц, выбранный шаг перестройки частоты (выбирается нажатием на кнопку встроенную в энкодер, т.е. нажатием на ручку энкодера) и уровень выходного напряжения в Вольтах от пика до пика - Up/p. Шаг перестройки выбирается по кругу из сетки частот 1 Гц, 10 Гц, 100 Гц, 1 кГц, 10 кГц, 100 кГц, 1 МГц нажатием на кнопку энкодера. Уровень выходного напряжения практически совпадает с показаниями осциллографа, частота выходного сигнала соответствует точно. Уровень выходного сигнала с повышением частоты уменьшается, это обусловлено особенностью работы самой AD9850. На низких частотах выходное напряжение для различных модулей DDS составляет порядка 4 Вольт и уменьшается до 1 Вольта на частоте 40 МГц. Точнее, с чистой синусоидой на выходе, у меня получилось так:
40 МГц - Up/p=0,89 В
35 МГц - Up/p=1,18 В
30 МГц - Up/p=1,67 В
25 МГц - Up/p=2,09 В
20 МГц - Up/p=2,38 В
15 МГц - Up/p=2,62 В
10 МГц - Up/p=2,99 В
5 МГц - Up/p=3,37 В
1 МГц - Up/p=3,66 В
Затем практически без изменений до 30 Гц и потом с плавным снижением до Up/p=2,08 В на частоте 5 Гц и до Up/p=0,86 В на частоте 1 Гц.

Во втором режиме на дисплее отображается частота колебаний, шаг перестройки частоты, нижняя и верхняя границы колебания частоты генератора. Выбор и изменение параметров выполняется энкодером по аналогии с первым режимом работы - нажатием и вращением ручки энкодера. Частота колебаний выбирается от 1 Гц до 40 МГц с шагом 1 Гц, шаг перестройки по кругу из сетки частот 1 Гц, 10 Гц, 100 Гц, 1 кГц, 10 кГц, 100 кГц, 1 МГц, верхняя и нижняя частота колебаний от 1 Гц до 40 МГц, при этом сначала выставляется верхняя граница, а затем нижняя, поскольку есть программное ограничение - нижняя частота всегда меньше либо равна верхней.

Правильно собранное устройство из исправных :) деталей начинает работать сразу. До установки платы индикации/контроллера и модуля AD9850, подайте питающее напряжение на основную плату и проверьте наличие питающих напряжений +9 В и +5 В после стабилизаторов 7809 и 7805 соответственно. Затем проверьте уровни напряжений на выводах транзисторов широкополосного усилителя мощности. Напряжения должны быть такими: Q1 (коллектор - 6,65 В; эмиттер - 1,4 В; база - 2,1 В), Q2 (эмиттер - 7,37 В; коллектор - 2,5 В), Q3 (коллектор - 5,47 В; эмиттер - 1,74 В). При необходимости, подстроечным резистором на плате модуля AD9850 необходимо выставить скважность прямоугольных импульсов на выходе генератора равной 2 (коэффициент заполнения 0,5), т.е. меандр.

Платы разработаны для возможности установки в стандартный пластиковый корпус КМ-60, но в идеале, конечно же, применить металлический корпус :) Схемы авторские без изменений, немного скорректировал распиновку разъёмов межплатных соединений, но схема остаётся прежней, перерисовывать её не вижу смысла :)

Стоимости печатных плат и наборов для сборки такие:

Стоимость комплекта из двух печатных плат (основная 140х90 мм и индикации 115х45 мм) с маской и маркировкой - 300 грн.

Если кому то нужен, отдельно запрограммированный микроконтроллер - 85 грн.

Стоимость набора для сборки генератора (запограммированный микроконтроллер с панелькой, печатные платы и все компоненты для них, включая стойки, винты, шайбы, гайки, радиаторы, энкодер, переменный резистор, ручки регуляторов, ЖКИ дисплей 16х2) без учёта модуля AD9850 - 830 грн.

Стоимость собранных и проверенных плат генератора (основная и плата контроллера/индикации) без учёта модуля AD9850 - 1200 грн.

Модуль генератора-синтезатора частоты AD9850 - 650 грн. (кладу в комплект такой, какой есть в наличии, если тип принципиален, то оговаривайте заранее, я разницы в работе плат разных типов не увидел). Данный генератор выполнен на базе микросхемы AD9850 фирмы Analog Devices, представляющей собой полный DDS (Direct Digital Synthesis) синтезатор частоты с встроенным компаратором. Такие синтезаторы уникальны своей точностью, практически не подвержены температурному дрейфу и старению .

Обнаружен небольшой "глюк", скорее всего программный - подтормаживает энкодер при вращении. Мне не мешает, но лучше от этого избавиться. Как побороть пока не знаю :( Но плюсы прибора перекрывают его минусы :) Я сколько искал, не нашёл настолько простого и адекватного прибора.

Состав набора можно увидеть здесь >>>

Краткая инструкция и описание здесь >>>

Дисплей может быть с синей подсветкой и белыми знаками , либо с жёлто-зелёной подсветкой и серыми знаками .

Заказы можно оформлять через форму обратной связи или по телефону указанному в разделе контакты, доставка и оплата

Это мой вариант широко известного синтезатора частоты на базе китайской
платы на микросхеме AD9851 под управлением Arduino UNO.
Синтезатор частоты обладает несколькими дополнительными функциями, вроде генератора качающейся частоты и работы в качестве гетеродина (с вычитанием промежуточной частоты). Подробно об этом под катом.

view1

ad9850-module


примерная схема платы DDS такова: (представлена для варианта на AD9850)

В моём варианте устройства предусмотрены 3 режима работы (переключение тумблером на 3 положения):

1. Режим генератора.
В этом режиме синтезатор работает как генератор синусоидального сигнала от 5Гц до 60МГц (микросхема AD9851 позволяет синтезировать частоты до 70 мгц, но, учитывая снижение при частотах выше 50 МГц амплитуды сигнала и его качества, я ограничил диапазон). Шаг изменения можно последовательно менять кнопкой энкодера от 1 ГЦ до 1 МГц (1Гц, 10Гц, 100Гц, 1КГц, 10КГц, 100КГц, 1МГц). Так же при нажатии на дополнительную кнопку в режиме генератора происходит переключение к величине шага 1КГц из любой позиции.

2. Режим работы в качестве гетеродина
В этом режиме на дисплей выводится частота с учётом ПЧ (Fвых = Fдисп + Fпч).
Нужные значения ПЧ заносятся в программу перед заливкой её в Arduino. Выбор ПЧ
последовательно осуществляется дополнительной кнопкой.

3. Режим качания частоты
В этом режиме происходит качание частоты начиная от частоты на дисплее и вверх до достижения выбранного предела. Ширина качания в этом режиме выбирается нажатием на дополнительную кнопку.

В данной программе установлены следующие величины ширины качания:
1КГц — шаг 1Гц
5КГц — шаг 1Гц
10КГц — шаг 2Гц
50КГц — шаг 5Гц
100КГц — шаг 10Гц

При необходимости величины ширины и шага можно настроить самостоятельно в программе перед заливкой её в Arduino.

Схема соединений следующая:

ardu_dds_dig

ARDU_DDS_LF.JPG

Второй усилитель предназначен для усиления в диапазоне 10КГц — 60МГц. (Реально коэффициент усиления линеен от 5 КГц)

ardu_dds_hf

Кроме того я добавил переключатель, включающий между DDS и усилителями аттенюатор (резистор 20к) дающий ослабление порядка -20ДБ.

Печатная плата усилителей (двухсторонняя):

amp_plate

Фото платы усилителей:

amp_pic

main

topview

Программа для Arduino UNO лежит по этой ссылке. Тут же и библиотека для энкодера. Возможно программа несовершенна, но работоспособна и снабжена большим количеством комментариев. Так что флаг в руки — если кто интересуется, разбирайтесь переделывайте, совершенствуйте.

back


Примеры устройства в работе:

mode_osc

mode_sweep

Генератор качающейся частоты (sweep)

mode_vco

Режим гетеродина (отображение ПЧ = 455кГц)

Гифка — демо в режиме ГКЧ. Начальная частота 1 КГц, ширина качания — 5КГц

Если вы решили всерьез заняться радиолюбительством, то вам в вашей мастерской никак не обойтись без генератора сигналов (функционального генератора, Function Generator). Промышленные образцы подобных генераторов могут стоить достаточно дорого, собственными силами генератор сигналов изготовить значительно дешевле.

Внешний вид генератора сигналов на Arduino и DDS модуле AD9833

В этой статье мы рассмотрим создание простейшего генератора сигналов на основе платы Arduino и DDS модуля AD9833, с помощью которого можно будет формировать синусоидальный, прямоугольный и треугольный сигналы с частотой до 12 МГц. Тестировать работу нашего генератора сигналов мы будем с помощью осциллографа, который можно также собрать на основе платы Arduino. Также на нашем сайте вы можете посмотреть проект генератора сигналов синусоидальной и прямоугольной формы только на основе платы Arduino, без использования дополнительных модулей.

Что такое генератор сигналов на основе прямого цифрового синтеза (DDS)

Как следует из названия, генератор сигналов может формировать различные виды сигналов заданной частоты. Аббревиатура DDS (Direct Digital Synthesis) означает прямой цифровой синтез. При этом способе любой сигнал можно сформировать в цифровом виде, а затем преобразовать его в аналоговый вид с помощью цифро-аналогового преобразователя (ЦАП). Чаще всего в современной электронике этот метод используется для формирования синусоидальных сигналов, но с его помощью можно формировать и прямоугольные, и треугольные сигналы, и вообще сигналы любой формы. Поскольку формирование сигналов происходит в цифровой форме в модуле DDS, то можно не только очень быстро переключаться между сигналами различной формы, но и также очень быстро изменять их частоту.

Принцип работы генератора сигналов AD9833

"Сердцем" нашего проекта будет микросхема AD9833, представляющая собой программируемый генератор сигналов и отличающаяся низким энергопотреблением. Микросхема (модуль) AD9833 способна формировать сигналы синусоидальной, прямоугольной и треугольной формы с максимальной частотой до 12 МГц. Таким образом, с помощью программы можно изменять частоту, фазу и форму сигналов на выходе данной микросхемы. Управляется данная микросхема по 3-х проводному интерфейсу SPI, что делает взаимодействие с ней достаточно простым. Функциональная схема микросхемы AD9833 приведена на следующем рисунке.

Функциональная схема микросхемы AD9833

Принцип работы данной микросхемы достаточно прост. Если мы посмотрим на ее функциональную схему, то мы обнаружим в ее составе аккумулятор фазы (Phase Accumulator), чья работа состоит в сохранении всех возможных значений синусоидальной волны, начиная от 0 to 2π. Также в ее схеме присутствуют SIN ROM, который преобразует информацию о фазе в амплитуду, и 10-битный ЦАП, который принимает данные от SIN ROM и преобразует их в соответствующие аналоговые значения напряжения, которые и подаются на выход микросхемы. На выходе микросхемы присутствует программно управляемый выключатель – его можно включать и выключать. Его роль мы рассмотрим далее в статье.

Основные особенности модуля AD9833:

  • цифровое программирование частоты и фазы;
  • потребляемая мощность 12.65 мВт при напряжении 3 В;
  • диапазон выходных частот от 0 МГц до 12.5 МГц;
  • разрешение 28 бит (0.1 Гц при частоте опорного сигнала 25 МГц);
  • синусоидальные, треугольные и прямоугольные выходные колебания;
  • напряжение питания от 2.3 В до 5.5 В;
  • трехпроводной интерфейс SPI;
  • расширенный температурный диапазон: от –40°C до +105°C;
  • опция пониженного энергопотребления.

Вкратце принцип работы данной микросхемы мы рассмотрели, более подробную информацию об этом вы можете посмотреть в даташите на микросхему AD9833.

Расположение выводов микросхемы AD9833 показано на следующем рисунке.

Расположение выводов микросхемы AD9833

Назначение выводов микросхемы:

VCC – плюс питания для цифровых и аналоговых цепей генератора.
DGND – цифровая земля.
SDATA – вход данных интерфейса SPI. Передача осуществляется 16-битными словами.
SCLK – вход тактового сигнала SPI. Используется второй режим работы: (CPOL = 1, CPHA = 0).
FSYNC – выбор микросхемы. Перед началом передачи данных должен быть установлен в 0, по завершении в 1.
AGND – аналоговая земля.
OUT – выход генератора.

Необходимые компоненты

  1. Плата Arduino Nano (купить на AliExpress).
  2. AD9833 DDS Function Generator (генератор сигналов AD9833) (купить на AliExpress).
  3. OLED дисплей 128х64 (купить на AliExpress - для данного проекта можно покупать модель с 4-мя контактами поскольку используется его подключение по интерфейсу I2C).
  4. Инкрементальный энкодер c кнопкой (Rotary Encoder) (купить на AliExpress - не уверен в том, что в нем есть кнопка, но она точно есть в этом лоте - купить на AliExpress № 2, но он продается, к сожалению, только по 5 штук).
  5. Регулятор напряжения LM7809 (купить на AliExpress).
  6. Конденсаторы 470 мкФ и 220 мкФ (купить на AliExpress).
  7. Конденсатор 104 пФ (купить на AliExpress).
  8. Резистор 10 кОм – 6 шт. (купить на AliExpress).
  9. Тактильный переключатель (Tactile Switches) – 4 шт. (купить на AliExpress).
  10. Зажимной контакт (Screw Terminal) 5.04mm (купить на AliExpress).
  11. Разъем типа "мама" (Female Header) и разъем типа DC Barrel Jack.
  12. Источник питания с напряжением 12 В.

Схема проекта

Схема генератора сигналов на основе платы Arduino и DDS модуле AD9833 представлена на следующем рисунке.

Схема генератора сигналов на основе платы Arduino и DDS модуле AD9833

"Сердцем" схемы является модуль AD9833, который подключен к плате Arduino. Для питания схемы используется регулятор напряжения LM7809 с подключенными к нему развязывающими конденсаторами, которые используются для фильтрации нежелательных шумов, способных оказать негативное воздействие на формируемые сигналы.

Управляет работой всей схемы плата Arduino. Для отображения информации используется OLED дисплей 128х64. Для изменения частоты формируемого сигнала мы используем три переключателя: первый устанавливает частоту в Гц, второй – в кГц, а третий – в МГц. Также мы используем кнопку для включения или отключения выхода схемы. И, наконец, в схеме используется инкрементальный энкодер (rotary encoder) вместе с подключенными к нему подтягивающими резисторами (чтобы правильно работали переключатели). Инкрементальный энкодер используется для изменения частоты, а тактильный переключатель внутри него используется для выбора формы сигнала.

Внешний вид собранной конструкции проекта генератора сигналов на Arduino

Объяснение программы для Arduino

Полный код программы приведен в конце статьи, здесь же мы кратко рассмотрим его основные фрагменты. Комментарии к коду программы переведены в конце статьи, в этом разделе я их оставил на английском языке.

Для написания кода программы нам прежде всего необходимо скачать необходимые библиотеки по следующим ссылкам:

Далее в программе мы подключим заголовочные файлы используемых библиотек. Библиотека AD9833.h используется для работы с DDS модулем AD9833, а библиотека math.h – для выполнения ряда математических операций.

Бывает так, что одного СВЧ генератора на рабочем месте не хватает, или же им кто-то пользуется, а проверить например смеситель (усилитель, АЦП…) очень нужно. А ещё стационарные СВЧ генераторы довольно большие и тяжёлые, лично мне часто лень их переносить и освобождать место на рабочем столе. По этим причинам два года назад я сделал свой маленький генератор, первую версию.

Первая версия USB генератора

Немного об элементной базе

Генератор построен на микросхеме HMC833 (или HMC830), ФАПЧ со встроенным ГУН и микросхеме HMC625, усилитель с переменным коэффициентом усиления. В качестве опорного генератора можно использовать генераторы ГК155-П или CB3LV с частотой 25…100 МГц. В первой версии генератора для управления HMC833 и HMC625 я решил использовать микросхему FT232RL в режиме bit bang, вдохновившись статьями про этот режим в интернете.

Характеристики

— Диапазон частот 25…6000 МГц, если используется микросхема HMC833;
— Диапазон частот 25…3000 МГц, если используется микросхема HMC830;
— Регулировка сигнала по мощности, 31.5 дБ, с шагом 0,5 дБ;
— Точность настройки частоты, ~3 Гц;
— Максимальная измеренная мощность сигнала на частоте 1 ГГц – 17 дБм;
— Максимальная измеренная мощность сигнала на частоте 2 ГГц – 16 дБм;
— Максимальная измеренная мощность сигнала на частоте 3 ГГц – 12 дБм;
— Питание и управление от microUSB.

Все остальные характеристики можно узнать в документации на применённые мной микросхемы.

Немного о недостатках первой версии

Схема первой версии была не лишена недостатков:
— во первых, как я уже говорил, для управления синтезатором и усилителем по SPI использовалась микросхема FT232RL в режиме bit bang. Из-за этого управление было медленным. Я впервые использовал микросхему FT232RL и не знал о такой особенности.
— во вторых, я использовал комплектующие, которые у меня были в наличии. Из-за этого генератор получился дорогим, а некоторые элементы сложно достать.
Но в целом генератор себя оправдал, часто помогая мне в работе.

Исправление ошибок

Спустя два года я решил избавится от этих недостатков и сделал вторую версию генератора.
Микросхему FT232RL я заменил микроконтроллером STM32F103C8T6, вместо дорогого генератора ГК155-П-100 МГц можно установить CB3LV-3I-25M0000 (или другой), ну и по мелочи. Теперь все элементы для генератора можно купить у китайцев на алиэкспресс, что не может не радовать.




Печатную плату я проектировал в Altium Designer, программа для STM32 написана в IAR Embedded Workbench, программа управления для ЭВМ написана с использованием QT, Visual Studio и библиотеки HID API. Поскольку использован класс USB HID, то установка драйверов не требуется.

Собрать этот USB генератор можно самостоятельно, для этого я прикладываю все необходимые файлы. Без ошибок собранный генератор в регулировке и настройке не нуждается, только в прошивке.


Заключение

На данный момент программное обеспечение пока далеко от финального и обладает только базовыми настройками, такими как установка частоты и усиления. В ближайшем будущем я планирую добавить режимы ГКЧ и возможно (если получится) импульсного генератора.

Теперь немного картинок со спектроанализатора R&S FSL3 и в самом конце ссылки на исходные файлы. К сожалению спектроанализатор у меня на работе только до 3х ГГЦ:








Инструкция по прошивке микроконтроллера

Необходим программатор st-link v2

0) Желательно стереть микроконтроллер утилитой STM32 ST-LINK Utility (на всякий случай)

1) Надо скачать загрузчик, файл stm32_MyDfu.rar от сюда
распаковать HEX, прошить утилитой STM32 ST-LINK Utility
после этого должен появится в диспетчере устройств девайс stm32 dfu (не помню точно)

Читайте также: