Светодиодный драйвер на pt4115 своими руками

Добавил пользователь Евгений Кузнецов
Обновлено: 05.10.2024

В статье предложено универсальное зарядное устройство на микросхеме РТ4115 - импульсном стабилизаторе тока для питания светодиодов. С помощью этого устройства можно заряжать током до 1А аккумуляторы и батареи с номинальным напряжением от 2,5 В до 24 В.

Микросхема РТ4115 [1] представляет собой импульсный стабилизатор тока, и её основное назначение - питание осветительных светодиодов высокой яркости. Структурная схема этой микросхемы, взятая из [1], показана на рис. 1. В состав микросхемы входят ключ на полевом транзисторе, управляемый драйвером (GATE DRIVER), на вход которого поступают сигналы с компараторов CS COMPARATOR и UVLO COMPARATOR, а также с буферного каскада управления (DIM BUFFER), источник образцового напряжения Bandgap REF и стабилизатор напряжения питания REGULATOR. С помощью первого компаратора осуществляется контроль за потребляемым током, второй контролирует напряжение питания и выключает драйвер при его снижении до 5,1 В и менее. Стабилизатор напряжения обеспечивает стабильным напряжением 5 В все узлы микросхемы.

Рис. 1. Структурная схема микросхемы РТ4115

Микросхему выпускают в двух типах корпусов: SOT89-5 и ESOP-8. Основная схема включения для первого типа корпуса показана на рис. 2. Максимальная частота, на которой работает импульсный преобразователь, - 1 МГц. Рекомендуемая индуктивность дросселя - 68 мкГн, он должен быть рассчитан на ток больший, чем ток нагрузки. Диод должен быть быстродействующим, желательно Шоттки, конденсатор С1 - блокировочный, его установка обязательна. Резистор R1 - датчик тока, с его помощью устанавливают максимальный ток нагрузки: Iмакс = 0,1 /R1. Для этой микросхемы Iмакс = 1,2 А, а максимальная рассеиваемая мощность - 1,5 Вт, мощность нагрузки может достигать 30 Вт. Напряжение источника питания - 6. 30 В. КПД, в зависимости от варианта применения, - до 97 %. Интервал рабочих температур микросхемы - -40. +85 о С. Имеется встроенная защита от превышения температуры, порог её срабатывания - 160 о С при гистерезисе 20 о С.

Рис. 2. Схема включения для первого типа корпуса

Подавая определённые сигналы на вход DIM, можно регулировать ток нагрузки от 1макс до нуля. Эти сигналы могут быть как аналоговыми (постоянное напряжение), так и импульсными. При изменении постоянного напряжения от 0,5 до 2,5 В выходной ток изменяется практически от нуля до Iмакс. При напряжении менее 0,3 В работа преобразователя прекращается. Потребляемый при этом микросхемой ток не превышает 100 мкА. Изменяя коэффициент заполнения импульсного сигнала (амплитуда напряжения - 5 В, максимальная частота - 50 кГц) от 0,02. 0,04 до 1, можно изменять выходной ток в тех же пределах относительно максимального значения.

Используя описанные выше параметры микросхемы РТ4115, на её основе можно сделать универсальное экономичное зарядное устройство (ЗУ). В отличие от ЗУ на линейных микросхемах, например, LM317 или LN200, предлагаемое устройство существенно экономичнее, поскольку стабилизатор тока на микросхеме РТ4115 импульсный.

Схема универсального ЗУ показана на рис. 3. С его помощью можно заряжать различные аккумуляторы и аккумуляторные батареи напряжением от 2,5 до 24 В. Максимальный ток зарядки - 1 А, он, конечно, зависит от мощности источника питания ЗУ. Импульсный стабилизатор тока собран на микросхеме DA1, накопительном дросселе L1 и выпрямительном диоде VD2. Конденсатор С1 - блокировочный по цепи питания, конденсатор С2 сглаживает пульсации напряжения на заряжаемом аккумуляторе, который подключают к гнёздам XS1 и XS2. Датчик тока собран на резисторе R1. Поскольку в большинстве случаев точного измерения тока зарядки не требуется, для его контроля и индикации применён стрелочный амперметр PA1 с пределом 1 А. Регулировку тока зарядки осуществляют с помощью переменных резисторов R6 (грубо) и R8 (плавно).

Рис. 3. Схема универсального ЗУ

На ОУ DA3 совместно с регулируемым источником образцового напряжения - микросхемой DA2 (параллельный стабилизатор напряжения) - реализован узел контроля и ограничения напряжения на заряжаемом аккумуляторе. Светодиод HL1 служит индикатором режима работы ЗУ. Резистор R9 - токоограничивающий. Поскольку сама микросхема РТ4115 требует минимального напряжения питания 6 В, напряжение питания ЗУ должно быть примерно на 6 В больше, чем максимальное напряжение аккумулятора или аккумуляторной батареи.

Для установки конечного напряжения зарядки используют внешний вольтметр (мультиметр), который подключают к гнёздам XS3, XS4. Сделано это для упрощения конструкции, но ничто не мешает ввести в это Зу модули цифрового амперметра и вольтметра, которые можно недорого приобрести в Интернете.

Процедура зарядки следующая. К гнёздам XS3 и XS4 подключают вольтметр и с помощью резисторов R2 (грубо) и R3 (плавно) устанавливают напряжение, до которого следует зарядить аккумуляторную батарею. Регуляторы тока (R6, R8) устанавливают на минимум и подключают батарею. При этом напряжение на неинвертирующем входе ОУ DA3 будет больше, чем на инвертирующем, поэтому на выходе ОУ будет напряжение, близкое к напряжению питания, и светодиод HL1 станет светить. Напряжение на светодиоде - около 2,6 В, оно используется как образцовое для установки тока зарядки резисторами R6 и R8. Начинается процесс зарядки.

По мере зарядки напряжение на аккумуляторной батарее увеличивается, и постепенно напряжения на входах ОУ DA3 сравниваются. Как только напряжение на инвертирущем входе превысит напряжение на неинвертирующем, на выходе ОУ напряжение уменьшится. Яркость светодиода HL1 также уменьшится или он совсем погаснет. Это приводит к тому, что напряжение на движке резистора R6, от которого зависит ток зарядки, уменьшается. В результате и ток зарядки уменьшается. Таким образом, на батарее аккумуляторов в дальнейшем поддерживается постоянное напряжение, азарядный ток уменьшается, что можно контролировать с помощью амперметра.

Рис. 4. Печатная плата устройства и расположение элементов на ней

Большая часть элементов размещена на печатной плате из фольгированного с двух сторон стеклотекстолита толщиной 1,5. 2 мм, чертёж которой показан на рис. 4. В устройстве применены переменные резисторы СП4-1, СП3-4, СП3-9 или аналогичные импортные, постоянные резисторы - для поверхностного монтажа, R1 - типоразмера 2512, остальные - типоразмера 1206. Конденсаторы С1-С3 - танталовые для поверхностного монтажа типоразмера C или D. Диод VD1 - быстродействующий Шоттки с допустимым током не менее 2. 3 А, светодиод может быть другого свечения с диаметром корпуса 3.5 мм, главное, чтобы у него номинальное напряжение было в пределах 2,5. 2,7 В. Для подключения источника питания можно применить любое гнездо. Гнезда XS1, XS2 - также любые, например зажимы "крокодил". Гнёзда XS3, XS4 должны быть рассчитаны на подключение щупов вольтметра (мультиметра). Дроссель - выводной RLB1314 [2] или бескорпусный серии MSS1038 [3]. Амперметр - М42303 со встроенным шунтом, но можно приме-нить и другой. Если его внутреннее сопротивление (шунт) 0,1.0,15 Ом, можно обойтись без датчика тока (резистора R1), его функцию сможет выполнить сам амперметр. Для этого его подключают взамен резистора R1, а контакты на плате для подключения амперметра замыкают. Соединительные провода должны быть толстые и короткие.

Как уже было отмечено выше, напряжение источника питания должно быть на 6 В больше максимального напряжения заряжаемой аккумуляторной батареи, но не более 30 В. Источник питания должен обеспечивать максимальную мощность, поступающую на аккумулятор в процессе зарядки.

Налаживание проводят в следующей последовательности. Установив движки резисторов R2 и R3 в нижнее по схеме положение, подборкой резистора R4 устанавливают максимальное значение напряжения зарядки. При напряжении питания 30 В это напряжение - 24 В.

При большом внутреннем сопротивлении аккумуляторной батареи ближе к концу её зарядки возможно скачкообразное изменение тока, при этом светодиод начнёт мигать. Эта информация может быть также полезной.

Рис. 5. Внешний вид устройства

Внешний вид устройства показан на рис. 5. В качестве корпуса была использована пластмассовая кассета от 3,5-дюймовых дискет. Она обрезана, и в ней сделаны соответствующие отверстия для резисторов, гнёзд, светодиода и амперметра. Чтобы случайно не "сбить" установленное напряжение зарядки, оси переменных резисторов R2 и R3 ручками можно не снабжать. Задняя стенка изготовлена из отрезка пластмассы толщиной 2.3 мм, на ней установлено гнездо питания.

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Световая эффективность светодиодов намного выше, чем у ламп накаливания. К примеру, световая отдача типичного белого светодиода мощностью 1 Вт составляет 50 лм/Вт и выше, в то время как для обычной лампы мощностью 60 Вт всего лишь 15 лм/Вт.

Основной проблемой, с которой приходиться сталкиваться при использовании светодиодов, является их источник питания. В случае светодиодов малой мощности с этим проблем не возникает, поскольку светодиод питается через резистор, ограничивающий ток до безопасного значения.

Для светодиодов большой мощности использование резистора, ограничивающего ток, неэффективно, поскольку он должен иметь рассеиваемую мощность в несколько ватт и обладать значительными размерами. Так же такой резистор будет сильно нагреваться во время работы, снижая при этом энергоэффективность источника света.

Лучшее решение данной проблемы — использовать источник тока. Сила испускаемого света пропорциональна току, и поэтому производители светодиодов связывают их характеристики (интенсивности, формы луча и цвет) с силой тока, а не с прямым напряжением.

Поскольку для питания светодиодов необходим источник тока с высокой эффективностью и низкой потребляемой мощностью, то лучшим источником в этом случае является импульсный стабилизатор.


Примером такого импульсного стабилизатора является интегральная микросхема-драйвер PT4115. Это своего рода понижающий конвертер. Преимуществом использования PT4115 является высокая эффективность (КПД), достигающая 97%, небольшое количество внешних компонентов, простая регулировка выходного тока, режим диммера. Микросхема PT4115 имеет защиту от перегрева, короткого замыкания.

Принципиальная схема драйвера светодиода на PT4115 показана на рисунке ниже. Его входное напряжение составляет 8…30 В. Помните, что напряжение питания модуля должно быть как минимум на 3,5 В выше, чем падение напряжения на светодиодах, включенных последовательно. Максимальное значение тока, стабилизированного PT4115, составляет около 1,2 А.

Универсальный блок питания для светодиодов на PT4115

В таблице 1 приведены значения индуктивности дросселя в зависимости от необходимого тока светодиода. Ток насыщения дросселя должен быть выше номинального тока нагрузки.

значения индуктивности дросселя

Ток выставляется с помощью резисторов R1…R4 с сопротивлением 0,3 Ом или 0,1 Ом. Резисторы R1…R3 подключены параллельно. Резистор R4 подключен к ним последовательно. Для расчета сопротивления вы можете использовать формулу, приведенную в datasheet или использовать примеры из таблицы 2.

расчета сопротивления

Яркость светодиода регулируется с помощью вывода DIM. На этот вход может подаваться постоянное напряжение в диапазоне 0,5…2,5 В, но общепринятым способом регулирования интенсивности света является ШИМ. Линейное затемнение применяется в тех устройствах, в которых изменение цвета вследствие изменения силы тока считается приемлемым.

При питании светодиодов мощностью 3 Вт и выше стоит использовать радиатор, который позволит отвести избыточное тепло от PT4115.

После того как в моем 14' мониторе сначала выгорел контроллер подсветки, а затем и одна из ламп, долго не думал и решил поменять подсветку на светодиодную. Приобрел 2 светодиодные линейки длиной 305 мм, напряжением питания 12V. На старый ламповый контроллер шло напряжение 22V, ставить КРЕНку не хотел, т.к. она сильно грелась и не было возможности стабилизировать ток.

Для стабилизации тока отлично подошел популярный на сегодняшний день драйвер PT4115, на работает от входного напряжения 6-30В и обеспечивает стабилизацию выходного тока до 1.2A. Ограничение по току для светодиодных линеек сделал в 0,45А, что более чем достаточно по яркости подсветки. Кстати величина выходного тока зависит от номинала токового шунта R5, и расчитывается так: Iвых = 0,1/R5. Также в схеме присутствует вход для диммирования и вкл/выключения подсветки.

Как подобрать драйвер (блок питания) для светодиодов

Полезные ссылки:

  • Комплектующие для сборки самодельных фитоламп
  • Фото и видео примеры самодельных фитоламп для растений

У каждого диода, в свою очередь, в описании указано падение напряжения при разных токах. Например, для красного диода 660 нм при токе 600 мА оно составит 2,5 В:

Количество диодов, которое можно подключить на драйвер, суммарным падением напряжения должно укладываться в пределы выходного напряжения драйвера. То есть на драйвер 50Вт 600 мА с выходным напряжением 60-83 В можно подключить от 24 до 33 красных диодов 660 нм. (То есть 2,5*24 = 60, 2,5*33 = 82,5).

Другой пример: Хотим собрать биколорную лампу красный + синий. Выбрали соотношение красного к синему 3:1 и хотим рассчитать, какой драйвер нужно взять для 42 красных и 14 синих диодов. Считаем: 42*2,5 + 14*3,5 = 154 В. Значит, нам потребуется два драйвера 50 Вт 600 мА, на каждый будет приходиться 21 красных и 7 синих диодов, суммарное падение напряжения на каждом получится по 77 В, что попадает в его выходное напряжение.

Теперь несколько важных пояснений:

1) Не стоит искать драйвер мощностью более 50 Вт: они есть, но они менее эффективны, чем аналогичный набор драйверов меньшей мощности. Более того, они будут сильно греться, что потребует от Вас дополнительных расходов на более мощное охлаждение. Кроме тго, драйвера мощностью более 50Вт как правило сильно дороже, например драйвер на 100Вт может быть дороже чем 2 драйвера по 50Вт. Поэтому гнаться за ними не стоит. Да и надежнее когда цепи светодиодов разделены на секции, если вдруг что-то перегорит — то сгорит не все а только чать. Поэтому выгодно разделять на несколько драйверов, а не стремиться все повесить на один. Вывод: 50Вт — оптимальный вариант, не больше.

3) Мощность диодов указывается номинальная, то есть максимально возможная. Но на максимум они никогда не запитываются (почему — см. п.2). Реальную мощность диода рассчитать очень просто: необходимо ток используемого драйвера умножить на падение напряжения диода. Например, при подключении драйвера на 600 mA к красному диоду 660 нм мы получим реальное напряжение на диоде: 0,6(А) * 2,5(В) = 1,5 Вт.

Для конструирования светодиодных светильников постоянно требуются источники питания — драйвера. При большом объеме вполне можно наладить сборку драйверов самостоятельно, но себестоимость таких драйверов получается не такой уж и низкой, а изготовление и пайка двухсторонних печатных плат с SMD-компонентами — процесс в домашних условиях довольно трудоемкий.

Я решил обойтись готовым драйвером. Нужен был недорогой драйвер без корпуса, желательно с возможностью настройки тока и диммированием.

Выбор пал на китайского производителя QIHANGвыпускающего широкий спектр данной продукции.

Характеристики драйвера






На фото видна микросхема драйвера QH7938. Поиск в интернете приводит к даташиту на эту микросхему на китайском языке Даташит явно не полный, на схеме не хватает номиналов деталей да и на драйвере элементов явно больше. И что делать с загадочными ногами DIM и RTH?

Спасибо пользователю Муськи Sarayan14 который уже ковырял данный драйвер и даже нарисовал схему.

Схему перерисовал и немного доработал


Подключаю цепочку из 9-ти трех-ваттных светодиодов. Все работает, ток стабильный 598мА, но прибор в режиме измерения переменного напряжения показывает пульсации на выходе около 1В или более 3%. Где же заявленные в характеристиках 50мВ?

Доработка №1. Уменьшаем пульсации на выходе.

Как уменьшить пульсации выходного напряжения? Правильно, конденсаторами. Конденсаторы можно поставить в двух местах — увеличить выходную емкость и добавить конденсатор на входе после мостика параллельно пленочному конденсатору на 0.22мкФ.


Для тестирования применяю стрелочный прибор в режиме измерения переменного напряжения и самодельный люксметр, измеряющий пульсации светового потока


Характеристики без конденсаторов ~0.9В и 8.7% (пульсации светового потока)

Конденсатор на выходе ожидаемо уменьшат пульсации вдвое ~0.4В и 4%

А вот 10мкФ конденсатор на входе уменьшает пульсации в 9 раз ~0.1В и 1%, правда добавление этого конденсатора значительно снижает PF (коэффициент мощности)

Оба конденсатора приближают характеристики выходных пульсаций к паспортным ~ 0.05В и 0.6%


Итак пульсации побеждены при помощи двух конденсаторов из старого блока питания.

Доработка №2. Настройка выходного тока драйвера

Основное предназначение драйверов — поддерживать стабильный ток на светодиодах. Данный драйвер стабильно выдает 600мА.

Иногда ток драйвера хочется изменить. Обычно это делается подбором резистора или конденсатора в цепи обратной связи. Как обстоят дела у этих драйверов? И зачем здесь установлены три параллельных резистора малого сопротивления R4, R5, R6?


Все правильно. Ими можно задавать выходной ток. Видимо, все драйверы одинаковой мощности, но на разные токи и отличаются именно этими резисторами и выходным трансформатором, дающим разное напряжение.

Если аккуратно демонтировать резистор на 1.9Ом, получаем выходной ток 430мА, демонтировав оба резистора 300мА.


Можно пойти и обратным путем, подпаяв параллельно еще один резистор, но данный драйвер выдает напряжение до 35В и при большем токе мы получим превышение по мощности, что может привести с выходу драйвера из строя. Но 700мА вполне можно выжать.

Итак, при помощи подбора резисторов R4, R5 и R6 можно уменьшать выходной ток драйвера (или очень незначительно увеличивать) не меняя количество светодиодов в цепочке.

Доработка 3. Диммирование

На плате драйвера имеется три контакта с надписью DIMM, что наводит на мысль, что данный драйвер может управлять мощностью светодиодов. О том же говорит и даташит на микросхему, хотя типовых схем диммирования в них не приведено. Из даташита можно почерпнуть информацию, что подавая на ногу 7 микросхемы напряжение -0.3 — 6В, можно получить плавное регулирование мощности.

Подключение к контактам DIMM переменного резистора ни к чему не приводит, кроме того, нога 7 микросхемы драйвера вообще ни к чему не подключена. Значит снова доработки.

Подпаиваем резистор на 100К к ноге 7 микросхемы


Теперь подавая между землей и резистором напряжение 0-5В получаем ток 60-600мА



Чтобы уменьшить минимальный ток диммирования, необходимо уменьшить и резистор. К сожалению, в даташите про это ничего не написано, поэтому подбирать все компоненты придется опытны путем. Меня лично устроило диммирования от 60 до 600мА.

Если нужно организовать диммирование без внешнего питания, то можно взять напряжение питания драйвера ~15В (нога 2 микросхемы или резистор R7) и подать по следующей схеме.


Ну и, напоследок, подаю ШИМ с D3 ардуино на диммирующий вход.


Пишу простейший скетч, меняющий уровень ШИМ от 0 до максимуму и обратно:

Получаю диммирование при помощи ШИМ.

Диммирование при помощи ШИМ увеличивает выходные пульсации примерно на 10-20% по сравнению с управлением постоянным током. Максимально пульсации увеличиваются примерно вдвое при установке тока драйвера в половину от максимального.

Проверка драйвера на КЗ

Токовый драйвер должен корректно реагировать на короткое замыкание. Но лучше китайцев проверить. Не люблю я такие штуки. Под напряжением что-то втыкать. Но искусство требует жертв. Закорачиваем выход драйвера во время работы:

Драйвер нормально переносит короткие замыкания и восстанавливает свою работу. Защита от КЗ есть.

Подведем итоги

  • Малые габариты
  • Низкая стоимость
  • Возможность регулировки тока
  • Возможность диммирования

Драйверы вполне годятся для тех, кто дружит с паяльником или для тех кто не дружит, но готов терпеть выходные пульсации 3-4%.

Полезные ссылки

Из цикла — коты это жидкость. Тимофей — литров 5-6 )))














Разделение LED-драйверов по типу устройства

Разделить преобразователи можно на два типа – линейные и импульсные. Оба типа применимы к световым диодам, но различия между ними заметны и по стоимости, и по техническим характеристикам.



Линейный преобразователь тока и его схема

Линейные преобразователи отличаются простотой конструкции и низкой стоимостью. Но такие драйверы имеют существенный недостаток – возможность подключения только маломощных световых элементов. Часть энергии тратится на выделение тепла, что способствует снижению коэффициента полезного действия (КПД).

Импульсные преобразователи основаны на принципе широтно-импульсной модуляции (ШИМ) и при их работе величины выходных токов обусловлены таким параметром, как коэффициент заполнения. Это означает, что изменения частоты импульсов нет, а вот коэффициент заполнения способен изменяться на величины от 10 до 80%. Такие драйверы позволяют продлить срок службы световых диодов, но имеют один недостаток. При их работе возможно наведение электромагнитных помех. Попробуем разобраться, чем это грозит человеку на простом примере.

Импульсные стабилизаторы немного крупнее

У проживающего в квартире или доме установлен кардиостимулятор. При этом в небольшой комнате установлена люстра с множеством приборов, работающих на импульсных лед драйверах для светодиодных ламп. Кардиостимулятор при этом может начать давать сбои. Конечно, это утрировано и для создания столь сильных помех нужно очень много ламп, которые находятся на расстоянии менее метра от кардиостимулятора, но все же риск присутствует.

Как подключить LED-элементы к преобразователю: способы и схемы

Светодиоды к драйверу подключаются двумя способами – последовательно или параллельно. Для примера возьмем 6 LED-излучателей с падением напряжения 2 В. При последовательном подключении понадобится драйвер на 12 В и 300 мА. При этом свечение будет ровным по всем элементам.



Схема подключения драйвера к панели или световой полосе

Подключив излучатели параллельно в группе по 3, получим возможность использования преобразователя 6 В, но уже на 600 мА. Проблема в том то, что из-за неравномерного падения напряжения одна линия будет светиться ярче, чем другая.

Зачем нужны драйверы для светодиодов и что это такое

Ответ на вопрос, что такое драйвер для светодиода, довольно прост. Это устройство, стабилизирующее напряжение и придающее ему те характеристики, которые нужны для работы LED-элементов. Чтобы было понятнее, проведем аналогию с пускорегулирующим устройством люминесцентной лампы, которая также не может работать без дополнительного оборудования. Разница лишь в том, что драйвер имеет компактный размер и умещается в корпусе светового прибора. По сути его можно назвать стабилизирующим пусковым устройством или преобразователем частоты.



Даже внутри светодиодной лампочки есть миниатюрный преобразователь малой мощности

Схема драйвера для светодиодов (светодиодных ламп) на микросхеме

Микросхемы ШИМ фактически импульсно ограничивают подачу напряжения на группу светодиодов. Именно такое решение будет наиболее совершенным.


Для определения точного номинала используемых в схеме радиоэлементов, лучше обратится к Data sheet микросхемы. (BP2833D)

Более подробно о принципах ШИМ мы уже тоже рассказывали. Если вам интересно, то это здесь!

Читайте также: