Схемы на мс34063 своими руками

Добавил пользователь Владимир З.
Обновлено: 18.09.2024

Повышающий DC/DC преобразователь для программатора Progopic на микросхеме MC34063 (4..10/14В 100мА, топология sepic)

Описанная в данной статье схема импульсного повышающего преобразователя способна преобразовывать широкий диапазон входных напряжений (4..10В) в стабильное выходное напряжение 14В при токе нагрузки до 100 мА. Схема разрабатывалась для питания от батареек программатора "PROGOPIC", но может быть с успехом использована для автономного питания любых других маломощных устройств, требующих подобного питающего напряжения. В качестве топологии преобразователя …

Повышающий DC/DC преобразователь 5..13/19В 0,5А на микросхеме MC34063 (с внешним MOSFET, топология boost)

Ниже представлена схема повышающего DC/DC конвертера, построенного по топологии boost, который, при подаче на вход напряжения 5…13В, на выходе выдает стабильное напряжение 19В. Таким образом, с помощью данного преобразователя можно получить 19В из любого стандартного напряжения: 5В, 9В, 12В. Преобразователь рассчитан на максимальный выходной ток порядка 0,5 А, имеет небольшие размеры и очень удобен. Для …

Повышающе-понижающий DC/DC преобразователь 7..14/9В 0,5А на микросхеме MC34063 (с внешним N-канальным полевым транзистором, топология sepic)

Ниже описана схема повышающе-понижающего преобразователя. За основу преобразователя была взята хорошо известная микросхема MC34063. Как следует из названия — описанный ниже преобразователь способен как повышать, так и понижать входное напряжение, в зависимости от его величины, выдавая при этом на выходе стабильные 9В. Данный преобразователь при входном напряжении 7..14В выдаёт на выходе стабильные 9В при токе …

Как работают микросхемы импульсных регуляторов серии 34063

Для того, чтобы лучше понимать, как изготавливать преобразователи напряжения на микросхемах серии 34063, давайте разберёмся, как эти микросхемы работают. На рисунке слева представлена блок-схема, на которой изображены основные составные части микросхемы 34063. Как мы видим, эта микруха состоит из источника опорного напряжения (температурно-компенсированного), компаратора, генератора с активным контуром ограничения пикового тока, вентиля (элемент "И"), триггера …

Повышающий DC/DC преобразователь 3/5В 300мА на микросхеме MC34063 (топология boost)

Понижающий DC/DC преобразователь 12/9,5В 2,5А на микросхеме MC34063 (с внешним n-канальным полевым транзистором) или самодельное автомобильное зарядное устройство для нетбука

Еще одна схема понижающего (step-down) преобразователя, которая с успехом может использоваться в качестве автомобильного зарядного устройства для нетбуков Asus EeePC 701 2G. Эта схема использует n-канальный полевой транзистор (они более распространены, чем p-канальные). За основу преобразователя была взята все та же хорошо известная микросхема MC34063. В принципе, представленная в этой статье схема аналогична схеме для …

Понижающий DC/DC преобразователь 12/9,5В 2,5А на микросхеме MC34063 (с внешним p-канальным полевым транзистором) или самодельное автомобильное зарядное устройство для нетбука

Идея создания этого преобразователя возникла у меня после покупки нетбука Asus EeePC 701 2G. Маленький, удобный, гораздо мобильнее огромных ноутбуков, в общем, красота, да и только. Одна проблема — надо постоянно подзаряжать. А поскольку единственный источник питания, который всегда под рукой — это автомобильный аккумулятор, то естественно возникло желание заряжать нетбук от него. В ходе …

Понижающий DC/DC преобразователь 12/9,5В, 1А на микросхеме MC34063 (с внешним биполярным транзистором)

Описанный в этой статье DC-DC преобразователь рассчитан на входное напряжение 12..16 В, выходное напряжение 9,5 В и выходной ток порядка 1А. Преобразователь основан на широко распространённой микросхеме MC34063. Он прост в изготовлении и достаточно дёшев, однако на большие токи не рассчитан из-за относительно низкого КПД и, как следствие, — значительного нагрева. Схема: Катушку на 4..8 …

Понижающий DC/DC преобразователь 12/5В, 300мА (топология buck)

Расчет понижающих DC-DC преобразователей на микросхемах 34063 (топология Buck) + online-калькулятор

Рассмотрим типовую схему понижающего DC/DC конвертера на микросхемах 34063: Выводы микросхемы: SWC (switch collector) — коллектор выходного транзистора SWE (switch emitter) — эмиттер выходного транзистора Tc (timing capacitor) — вход для подключения времязадающего конденсатора GND — земля (общий провод) CII (comparator inverting input) — инвертирующий вход компаратора Vcc — питание Ipk — вход схемы ограничения …

Модуль выполнен на широко распространенных электронных компонентах зарубежного производства и практически не содержит дефицитных деталей. В качестве ШИ-контроллера используется микросхема MC34063 (U1). Управляющий импульс отрицательной полярности с выводов U1 (1, 8) подается на преобразователь уровня, выполненный на транзисторе Q2, с коллектора которого, преобразованный по уровню управляющий импульс подается на входы эмиттерных повторителей (Q1, Q6), обеспечивающих управление затворами мощных полевых транзисторов (Q3, Q4). При спаде импульса и нахождении его полки в области отрицательных значений относительно баз транзисторов Q1, Q6, транзисторы эти заперты и по цепи: общий провод-выводы 8,1 (U1)-R4-ЭК (Q2)-D1(D2)-R2 (R3), - происходит подача отрицательного напряжения на затворы Q3, Q4. Q3, Q4 отпираются и находятся в этом состоянии до того, пока напряжение на "прямом" входе элемента U3.2 не станет выше напряжения на инверсном входе этого же элемента. В этом случае, соответственно, на выходе элемента U3.2 пропорционально (на разницу уровней прямого и инверсного входов кратно коэффициенту усиления ОУ) повысится напряжение, обуславливающее увеличение напряжения и на входе ОС микросхемы U1 (вывод 5). Выходной транзистор U1 (выводы 2-1,8) закроется и обесточит цепь подачи напряжения на затворы силовых ключей (Q3, Q4). Эмиттерные повторители (Q1, Q6) в этот момент откроются током через резистор R1, разряжая затворные емкости силовых ключей, обеспечивая быстрое запирание Q3, Q4 до момента, пока напряжение на прямом входе элемента U3.2 не станет ниже значения на инверсном входе этого же элемента. После чего цикл коммутации силовых ключей повторится. Таким образом производится регулирование напряжения на выходе модуля, где значение выходного напряжения определяется опорным значением напряжения, регулируемым с помощью потенциометра PR2. Регулировка ограничения тока производится потенциометром PR3, с движка которого снимается установочное значение опорного напряжения и подается на прямой вход элемента U3.1. Как только падение напряжения на инверсном входе U3.1 начнет превалировать над опорным значением, напряжение на выходе этого элемента уменьшится пропорционально (с учетом коэффициента усиления ОУ, определяемого отношением резисторов R16, R18) в соответствии с разницей значений на прямом и инверсном входах, увеличивая разницу напряжений на входах U3.2, тем самым увеличивая уровень напряжения на входе ОС U1 (вывод 5) и запирание силовых ключей.

Включение микросхемы U1 - практически стандартное, но снабженное преобразователем уровня на транзисторе Q2 для возможности работы модуля с относительно высокими входными напряжениями, непозволительными для самой MC34063. Микросхема в этом случае может быть запитана напряжением 5-15В и работает в облегченных режимах, как по напряжению, так и по току. Вывод 7 микросхемы не задействован, но может быть использован для плавного запуска модуля или как порт для выключения модуля, подключения дополнительных защитных схем. Стабилизатор питания U1 выполнен на транзисторе Q5, стабилитроне VZ2, ток стабилизации через который определяется резистором R11. R10 - балластный и ограничивает мощность, рассеиваемую на транзисторе Q5. Питание сдвоенного ОУ осуществляется стабилизатором U4. Его выходное напряжение используется и в качестве опорного.

Для модуля разработана и изготовлена двусторонняя печатная плата под SMD-компоненты размером 53Х50мм. Силовые ключи Q3, Q4 и транзистор стабилизатора Q5 расположены в ряд для возможности установки на общий радиатор подходящих размеров с площадью охлаждения не менее 50см2, если модуль предназначен для долговременной или непрерывной эксплуатации. Максимальные размеры дросселя (проекции) для размещения на плате могут составлять 16Х24мм. Плата снабжена установочными местами под ножевые клеммы (входные и выходные напряжения) дублирующими и отверстиями для провода диаметром до 1,2мм. Регулировочные потенциометры (ток, напряжение) для установки на плату использованы вертикальные многооборотные, но могут быть использованы при выносе за пределы платы (проводниками минимальной длины) и другие типы потенциометров. Резистор R10 (мощностью не менее 2Вт) следует распаивать на высоте не менее 5мм от платы. Резистор R4 может иметь мощность 0,25-0,5Вт. Резистор R20 составной и дополнительным резисторам на плате присвоены позиционные обозначения R201, R202, R203. Сборка и наладка не представляет трудностей и модуль начинает работать сразу после сборки.

При налаживании, подключив вольтметр, необходимо определить диапазон регулировки выходного напряжения вращением штифта потенциометра PR2 в ту или иную стороны, подбирая необходимый диапазон регулирования резисторами R15, соотношением резисторов делителя ОС R12, R13. Диапазон регулировки ограничения тока подбирается резистором R19.

Очень часто встаёт вопрос о том, как получить требуемое для схемы питание напряжение, имея источник с отличным от требуемого напряжения. Такие задачи делятся на две: когда: нужно уменьшить или увеличить напряжение до заданного. В этой статье будет рассмотрен первый вариант.

Как правило, можно применить линейный стабилизатор, но у него будут большие потери по мощности, т.к. разность в напряжениях он будет преобразовывать в тепло. Здесь на помощь приходят импульсные преобразователи. Вашему вниманию предлагается простенький и компактный преобразователь на MC34063.

Вид преобразователя

Эта микросхема очень универсальна, на ней можно реализовывать понижающие, повышающие и инвертирующие преобразователи с максимальным внутренним током до 1,5А. Но в статье рассмотрен только понижающий преобразователь, остальные будут рассмотрены позже.

Размеры получившегося преобразователя – 21х17х11 мм. Такие размеры получилось из-за использования совместно выводных и SMD деталей. Преобразователь содержит всего 9 деталей.

Вид сзади

Было изготовлено 2 печатные платы: слева – с делителем напряжения на делителе напряжения, выполненном на двух резисторов типоразмера 0805, справа с переменным резистором 3329H-682 6,8кОм. Микросхема MC34063 в корпусе DIP, под ней два чип танталовых конденсатора типоразмера – D. Конденсатор C1 –типоразмера 0805, диод выводной, резистор ограничения тока R1 – на пол вата, при малых токах, меньше 400 мА, можно поставить резистор меньшей мощности. Индуктивность CW68 22мкГн, 960мА.

Осциллограмма
Осциллограмма

Осциллограммы пульсаций, R огранич = 0,3 Ом

На этих осциллограммах показаны пульсации: слева – без нагрузки, справа – с нагрузкой в виде сотового телефона, ограничивающий резистор 0,3 Ом, снизу с той же нагрузкой, но ограничивающий резистор на 0,2 Ом.

Осциллограмма

Осциллограмма пульсации, R огранич = 0,2 Ом

Снятые характеристики (замерены не все параметры), при входном напряжении 8,2 В.

таблица

Применение

Этот адаптер был изготовлен для подзарядки сотового телефона и питания цифровых схем в походных условиях.

Схема с переменны резистором

В статье была приведена плата с переменным резистором в качестве делителя напряжения, размешаю к ней и соответствующею схему, отличие от первой схемы только в делителе.

Схема обновлена 15 марта 2011 года

Очень даже!
Жаль, я на 3,3 Uвых искал, и помощьнее надо (1,5А-2А).
Может доработаете?

В статье приведена ссылка на калькулятор для схемы. По нему для 3,3В нужно поставить R1=11k R2=18k.
Если вам нужны токи по более, то нужно или транзистор добавлять, или использовать более мощный стабилизатор, например LM2576.

Если поставить транзистор внешний — защита по току останется? К примеру R1 поставить 0,05 ОМ защита должна срабатывать при 3 A, т.к. микруха сама не выдержит этот ток то ес-но надо усилить полевиком.

Думаю, ограничение (у этой микросхемы ограничение тока, а не защита) остаться должно будет. В даташите есть схема на биполярнике и расчёты для увеличения тока. Для более больших токов могу посоветовать LM2576, она как раз до 3А.

В самом начале статьи написано – что статья отправлена на доработку.
Во время расчётов допустил ошибки, и из-за них схема так сильно греться, нужно правильно подобрать конденсатор C1 и индуктивность, но пока до этой схемы всё руки не доходят.
Мобильник отключает заряд, по превышение определённого напряжения, для большинства телефонов это напряжение более 6В с чем-то вольт. Заряжать телефон лучше током поменьше, аккумулятор подольше проживёт.

Спасибо Alex_EXE за ответ! Заменил все компоненты по калькулятору, схема не греется вообще, напряжение на выходе 5,7В а при нагрузке (зарядке мобильного) выдает 5В — это норма, да и по току 450mA, детали выбрал по калькулятору, все сошлось в доли вольта. Катушку брал на 100мкГн (калькулятор выдал: не менее 64мкГн, значит можно более:). Все компоненты распишу позже, как испытаю, если кому интересно.
Таких сайтов как у Вас Alex_EXE (русскоязычных) не так уж и много на просторах интернета, развивайте его и дальше, если можете. Спасибо Вам!

Рад, что помог 🙂
Распишите, кому-нибудь может пригодиться.

Сейчас хочу на этой микрухе сделать зарядку от батареек но нужно четко понимать эти два параметра.

Чем пульсаций меньше – тем лучше. У меня стоит 100мкФ и уровень пульсаций 2,5-5%, в зависимости от нагрузки, у вас стоит 1000мкФ – этого более чем достаточно. Частота пульсации в пределах нормы.

Тут я вам точно сказать не могу, хотя частота от 5 до 100КГц для большинства задач будет нормальной. В любом случае это зависит от задачи, более всего требовательны к частоте аналоговые и точные приборы, где колебания могут наложиться на рабочие сигналы тем самым вызвав их искажения.

Нашёл то, что надо! Очень кстати. Большое Вам Alex_EXE спасибо.

Алекс, обьясните пожалуйста чайнику, в случае ввода в схему переменного резистора, в каких пределах будет меняться напряжение?

можно ли используя данную схему сделать источник тока 6,6 вольт с регулируемым напряжением, Umax чтоб не превышало эти самые 6,6 вольт. хочу сделать несколько групп светодиодов (раб. U 3,3 вольт и ток 180 ма), в каждой группе 2 св.диода, послед. соединенны. источник питания 12вольт, но если необходимо могу приобрести другой. Спасибо если ответите…))

К сожалению данная конструкция мне не понравилась — больно капризная. Если в будущем надобность появиться то могу вернуться, но пока на неё забил.
Для светодиодов лучше применять специализированные микросхемы.

Автор спасибо большое, ваша статья очень хорошо описывает принцип работы. С помощью вашей статьи отремонтировал ХАБ. Проблема была в R1, схема обвязки почти одинаковая. А схему хаба тяжело найти.

Частота преобразования чем выше, тем лучше, т.к. уменьшаются габариты (индуктивность) дросселя, но в разумных пределах — для MC34063 оптимально 60-100 кГц. Резистор R1 и будет греться, т.к. по сути это токоизмерительный шунт, т.е. весь ток потребляемый как самой схемой так и нагрузкой течет через него (5В х 0,5А=2,5Ватт)

Вопрос конечно глупый но можно-ли с неё снять +5, земля и -5 вольт? мощь большая не нужна, но нужна стабильность, или ещё что дополнительное придёться ставить типа 7660?

С одной микросхемы — сомневаюсь: понадобиться две таких: одна на +5В, а вторая в качестве инвертора на -5В, в даташите есть рекомендуемая схема включения.

Всем здрасьте. Ребята кто может помоч сделать, чтобы на выходе было 10 Вольт или лучше с регулировкой. Илья можно Вас попросить мне расписать. Подскажите пожалуйста. Спасибо.

В листе спецификаций производителя mc34063:
максимальная частота F=100 kHz, типовая F = 33 kHz.
Vripple = 1 mV — типовое значение, Vripple = 5 mV — максимальное.

Выход на 10 В:
— для понижающего DC, если на входе 12 В:
Vin=12 В, Vout=10 В, Iout=450 mA, Vripple=1 mV(pp), Fmin=34 kHz.
Ct=1073 pF, Ipk=900 mA, Rsc=0.333 Ohm, Lmin=30 uH, Co=3309 uF,
R1=13k, R2=91k (10V).
— для повышающего DC, если на входе 3 В:
Vin=3 В, Vout=10 В, Iout=450 mA, Vripple=1 mV(pp), Fmin=34 kHz.
Ct=926 pF, Ipk=4230 mA, Rsc=0.071 Ohm,Lmin=11 uH, Co=93773 uF,R=180 Ohm,R1=13k R2=91k (10V)

Доброго времени суток, хочу собрать стабилизатор напряжения Dc/Dc с 40-75 вольт на 12 воль 4 ампера. входящее напряжение не стабильно и варьируется от 40 до 75 вольт. напряжение на выходе должно быть стабильно 12 вольт 4 ампера. буду признателен за помощ

2Setler: Опытным путем было установлено, что большинство сетевых блоков питания с широким входным диапазоном (от 100 до 240В) успешно заводятся уже от 50В постоянного, поэтому возможно проще поискать уже готовый, но лучше с запасом по току (6-7А).

Здравствуйте купил зарядку в прикуриватель с двумя USB с током на выходе 2.1 Ампер.Как раз мне такую и надо было.Lenovo A859 заряжать в дороге.Вставил в прикуриватель светодиод горит а не заряжает.Разобрал вижу не пропаян дроссель.Пропаял собираю и все равно не работает.В чем может быть причина? Микросхема стоит 34063AP.заранее спасибо.

Можно ли в данной схеме использовать MC34063ABN? И работает ли для неё калькулятор?

Спасибо за калькулятор.
Нужен был понижающий DC/DC конвертер с 5 на 1,5 вольта. Собрал по схеме калькулятора, всё отлично заработало без танцев с бубном. Очень доволен.

Подскажи, пожалуйста…
Во-первых, что я хочу — у меня есть ноут (потребление 19В 2А, но монитор отсутствует, т.е. полагаю не больше 1А), у него есть БП (19В 4,5А). Так вот, мне нужно получить из этого БП 5В мощностью… ну… 2-3А (усиление внешних USB — модем там, доп. вентилятор…).
Не долго думая, откопал автопреобразователь 12В — 5В как раз на микросхеме MC34063A. Выходную мощность не знаю, полагаю не больше 0,5А — для зарядки телефончика.
Насколько я понял, его можно параллельно в схему питания припитать?

И главный вопрос: как увеличить мощность преобразователя? Смотрю, кондёры там маленькие — на входе 47мкФ, на выходе вообще 2,2мкФ… От них мощь зависит? Впаять туда по штуке-полторы мкФ? 🙂

Что делать, шеф, что делать?!

Очень некорректно использовать танталовые конденсаторы в цепях питания! Тантал очень не любит больших токов и пульсаций!

> Очень некорректно использовать танталовые конденсаторы в цепях питания!

а где их еще использовать, если не в импульсных блоках питания?! 🙂

Отличьная статейка. Рад был почитать. Все на понятном простом языке без выпендривания. Даже прочитав коментарии приятно был удивлен, отзывчивость и простота общения на высоте. Почему я попал на эту тему. Потому что собираю подмотку одометра на Камаз. Нашел схему, и там настоятельно автор рекомендует, запитывать микроконтролер именно таким образом, а не через кренку. Иначе горит контролер. Не знаю точьно, на наверно кренка не держит таково входного напряжения и поэтому палитса. Так как на такой машине 24 В. Но что мне было не понятно, так это то, что на схеме по чертежу вроди бы стабилитрон. У автора подмотки одометра было собранно на смд компонентах. И этот стабилитрон ss24 оказываетса смд диодом шотки. ТУт на схеме тоже нарисован как стабилитрон. Но вроди бы хорошо понел, тут диод а не стабилитрон. Хотя может я путаю их чертеж? может так рисуетса диоды шотки а не стабилитроны? Осталось уточьнить такую малость. Но за статейку большое спосибо.

На практике убедился как, кренка стабилизировала с 24V до 5V грелась как "паяльник" , в нагрузке стоял МК и семисегментный индикатор, всего на три знака. Замена кренки на MC34063 решила этот вопрос окончательно.Напряжение питания микросхемы до 40 вольт.

Для изменения напряжения постоянного тока с минимальными потерями используются DC-DC преобразователи, работающие по принципу Широтно-Импульсной Модуляции . Основной принцип в том, что напряжение подается не сплошным потоком, как в линейных стабилизаторах, а краткими импульсами и с большой частотой. На микросхеме MC34063 разработан ряд схем

Понижение напряжения от источника питания Step-down converter


Повышение напряжения от источника питания Step-up converter


Подача отрицательного напряжения от источника питания Voltage inverting converter


Высокая выходная мощность, высокое входное напряжение -Higher output power, higher input voltage


В процессе исследования работы микросхемы MC34063, стандартного варианта схемы (рис.14), для собственного самообразования было сделано несколько осциллограмм.





калькулятор для MC34063 калькулятор mc34063


тут вставляете свои значения и он вам отображает номиналы деталей

Вот тут есть пример Step-up с печатной платой программатор Extra-PIC от USB +5V.

и пример Step-down converter с печатной платой термостат ATtiny2313.

Повышающие DC-DC преобразователи находят широкое применение в электронике. Они могут применяться как отдельные модули питания конкретных объектов, так и могут входить в часть электрической схемы. Например, можно поднять напряжение пятивольтного аккумулятора и питать от него через повышающий преобразователь нагрузку напряжением 12В (усилитель, лампу, реле и т.д.). Еще пример, в некоторых охранно-пожарных сигнализациях на линиях контроля около 30В постоянного тока, а сам блок контроля и управления работает от 12В, поэтому в последние внедряют повышающие преобразователи и они являются частью схемы блоков контроля и управления.

Микросхема МС34063 представляет собой импульсный конвертор, поэтому она обладает высокой эффективностью (КПД) и имеет три схемы включения (инверторную, повышающую и понижающую). В этой статье будет описан исключительно повышающий (Step Up) вариант.

34063 Схема включения с транзистором

МС34063 выполняется в корпусах DIP-8 и SO-8. Расположение выводов показано ниже.

34063 Схема включения с транзистором

Основные технические параметры MC34063.

Выходное напряжение ………. от 1.25 до 38 Вольт

Максимальный ток на выходе ………. 1.5 Ампер

Максимальная частота ………. 100кГц

Максимальный ток на выходе это пиковый ток на внутреннем транзисторе и он значительно больше тока нагрузки, поэтому не стоит надеяться, что преобразователь будет держать 1.5A на выходе. Ниже представлен калькулятор, который позволит правильно посчитать ток.

Другую интересующую информацию по параметрам и внутреннему устройству микросхемы можно найти в Datasheet.

Схема повышающего DC-DC преобразователя на MC34063.

34063 Схема включения с транзистором

Опишу работу простыми словами. В микросхеме MC34063 есть генератор, генерирующий импульсы с определенной частотой. Генератор, взаимодействуя с другими узлами, управляет выходным транзистором, коллектор которого соединен с выводом 1, а эмиттер с выводом 2.

Когда выходной транзистор открыт, дроссель L1 заряжается входным напряжением через резистор R3.

34063 Схема включения с транзистором

После закрытия выходного транзистора, дроссель отключается от земли и в этот момент происходит его разряд (самоиндукция). Энергия дросселя уже с противоположной полярностью и большая по силе поступает на диод VD1. После выпрямления напряжения диодом, оно поступает на выход схемы, накапливаясь в конденсаторе C3. Помимо накопления, данный конденсатор сглаживает пульсации.

34063 Схема включения с транзистором

Схема конвертирует напряжение постоянного тока с 5В до 12В. Чуть ниже пойдёт речь об изменении номиналов элементов под нужные напряжения.

Резисторами R1 и R2 задается напряжение на выходе. Резистор R3 ограничивает выходной ток до минимума, при превышении определенной мощности.

Конденсатор C2 задает частоту преобразования.

Элементы.

Все резисторы мощностью 0.25Вт кроме R3 (0.5-1 Ватт).

В качестве L1 я взял готовый дроссель на 470мкГн, намотанный медным эмалевым проводом на гантель из феррита и отмотал три слоя, уменьшив тем самым индуктивность до 75мкГн (индуктивность больше расчетной допускается, а меньше нельзя).

Дроссель должен выдерживать пиковый выходной ток (в моем случае 1.5А).

Также можно взять кольцо из порошкового железа (жёлтого цвета) наружным диаметром 18мм, внутренним 8мм, толщиной 8мм и намотать медным проводом (диаметром 0.6мм и более) 30-40 витков (при 30 витках индуктивность получилась 55мкГн). Кольцо можно взять больше моего, но меньше не рекомендую.

34063 Схема включения с транзистором

Диод VD1- Шоттки, либо быстродействующий (типа SF, UF, MUR, HER и т.д.) на ток не менее 1А и обратное напряжение в два раза больше выходного (в моем случае 40В).

У микросхемы МС34063 есть отечественный аналог КР1156ЕУ5, они полностью взаимозаменяемы.

Расчет преобразователя на MC34063 под другое напряжение и ток.

Калькулятор считает минимальную индуктивность, поэтому ее можно брать с положительным запасом (произойдут незначительные изменения лишь в КПД).

Пару слов…

Расчетная частота (50кГц в моем случае) является минимальной и может значительно отличаться и изменяться в зависимости от входного напряжения и тока нагрузки.

При выходном токе 200мА происходит достаточно сильный нагрев микросхемы MC34063, и работать в таком режиме долгое время возможно не сможет.

34063 Схема включения с транзистором

Рекомендую использовать MC34063 в тех случаях, когда нужно питать слаботочную часть схемы или отдельную нагрузку током до 150-250мА, а для нагрузки 3-5А предлагаю обратить внимание на повышающие DC-DC преобразователи, построенные на базе UC3843 и UC3845.

Печатная плата повышающего преобразователя на MC34063 (из 5В в 12В) СКАЧАТЬ

"Наш мир погружен в огромный океан энергии, мы летим в бесконечном пространстве с непостижимой скоростью. Всё вокруг вращается, движется – всё энергия. Перед нами грандиозная задача – найти способы добычи этой энергии. Тогда, извлекая её из этого неисчерпаемого источника, человечество будет продвигаться вперёд гигантскими шагами" Никола Тесла (1891)

воскресенье, 26 июня 2016 г.

Микросхема MC34063 схема включения

Основные технические характеристики MC34063

  • Широкий диапазон значений входных напряжений: от 3 В до 40 В;
  • Высокий выходной импульсный ток: до 1,5 А;
  • Регулируемое выходное напряжение;
  • Частота преобразователя до 100 кГц;
  • Точность внутреннего источника опорного напряжения: 2%;
  • Ограничение тока короткого замыкания;
  • Низкое потребление в спящем режиме.

Структура схемы:

  1. Источник опорного напряжения 1,25 В;
  2. Компаратор, сравнивающий опорное напряжение и входной сигнал с входа 5;
  3. Генератор импульсов сбрасывающий RS-триггер;
  4. Элемент И объединяющий сигналы с компаратора и генератора;
  5. RS-триггер устраняющий высокочастотные переключения выходных транзисторов;
  6. Транзистор драйвера VT2, в схеме эмиттерного повторителя, для усиления тока;
  7. Выходной транзистор VT1, обеспечивает ток до 1,5А.

MC34063 повышающий преобразователь

Например я данную микросхему использовал чтобы получить 12 В питание интерфейсного модуля от ноутбучного порта USB (5 В), таким образом интерфейсный модуль работал когда работал ноутбук ему не нужен был свой источник бесперебойного питания.
Также имеет смысл использовать микросхему для питания контакторов, которым нужно более высокое напряжение, чем другим частям схемы.
Хотя MC34063 выпускается давно, но возможность работы от 3 В, позволяет её использовать в стабилизаторах напряжения питающихся от литиевых аккумуляторов.
Рассмотрим пример повышающего преобразователя из документации. Эта схема рассчитана на входное напряжение 12 В, выходное — 28 В при токе 175мА.

34063 Схема включения с транзистором

  • C1 – 100 мкФ 25 В;
  • C2 – 1500 пФ;
  • C3 – 330 мкФ 50 В;
  • DA1 – MC34063A;
  • L1 – 180 мкГн;
  • R1 – 0,22 Ом;
  • R2 – 180 Ом;
  • R3 – 2,2 кОм;
  • R4 – 47 кОм;
  • VD1 – 1N5819.

В данной схеме ограничение входного тока задается резистором R1, выходное напряжение определяется соотношением резистором R4 и R3.

Понижающий преобразователь на МС34063

Понизить напряжение значительно проще – существует большое количество компенсационных стабилизаторов не требующих катушек индуктивности, требующих меньшего количества внешних элементов, но и для импульсного преобразователя находиться работа когда выходное напряжение в несколько раз меньше входного, либо просто важен КПД преобразования.
В технической документации приводиться пример схемы с входным напряжение 25 В и выходным 5 В при токе 500мА.

34063 Схема включения с транзистором

  • C1 – 100 мкФ 50 В;
  • C2 – 1500 пФ;
  • C3 – 470 мкФ 10 В;
  • DA1 – MC34063A;
  • L1 – 220 мкГн;
  • R1 – 0,33 Ом;
  • R2 – 1,3 кОм;
  • R3 – 3,9 кОм;
  • VD1 – 1N5819.

Данный преобразователь можно использовать для питания USB устройств. Кстати можно повысить ток отдаваемый в нагрузку, для этого потребуется увеличить емкости конденсаторов C1 и C3, уменьшить индуктивность L1 и сопротивление R1.

МС34063 схема инвертирующего преобразователя

Третья схема используется реже двух первых, но не менее актуальна. Для точного измерения напряжений или усиления аудио сигналов часто требуется двуполярное питание, и МС34063 может помочь в получении отрицательных напряжений.
В документации приводиться схема позволяющая преобразовать напряжение 4,5 .. 6.0 В в отрицательное напряжение -12 В с током 100 мА.

Идея создания этого преобразователя возникла у меня после покупки нетбука Asus EeePC 701 2G. Маленький, удобный, гораздо мобильнее огромных ноутбуков, в общем, красота, да и только. Одна проблема — надо постоянно подзаряжать. А поскольку единственный источник питания, который всегда под рукой — это автомобильный аккумулятор, то естественно возникло желание заряжать нетбук от него. В ходе экспериментов обнаружилось, что сколько нетбуку не дай, — больше 2 ампер он все равно не возьмет, то есть регулятор тока, как в случае зарядки обычных аккумуляторов, нафиг не нужен. Красота, нетбук сам разрулит сколько тока потреблять, следовательно, нужен просто мощный понижающий преобразователь с 12 на 9,5 вольт, способный
выдать нетбуку требуемые 2 ампера.

За основу преобразователя была взята хорошо известная и широко доступная микросхема MC34063. Поскольку в ходе экспериментов типовая схема с внешним биполярным транзистором зарекомендовала себя мягко скажем не очень (греется), было решено прикрутить к этой микрухе p-канальный полевик (MOSFET).

34063 Схема включения с транзистором

Катушку на 4..8 мкГн можно взять со старой материнской платы. Видели, там есть кольца, на которых толстыми проводами по несколько витков намотано? Ищем такую, на которой 8..9 витков одножильным толстым проводом — как раз самое то.

Все элементы схемы рассчитываются по типовой методике, так же, как и для преобразователя без внешнего транзистора, единственное отличие — Vsat нужно посчитать для используемого полевого транзистора. Сделать это очень просто: Vsat=R *I, где R — сопротивление транзистора в открытом состоянии, I — протекающий через него ток. Для IRF4905 R =0,02 Ом, что при токе 2,5А дает Vsat=0,05В. Что называется, почувствуйте разницу. Для биполярного транзистора эта величина составляет не менее 1В. Как следствие — рассеиваемая мощность в открытом состоянии в 20 раз меньше и минимальное входное напряжение схемы на 2 вольта меньше!

Как мы помним, для того, чтобы р-канальный полевик открылся — надо подать на затвор отрицательное относительно истока напряжение (то есть подать на затвор напряжение, меньше напряжения питания, т.к. исток у нас подключен к питанию). Для этого нам и нужны резисторы R4, R5. Когда транзистор микросхемы открывается — они образуют делитель напряжения, который и задает напряжение на затворе. Для IRF4905 при напряжении исток-сток 10В для полного открытия транзистора достаточно подать на затвор напряжение на 4 вольта меньше напряжения истока (питания), UGS = -4В (хотя вообще-то правильнее посмотреть по графикам в даташите на транзистор сколько нужно конкретно при вашем токе). Ну и кроме того, сопротивления этих резисторов определяют крутизну фронтов открытия и закрытия полевика (чем меньше сопротивление резисторов — тем круче фронты), а также протекающий через транзистор микросхемы ток (он должен быть не более 1,5А).

34063 Схема включения с транзистором

В общем-то, радиатор можно было даже поменьше взять — преобразователь греется незначительно. КПД данного устройства около 90% при токе 2А.

Если достать р-канальный полевик — проблема, читайте как собрать понижающий DC/DC преобразователь 12/9,5В 2,5А на микросхеме MC34063 с внешним n-канальным полевиком (MOSFET). С N-канальником, кстати, понижайка ещё лучше получается.

Пересчитав описанный выше конвертер на другие выходные напряжения и токи, можно изготовить автомобильные зарядные устройства и для других нетбуков.

Кроме того, хотелось бы добавить, что типовая методика совсем не идеальна в плане расчётов и ничего не объясняет, поэтому если вы хотите реально понять как всё это работает и как правильно рассчитывается, то рекомендую прочитать вот эту трилогию о понижающих преобразователях напряжения.

Читайте также: