Схемы на lm339 своими руками

Обновлено: 05.07.2024

Зачем нужен компаратор и как его использовать без усилителя? В большинстве случаев, этот прибор применяется в несложных компьютерных схемах, где нужно сравнивать сигналы входящего напряжения. Это может быть зарядное устройство для ноутбука или телефона, весы (определитель массы), датчик сетевого напряжения AVR, таймер (компоратор типа lm 358, микроконтроллер и т. д. Также его применяют различные интегральные микросхемы для контроля входных импульсов, обеспечивая связь между источником сигнала и его центром назначения.

Наиболее популярным примером является компаратор триггер (регулятор) Шиммера. Он работает в режиме многоканальности, соответственно, может сравнивать большое количество сигналов. В частности, данный триггер применяется для того, чтобы восстановить цифровой сигнал, который искажает связь в зависимости от уровня напряжения и расстояния источника питания.

Это аналог стандартного компаратора, просто с более расширенным функционалом, который обеспечивает измерение нескольких входящих сигналов.

Также есть компаратор шероховатости. Это устройство, которое помогает визуально определить состояние поверхности, которая уже подвергалась обработке. Применение этого приспособления обосновано необходимостью определять допуски обработанных ранее поверхностей.

Описание микросхемы LM358

Подтверждением высокой популярности микросхемы являются ее рабочие характеристики, позволяющие создавать много различных устройств. К основным показательным характеристикам компонента следует отнести нижеследующие.

Приемлемые рабочие параметры: в микросхеме предусмотрено одно и двухполюсное питание, широкий диапазон напряжений питания от 3 до 32 В, приемлемая скорость нарастания выходного сигнала, равная всего 0,6 В/мкс. Также микросхема потребляет всего 0,7 мА, а напряжение смещения составит всего 0,2мВ.

В каких корпусах выпускаются микросхемы

Корпус может быть как DIP8 – обозначение LM358N, так и SO8 – LM358D. Первый предназначен для реализации объемного монтажа, второй – для поверхностного. От типа корпуса не зависят характеристики элемента – они всегда одинаковы. Но существует немало аналогов микросхемы, у которых параметры немного отличаются. Всегда есть плюсы и минусы. Обычно, если у элемента большой диапазон рабочих напряжений например, страдает какая-либо другая характеристика.

LM358 datasheet

Существует еще металлокерамический корпус, но такие микросхемы используют в том случае, если эксплуатация устройства будет происходить в тяжелых условиях. В радиолюбительской практике удобнее всего использовать микросхемы в корпусах для поверхностного монтажа. Они очень хорошо паяются, что имеет важное значение при работе. Ведь намного удобнее оказывается работать с элементами, у которых ножки имеют большую длину.

Таблица характеристик

Микросхемы различных производителей могут иметь разные параметры, но всё в пределах нормы. Единственное может сильно отличаться максимальная частота у одних она 0,7МГц, у других до 1,1МГц. Вариантов использования ИМС накопилось очень много, только в документации их около 20 штук. Радиолюбители расширили это количество более 70 схем.

Типовой функционал из datasheet на русском:

  1. компараторы;
  2. активные RC фильтры;
  3. светодиодный драйвер;
  4. суммирующий усилитель постоянного тока;
  5. генератор импульсов и пульсаций;
  6. низковольтный детектор пикового напряжения;
  7. полосовой активный фильтр;
  8. для усиливания с фотодиода ;
  9. инвертирующий и не инвертирующий усилитель;
  10. симметричный усилитель;
  11. стабилизатор тока;
  12. инвертирующий усилитель переменного тока;
  13. дифференциальный усилитель постоянного тока;
  14. мостовой усилитель тока.

Применение

Сферы применения микросхемы производители, как правило, указывают в технических описаниях.

Схемы подключения

Ниже приведем несколько простых схем включения lm358 которые могут вам пригодится. Все они являются ознакомительными, так что обязательно проверяйте все перед внедрением в производственной сфере.

Схема в мощном неинвертирующим усилителе.

lm358n opisanie na russkom 53

Преобразователь напряжения — ток.

Схема с дифференциальным усилителем.

lm358n opisanie na russkom 55

Неинвертирующий усилитель средней мощности.

Схема не инвертирующего усилителя

  1. На плюсовой вход подается сигнал.
  2. К выходу операционного усилителя подключается два постоянных резистора R2 и R1, соединенных последовательно.
  3. Второй резистор соединен с общим проводом.
  4. Точка соединения резисторов подключается к минусовому входу.

Чтобы вычислить коэффициент усиления, необходимо воспользоваться простой формулой: k=1+R2/R1.

микросхема LM358

Если имеются данные о значении сопротивлений, входного напряжения, то нетрудно посчитать выходное: U(out)=U(in)*(1+R2/R1). При использовании микросхемы LM358 и резисторов R1=10 кОм и R2=1 МОм, коэффициент усиления окажется равен 101.

Схема мощного не инвертирующего усилителя

Элементы, который применены в конструкции не инвертирующего усилителя, и их параметры:

  1. В качестве микросхемы используется LM358.
  2. Значение сопротивления R1=910 kOm.
  3. R2=100 kOm.
  4. R3=91 kOm.

Для усиления сигнала применяется полупроводниковый биполярный транзистор VT1.

LM358 применение

По напряжению коэффициент усиления при условии использования таких элементов равен 10. Чтобы посчитать коэффициент усиления в общем случае, необходимо воспользоваться такой формулой: k=1+R1/R2. Для вычисления коэффициента по току всей схемы необходимо знать соответствующий параметр используемого транзистора.

Схема преобразователя напряжение-ток

Схема приведена на рисунке и немного похожа на ту, которая была описана в конструкции не инвертирующего усилителя. Но здесь добавлен биполярный транзистор. На выходе сила тока оказывается прямо пропорциональна напряжению на входе операционного усилителя.

LM358 цоколевка

И в то же время сила тока обратно пропорциональна сопротивлению резистора R1. Если описать это формулами, то выглядит следующим образом:

При величине сопротивления R1=1 Om, на каждый 1V напряжения, прикладываемого ко входу, на выходе будет 1А тока. Схема включения LM358 в режиме преобразователя напряжения в ток используется радиолюбителями для конструирования зарядных устройств.

Схема преобразователя ток-напряжение

При помощи такой простой конструкции на операционном усилителе LM358 можно осуществить преобразование тока с малым значением в высокое напряжение. Описать это можно такой формулой:

Если в конструкции применяется резистор сопротивлением 1 МОм, а по цепи протекает ток со значением 1 мкА, то на выходе элемента появится напряжение со значением 1В.

Советуем к прочтению: Трехпозиционный переключатель: галетный, с нулевым положением, пакетные и с фиксацией

Схема простого дифференциального усилителя

Данная конструкция получила широкое распространение в устройствах, которые измеряют напряжение у источников, обладающих высоким сопротивлением. Необходимо учитывать особенность – отношения сопротивлений R1/R2 и R4/R3 должны быть равны. Тогда на выходе напряжение окажется со следующим значением:

При этом коэффициент усиления может быть рассчитан по формуле k=(1+R4/R3). В том случае, если сопротивления всех резисторов равны 100 кОм, коэффициент окажется равен 2.

Схема монитора тока

Еще одна схема, которая позволяет проводить измерение значения тока в питающем проводе. Она состоит из шунтирующего сопротивления R1, операционного усилителя LM358, транзистора npn-типа и двух резисторов. Характеристики элементов:

  • микросхема DA1 – LM358;
  • сопротивление резистора R=0,1 Ом;
  • значение сопротивления R2=100 Ом;
  • R3=1 кОм.

Напряжение питания ОУ должно быть минимум на 2 В больше, нежели у нагрузки. Это обязательное условие функционирования схемы.

Схема преобразователя напряжения в частоту

Этот прибор потребуется в том случае, когда возникнет необходимость в подсчете периода или частоты какого-либо сигнала.

Схема применяется в качестве аналогово-цифрового конвертера. Параметры элементов, используемых в конструкции:

  • DA1 – LM358;
  • C1 – 0,047 мкФ;
  • R1=R6=100 кОм;
  • R2=50 кОм;
  • R3=R4=R5=51 кОм;
  • R6=100 кОм;
  • R7=10 кОм.

Это все конструкции, которые могут быть построены с использованием операционного усилителя. Но область применения LM358 на этом не ограничивается, существует большое количество схем намного сложнее, позволяющих реализовать различные возможности.

Рабочие условия

VCC = ±15 V, TA = 25°C

Параметр Условия TYP Ед. изм.
SR Скорость нарастания при единичном усилении RL = 1 МОм, CL = 30 пФ, VI = ±10 В (см. Рис. 3) 0.3 В/мкс
B1 Ширина полосы при единичном усилении RL = 1 MОм, CL = 20 пФ (см. Рис. 3) 0.7 МГц
Vn Эквивалентное напряжение шумов, приведенное ко входу RS = 100 Ом, VI = 0 В, f = 1 кГц (см. Рис. 4) 40 нВ/vГц

Усилитель с единичным коэффициентом усиления

Усилитель с единичным коэффициентом усиления

Схема для проверки шумов

Схема для проверки шумов

Компаратор с гистерезисом и без гистерезиса

Исходные данные для расчета представлены в таблицах.

Таблица. Исходные данные для расчета компаратора

Таблица. Пороговые значения

Нижний порог переключения VL Верхний порог переключения VH VH – VL
2,3 В 2,7 В 0,4 В

Описание схемы

Компараторы используются, чтобы сравнить два входных сигнала и сформировать выходной сигнал в зависимости от того, какой из входных сигналов больше (рисунок 84). Шум или дребезг входных сигналов могут привести к множественным переключениям компаратора. Для борьбы с такими переключениями используется гистерезис, устанавливающий верхнюю и нижнюю границу переключения.

ris 84

Рис. Схемы компараторов с гистерезисом (слева) и без гистерезиса (справа)

Рекомендуем обратить внимание:

  • следует использовать компаратор с минимальным собственным током потребления;
  • точность задания пороговых значений гистерезиса определяется точностью номиналов резисторов;
  • задержка срабатывания определяется параметрами используемого компаратора.

Принцип работы

Для того, чтобы продемонстрировать, как работает быстродействующий компаратор с гистерезисом, нужно взять схему с двумя выходами.

Практически всегда двухпороговый или фазовый компаратор (например, на транзисторах, без усилителя) воздействует на входы в логических цепях, соответственно, работает по уровню определенной сети питания. Это своеобразный элемент перехода между аналоговыми и цифровыми сигналами. Такой принцип действия позволяет не уточнять определенность или неопределенность выходов сигналов, т. к. компаратор всегда имеет некий захват петли гистерезиса (независимо от её уровня) или окончательный коэффициент усиления.

Порядок расчета компаратора с гистерезисом

  • Выбираем значение резистора R1 = 100 кОм. Значения пороговых напряжений были определены в таблице исходных данных: VL = 2,3 В, VH = 2,7 В.
  • Рассчитаем R2 по формуле 1:
  • Рассчитаем R3 по формуле 2:
  • Проверяем полученное значение гистерезиса, согласно формуле 3:

Порядок расчета компаратора без гистерезиса

  1. Выбираем пороговое значение Vth = 2,5 В.
  2. Выбираем значение резистора R4 = 100 кОм.
  3. Рассчитываем R5 по формуле 4:

Моделирование схемы

Временные диаграммы работы схемы представлены на рисунках 1 и 2.

ris 85

Рис. 1. Временные диаграммы работы схемы: шум присутствует только в начальный короткий интервал времени 0…120 мкс

ris 86

Рис. 2. Увеличенная осциллограмма напряжений: интервал 40…110 мкс

Аналоги LM358

Полные аналоги LM358 от разных производителей NE532, OP04, OP221, OP290, OP295, OPA2237, TA75358P, UPC358C. Для LM358D — KIA358F, NE532D, TA75358CF, UPC358G.

Вместе с LM358 выпускается большое количество похожих операционных усилителей. Например LM158, LM258, LM2409 имеют аналогичные характеристики, но разный температурный диапазон работы.

Тип Минимальная температура, °C Максимальная температура, °C Диапазон питающих напряжений, В
LM158 -55 125 от 3(±1,5) до 32(±16)
LM258 -25 85 от 3(±1,5) до 32(±16)
LM358 70 от 3(±1,5) до 32(±16)
LM358 -40 85 от 3(±1,5) до 26(±13)

Если диапазона 0..70 градусов не хватает, то стоит применить LM2409, однако следует учитывать что у неё диапазон питания уже:

Кстати если нужен только один операционный усилитель в компактном 5 выводном корпусе SOT23-5 то вполне можно применить LM321, LMV321 (аналоги AD8541, OP191, OPA337). Наоборот, если нужно большое количество рядом расположенных операционных усилителей, то можно применить счетверенные LM324 в 14 выводном корпусе. Можно вполне сэкономить пространство и конденсаторы по цепям питания.

У меня есть микросхема LM339 от Radioshack, которую я надеюсь использовать в качестве драйвера двигателя.

Я прочитал много ресурсов о том, как L239D можно использовать как единое целое. У меня недостаточно опыта работы со схемами, чтобы по-настоящему понять разницу между ними, и поиск в Google показывает множество вики-страниц, которые я не мог полностью понять.

Можно ли использовать LM339 в качестве драйвера двигателя?

Я провел быстрое сравнение двух схем LM339 и L239D.

Но я все еще не уверен. Я не хочу жарить свою доску, поэтому сначала прошу.

LM339 - это компаратор, а не драйвер двигателя. L239D - это драйвер двигателя с двойным Н-мостом.

LM339 может выдавать абсолютный максимум 20 мА. Это половина того, что сама Arduino может выводить на выводе ввода-вывода!

Вы можете использовать LM339 как часть схемы управления для контроль H-образный мост, но он сам по себе не может управлять двигателем каким-либо образом, формой или формой.



Эта статья содержит основную информацию о работе компараторов напряжения построенных на интегральных микросхемах и может быть использована в качестве справочного материала для построения различных схем.

В электронике, компаратор представляет собой устройство, которое сравнивает между собой два электрических сигнала и выводит цифровой сигнал, указывающий на увеличение одного входного сигнала над другим. Компаратор имеет два аналоговых входа и один цифровой выход.

Компаратор, как правило, построен на дифференциальном усилителе с высоким коэффициентом усиления. Компараторы широко используются в устройствах, которые измеряют и оцифровывают аналоговые сигналы, например, в аналого-цифровых преобразователях (АЦП)

Профессиональный цифровой осциллограф

Количество каналов: 1, размер экрана: 2,4 дюйма, разрешен…

Примеры работы компаратора приведены на основе микросхемы LM339 (счетверенный компаратора напряжений) и LM393 (сдвоенный компаратор напряжения). Эти две микросхемы по своему функционалу идентичны. Компаратор напряжения LM311 так же может быть использован в данных примерах, но он имеет ряд функциональных особенностей.

Компаратор напряжения — выход с открытым коллектором

Как правило, выход компаратора напряжения представляет собой выход с открытым коллектором.

Выход открытый коллектор имеет отрицательную полярность. Это означает, что на этом выходе не бывает положительного сигнала и нагрузка должна подключаться между этим выходом и источника питания.

В некоторых схемах к выходу компаратора подключают нагрузочный (подтягивающий) резистор для того, чтобы обеспечить сигнал высокого уровня поступающего на вход следующего элемента схемы.

Операционные усилители (ОУ), такие как LM324, LM358 и LM741 обычно не используются в радиоэлектронных схемах в качестве компаратора напряжения из-за их биполярных выходов. Тем не менее, эти операционные усилители могут быть использованы в качестве компараторов напряжения, если к выходу ОУ подключить диод или транзистор для того чтобы создать выход с открытым коллектором.

Ниже представлена логика работы компаратора имеющий выход с открытым коллектором:

Ток будет течь через открытый коллектор, когда напряжение на входе (+) будет ниже, чем напряжение на входе (-). И соответственно ток не будет протекать через открытый коллектор, когда напряжение на входе (+) будет выше, чем напряжение на входе (-).

Выше уже описывалось одно из преимуществ этой концепции — возможность параллельного соединения нескольких идентичных схем. Выходы элементов с открытым коллектором соединяются, на этом основано построение логических устройств с тремя состояниями.

Рис. 2.7. Схемы с открытым коллектором

Другой классический пример применения таких элементов — это согласование по уровню двух схем, работающих при разных напряжениях питания. В любом случае на выходе каскада с открытым коллектором должен быть включен резистор, соединенный с источником напряжения +UCC или — UCC (для транзисторов типа n-p-n

или
p-n-р
соответственно). Он фактически выполняет функцию нагрузочного резистора в цепи коллектора. При параллельном включении двух или более каскадов достаточно будет одного общего резистора (рис. 2.7в). Его номинал определяется в зависимости от токов, которые должны протекать по коллекторным цепям транзисторов.

2.1.9. Двухтактный каскад

Двухтактный каскад — это каскад на двух транзисторах, обычно используемый на выходе быстродействующих цифровых устройств. Кроме того, он входит в состав многих управляющих схем на МОП транзисторах. Двухтактный каскад включают также на выходе большинства генераторов синусоидального напряжения, работающих на низкоомную нагрузку (обычно 50 Ом). Его применение обеспечивает улучшение согласования генератора с нагрузкой. Базовая схема проста (рис. 2.8а): у двух комплементарных транзисторов, включенных по схеме с общим коллектором, соединены эмиттеры и базы. Транзистор n-p-n

типа присоединен к положительному полюсу источника питания, а транзистор
p-n-р
типа — к отрицательному. Транзисторы открываются поочередно, и напряжение на выходе практически повторяет по форме входной сигнал.

Двухтактный каскад обладает одним недостатком: он не может полностью воспроизвести сигнал, который в отрицательный полупериод опускается до нуля. В таком случае перепад напряжения на выходе оказывается меньше, чем на входе, из-за конечного остаточного напряжения на открытом транзисторе. Этот недостаток не играет никакой роли, когда каскад используется для управления схемой на МОП транзисторах, но важен для выходных каскадов. С целью устранения описанной проблемы необходимо обеспечить симметричное питание двухтактного каскада, то есть применить дополнительный источник отрицательного напряжения (рис. 2.8б).

Рис. 2.8. Двухтактный каскад

2.1.10. Компаратор на транзисторе

Рис. 2.9. Компаратор на транзисторе

Транзистор p-n-р

типа сравнивает опорное напряжение на эмиттере с частью контролируемого напряжения, поданной на базу через резистивный делитель R1R2. Когда напряжение на базе падает ниже опорного, транзистор открывается и выход компаратора (коллектор транзистора) переходит в состояние с высоким потенциалом. Такая схема может использоваться, например, для контроля напряжения батареи питания.

2.1.11. Гистерезис в электронике

Суть данного явления можно пояснить на примере работы термостата независимо от наличия или отсутствия электронного регулятора. Рассмотрим термостат, настроенный на поддержание температуры 20 °C с помощью электрического нагревателя. Если бы управляющая нагревателем биметаллическая пластина, деформирующаяся при изменении температуры, не обладала гистерезисом, нагреватель включался бы и выключался очень часто, что приведет к быстрому износу контактов. В действительности регулятор включается при 19 °C, а выключается примерно при 21 °C. При этом механическая инерционность биметаллической пластины и тепловая инерционность нагревателя порождают явление гистерезиса, переключение режимов происходит с небольшой частотой, а температура в термостате колеблется в некотором интервале вблизи заданного значения (рис. 2.10а).

Рис. 2.10. Схема реализации гистерезиса

В электронике все процессы развиваются гораздо быстрее, и нередко приходится искусственно создавать задержку для снижения частоты переключения. В качестве примера на рис. 2.10б приведена схема компаратора на базе операционного усилителя.

Устройство сравнивает регулируемое напряжение Uвх с опорным Uoп, которое задается с помощью батарейки. Результат сравнения выводится на светодиодный индикатор. Чтобы усилить проявление гистерезиса и снизить частоту мигания индикатора, используют резистор, через который часть выходного сигнала передается на вход операционного усилителя. При этом снижается коэффициент усиления каскада и задерживается включение и выключение индикатора.

2.2. Операционные усилители

2.2.1. Присоединение неиспользуемых входов

Иногда один из операционных усилителей (ОУ) микросхемы, в корпусе которой размещаются два или четыре ОУ, не применяется. Подчас это делается преднамеренно, как, например, при использовании микросхемы LM324 ((счетверенный ОУ), которая дешевле, чем сдвоенный аналог LM358. В этом случае возникают проблемы паразитных колебаний и избыточного потребления тока. Для их разрешения неиспользуемые входы следует соединить по схеме повторителя напряжения, то есть вход + (плюс) с общей точкой, а вход — (минус) с выходом (рис 2.11).

Рис. 2.11. Присоединение неиспользуемых входов ОУ

2.2.2. Уровень выходного сигнала

Операционный усилитель может с одинаковым успехом использоваться как в аналоговых приложениях (в усилителях и генераторах), так и в цифровых. В его характеристиках среди прочих указывают максимальный уровень выходного сигнала по отношению к напряжению питания. Известная микросхема LM324, например, имеет типичный уровень сигнала 1,5 В. Таким образом, при питании 5 В напряжение на ее выходе никогда не превысит 3,5 В. Это может мешать запуску логической схемы, порог переключения которой не адаптирован к такому уровню, или обеспечению питания нагрузки, требующей более высокого напряжения. В этом случае включение реле на 5 В становится ненадежным. Светодиод никогда полностью не погаснет, а будет гореть с меньшей интенсивностью. В подобных случаях на выходе операционного усилителя рекомендуется поставить буферный каскад на транзисторе.

2.2.3. Объединение выходов операционных усилителей

Иногда при использовании ОУ в качестве компараторов напряжения возникает необходимость объединения их выходов. Разумеется, такую операцию нельзя проводить с моделями, для которых подобный вид соединения не предусмотрен (например, LM324). Микросхема LM389 имеет на выходе каскад на n-p-n

транзисторе с открытым коллектором и допускает такое соединение. Типичное применение такой схемы — отслеживание аналоговой величины (например, напряжения батареи) и выдача сигнала в случае ее выхода за пределы заданного диапазона (рис. 2.12). Оба усилителя включены по схеме компаратора, один для верхнего порога, другой — для нижнего.

Схема эквивалента компаратора напряжения с однополярным источником питания

Схема эквивалента компаратора напряжения с двухполярным источником питания

Компараторы напряжения LM339, LM393 и LM311могут работать с одно- или двухполярным источником питания до 32 вольт максимум.

При работе с двухполярным питанием, режим сравнения напряжения остается таким же, за исключением того, что для большинства схем эмиттер выходного транзистора подключается к отрицательной шине питания, а не к общей цепи. Исключением из этого правила является операционный усилитель LM311, имеющий изолированный эмиттер, который можно подключить как к минусу однополярного источника питания, так или к общему проводу двухполярного.

Описание работы компаратора

Следующий рисунок показывает простейшую конфигурацию для компаратора напряжения, а так же графическое изображение режима его работы. В этой схеме опорное напряжение составляет половину напряжения питания, а входное напряжение может меняться от нуля до напряжения питания. В теории опорное и входное напряжение могут иметь значение от нуля и до напряжения источника питания, но есть реальные ограничения, зависящие от конкретно используемого компаратора.

Сигнал на выходе:

  1. Ток будет течь через открытый коллектор, когда напряжение на входе плюс (+) ниже, чем напряжение на входе минус (-).
  2. Ток не будет протекать через открытый коллектор, когда напряжение на входе плюс выше, чем напряжение на входе минус.

Схема аналогового компаратора на операционном усилителе

Эта схема сравнивает два напряжения, и в зависимости от их состояния переводит сигнал на выходе в высокое или низкое состояние. Можно сказать, что эта система сочетает в себе аналоговую и цифровую электронику.

Она довольно интересна, так как не имеет обратной связи (в базовой версии), это в свою очередь говорит о том, что сопротивление петли бесконечно большое.

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

На положительный вход мы подаем обрабатываемый сигнал, а на отрицательный вход фиксированное (опорное) напряжение, устанавливаемое потенциометром. Так как петля обратной связи отсутствует, то коэффициент усиления бесконечно большой.

Когда напряжение входного сигнала превысит значение опорного напряжения, на выходе мы получим максимальное напряжение, т. е. напряжение питания операционного усилителя. Когда же напряжение на входе станет ниже опорного, то на выходе будет минусу питания.

Такая работа схемы имеет один существенный недостаток, а именно: ситуация, когда величина напряжения на обоих входах будет очень близка друг к другу, может стать причиной очень частого изменения напряжения на выходе. Это может привести к пропускам срабатывания реле, включение и отключение нагревателей, что может привести к частым сбоям. Что бы этого избежать используют системы с гистерезисом.

В основном проблема, связанная с входным напряжением смещения возникает, когда входное напряжение изменяется очень медленно. Конечным результатом входного напряжения смещения является то, что выходной транзистор не полностью открывается или закрывается, когда входное напряжение находится недалеко от опорного напряжения.

Следующая диаграмма иллюстрирует эффект смещения входного напряжения возникающий в результате медленного изменения входного напряжения. Этот эффект возрастает при увеличении выходного тока транзистора. Поэтому, для уменьшения этого эффекта, необходимо обеспечить максимальное сопротивление резистора R4.

Последствия входного напряжения смещения можно уменьшить, добавив в схему гистерезис. Это приведет к тому, что опорное напряжение будет меняться, когда выход компаратора переходит на высокий или низкий уровень.

ШИМ на компараторе LM393

Добрый день! Недавно стал интересоваться цифровой схемотехникой и незаметно перешёл к аналоговой. А почему так произошло? Во время проектирования динамической индикации на дискретной логике, появилась идея реализовать ШИМ. Идея интересная, но опыта особенно не было. Поэтому сразу возникла идея поставить микроконтроллер. Но это не так интересно, особенно когда цель учится. И так спустя некоторое время я пришёл к тому, что можно реализовать ШИМ на компараторах.

Модель ШИМ контроллера

Концепция ШИМ состоит в том, что есть пилообразный сигнал который поступает на вход компаратора и сигнал с делителя напряжения. И в момент возникновения пересечения, выставляется сигнал на выходе компаратора. Чем ближе напряжение с делителя к пику пилы, тем меньше время высокого сигнала и наоборот.


Задача была сгенерировать пилообразный сигнал. Для этого я решил собрать релаксационный генератор на компараторе. Но особенность его заключается в том, чтобы он был с маленькой скважностью (то есть 90-95% высокий уровень и 5-10% низкий). Это нужно для того, чтобы размах для регулировки ШИМ был практически полным. В ином случае будет доступно только 50% и не более (если генератор со скважностью 50%). И для создания низкой скважности была использована схема разрядки RС цепочки через диод и резистор (резистором R2 задаётся соотношение высокого и низкого уровня).

Схема ШИМ регулятора

А затем с помощью интегрирующей (RC) цепочки необходимо сделать пилу. Во время тестирования возникла идея вместо резистора в RC цепочке, использовать источник тока на двух транзисторах. Это было сделано для равномерной зарядки конденсатора. А быстрая разрядка происходит благодаря диоду.

Интегрирующая цепочка

Теперь когда есть источник пилообразного сигнала, не составит труда создать ШИМ сигнал. Для этого необходимо на инвертирующий вход компаратора подать напряжения с делителя. Но тут возникает проблема в том, что для регулировки используется фоторезистор. Его особенность в том, что на свету его сопротивление порядка 1 килоома или нескольких, а в темноте достигает 2-3 мегаомов.

ШИМ на компараторе

И из этой особенности надо настроить систему так, чтобы напряжение не было выше пикового напряжения пилы, иначе на выходе будет низкий сигнал, что для системы динамической индикации не приемлемо. Для этого было решено, установить подстроечный резистор, которым в темноте надо настроить сопротивление так, чтобы напряжение было чуть ниже пика пилы. Так как в темноте сопротивление фоторезистора мегоомы, а в плече подстроечного резистора будет значительно меньше, поэтому фоторезистор не будет влиять на систему. А при свете его сопротивление уменьшится и не будет уже влиять сопротивление нижнего плеча подстроечного резистора. И так теперь уже не страшно, что в темноте может погаснуть подсветка.

А в конце решил установить полевой транзистор для того, чтобы регулировать значительные нагрузки.

Примечание: В микросхеме LM393 выходы open-drain, а это означает что выходы необходимо подтянуть к питанию через резисторы. А то было очень смешно, собрал и сигнал вроде есть, а вроде нет. Думал, ошибся в схеме, а оказалось надо было просто подтянуть.

Номиналы, которые используются в схеме рассчитаны на частоту ШИМ около 20кГц и напряжение питания 5 вольт. Так же при изменении номиналов надо обратить внимание на интегрирующую цепочку и пересчитать для необходимой частоты.

Так же на схеме указаны точки (с щупом) для тестирования.

  1. t1 – прямоугольный сигнал с низкой скважностью.
  2. t2 – пилообразный сигнал.
  3. t3 – напряжение с делителя напряжения (в крайних значения не должно заходить за пределы напряжения пилы).
  4. t4- ШИМ сигнал.

Думаю, такой вариант проверки будет удобен.

Тестовые точки ШИМ контроллера

Печатные платы

В конце статьи прикреплены файлы схемы и печатной платы в EasyEDA.

Спасибо за уделённое внимание. Пишите если есть вопросы, с радостью Вам на них отвечу!

А когда подстроечником крутишь - меняется вых. напряжения .

Всех с Праздниками! Народ,нахожусь в непонятке,очень хочется глянуть схему от ,,СЛОНА,, , а где смотреть непойму,подскажите пожалуйста.

Друзья, есть еще вот такой агрегат, валяется без дела. 250Вт, до 21А по линии 12 В, вроде обещано, судя по наклейке.
,

Я его вскрыл, а там LM339N и 6800 микросхема какая то. Можно ли его приспособить под БП для этого ЗУ? Если можно поясните как, по возможности найду схему и выложу сюда. Да и вопрос sterc. Вы выкладывали фото SMD варианта плат, возможно ли скинуть архив с файлами, в чем они у вас там, в .lay?

Я его вскрыл, а там LM339N и 6800 микросхема какая то


Эту схему управления к CM6800 не получится прикрутить, блок ищи на тлке. А этот оставь себе, не курочь, его .

Индикатор заряда для LI-ION аккумуляторов

Всем привет, мы давно не делали индикаторы разряда автомобильного аккумулятора. Но в этой статье мы будем делать такой, же индикатор только для одной банки LI-ION аккумуляторов с напряжением 3,7 вольт. Такие индикаторы конечно можно купить и на рынке, но, а для тех, кто не прочь поработать руками и мозгами, двигаемся дальше.

Индикатор заряда для LI-ION аккумуляторов

Индикатор заряда для LI-ION аккумуляторов

Индикатор заряда для LI-ION аккумуляторов

Данная схема мало чем отличается от стандартных индикаторов заряда для автомобильных аккумуляторов, но некоторые отличия все же есть. Схема этого индикатора построена на базе компаратора LM-339.

компаратор LM-339

Микросхема LM339 содержит четыре отдельных компаратора, каждый из них имеет два входа и один выход.

компаратор LM-339

компаратор LM-339

компаратор LM-339

подключение светодиодов

На некоторых входах компаратора нужно формировать стабильное или опорное напряжение.

подключение светодиодов

подключение светодиодов

Как правило, для этих целей используется стабилитрон, но дело в том, что мы собираемся контролировать напряжение на низковольтном источнике. Сам стабилитрон также должен быть низковольтным. Точнее говоря напряжение стабилизации стабилитрона должно быть меньше чем напряжение максимально разряженного аккумулятора.

подбор стабилитрона

В случае же обычных LI-ION аккумуляторов это около 3-х вольт. Исходя из выше написанного, для сборки необходимо найти стабилитрон с напряжением стабилизации на 2,5 и меньше вольт. (в нашем случае был использован стабилитрон на 3,3 вольт ).

подбор стабилитрона

Решение такое – использовать светодиод в качестве источника опорного напряжения. Для красных, желтых и зеленых светодиодов минимальное напряжение свечения – в пределах 2 вольт, только светодиод уже подключается в прямом направлении в отличие от стабилитрона. Резистивные делители на входах компаратора пришлось пересчитать под литиевый аккумулятор. Была сделана новая плата, рассчитанная для работы с банками 3,7 вольт. Еще один момент на плате есть две перемычки, обозначенные желтыми линиями.

плата

плата-1

Диод VD1 защищает микросхему, в случае если вы перепутаете полярность подключения к аккумулятору.

Как нам известно, напряжение полностью заряженного литий-ионного аккумулятора должно быть в районе 4,2 вольт, поэтому делители подобраны в очень узком диапазоне, при том использованы резисторы с погрешностью всего в 1 %., что гарантирует высокоточную работу индикатора. На плате имеем 4 индикаторных светодиода (цвета могут быть разными).

4 индикаторных светодиода

Для проверки работоспособности индикатора, его необходимо вначале подключить к лабораторному источнику питания, с выставленным напряжением 4,2 вольт имитируя полностью заряженный литий ионный аккумулятор.

испытание

испытание-2

испытание-3

Как видно, все светодиоды горят. Далее постепенно снижаем напряжение, имитируя разряд аккумулятора, и сразу видим поочередное потухание светодиодов при определенных напряжениях. Все работает.

Такой индикатор можно пристроить под какую-нибудь самоделку или использовать в качестве пробника для литиевых банок.

Вот и все, Не забывайте поделиться с друзьями и посвить лайк тем самым, вы поддержите проект.

Индикаторы разряда автомобильного аккумулятора ВАРИАНТ – 1 , ВАРИАНТ – 2 , ВАРИАНТ – 3.

Читайте также: