Призма ньютона своими руками

Добавил пользователь Skiper
Обновлено: 18.09.2024

Сегодня существует множество типов телескопов, но мало кто знает, что именно рефлектор Ньютона – не только одна из самых распространенных конструкций, но и одна из важнейших в историческом плане. Именно благодаря рефлектору Ньютона были совершены важнейшие открытия, да и вообще астрономия как наука получила мощный толчок к развитию.

Конструкция рефлектора Ньютона

Рефлектор Ньютона по конструкции относится к зеркальным телескопам, то есть роль объектива в нём выполняет вогнутое зеркало. Это даёт сразу несколько преимуществ, если сравнивать такую конструкцию с другой – телескопом – рефрактором, то есть линзовым:

  • Зеркало гораздо проще изготовить, чем линзу, тем более, что для качественного линзового объектива требуется несколько высококачественных линз. Зеркало нужно всего одно.
  • Требования к стеклу для зеркала гораздо ниже – главное, чтобы оно выдерживало механические нагрузки от своего веса и температурных колебаний. Для линзы же требуется высококачественное оптическое стекло, без всяких дефектов. Для зеркала же прозрачность стекла, наличие в его толще мелких дефектов, значения не имеет.
  • При равном диаметре объектива рефлектор Ньютона гораздо компактнее рефрактора. Например, труба рефрактора с объективом 150 мм была бы длиной более 2 метров, и стоила бы очень дорого, не говоря уже про астрономическую стоимость такого объектива и мощной монтировки. Рефлектор же такого диаметра вдвое короче, намного меньше, а стоимость зеркала вполне доступна.
  • Зеркальный телескоп даёт лучшее изображение, ведь в рефракторе происходит преломление света, а в рефлекторе – всего лишь отражение. Поэтому рефлектор практически свободен от многих аберраций, например, хроматических – когда вокруг объекта возникает цветная кайма, и даёт более резкое и качественное изображение.
  • Зеркало может отражать свет практически любой длины, в том числе и ультрафиолет, что оказывается важным для наблюдений и фотографии. В рефракторе свет проходит через линзу, и большая часть спектра просто теряется, в том числе и ультрафиолетовая.
  • Такой телескоп имеет большую светосилу, что позволяет делать более четкие и качественные фотографии.
  • В силу конструкции у рефлектора Ньютона окуляр расположен сбоку, что позволяет проводить наблюдения с большим удобством. Рефрактор может оснащаться оборачивающей призмой, но это лишнее препятствие на пути света, увеличивающее его потери, да и удобство это относительное.
  • Конструктивно телескоп состоит из главного зеркала сферической или параболической формы, и вторичного плоского зеркала, которое просто выводит сфокусированный пучок наружу из трубы, где расположен окуляр для наблюдения.

Конструкция рефлектора Ньютона

Главное зеркало располагается на специальной площадке, снабженной юстировочными винтами для регулировки его наклона. Вторичное плоское зеркало расположено на растяжках вблизи переднего конца трубы. В телескопе, таким образом, происходит всего два отражения.

Окуляр снабжается фокусером для плавной регулировки резкости.

Рефлектор Ньютона – довольно дешевый телескоп по сравнению с аналогичным по диаметру объектива рефрактором. Разница в цене может достигать нескольких раз, а в более крупных моделях аналогов и вовсе нет. Например, самыми популярными рефракторами можно считать модели с диаметром объектива 50-80 мм, с диаметром 90 мм они имеют довольно значительную цену.

При этом рефлектор Ньютона с диаметром зеркала 110 — 150 мм вполне доступен практически любому любителю астрономии. Многие любители имеют в своем арсенале и 200-мм модели, которые относятся уже к профессиональному классу. Рефрактор такого диаметра можно встретить разве что в обсерватории, в продаже их нет.

История появления рефлектора Ньютона

Как следует из названия, телескоп такой конструкции впервые создал знаменитый английский ученый Исаак Ньютон, известный своими работами в сфере математики, физики, астрономии, и в других науках. Создал, но не изобрел. Идея такой конструкции принадлежит шотландскому ученому – математику и астроному Джеймсу Грегори, предложившему её в 1663 году, однако не воплотил её в реальный телескоп.

Первый телескоп Ньютона

Ньютон создал первый телескоп по такой схеме в 1668 году, но он был неудачным. Вторая модель оказалась лучше и давала отличное изображение с 40-кратным увеличением.

Это был большой прорыв в астрономии, особенно если учесть, что в то время пользовались рефракторами – линзовыми телескопами примитивной конструкции, а то и вовсе подзорными трубами. Конечно, такие инструменты не давали качественного изображения, да и увеличение у них было маленькое, хотя и с ними было совершено немало открытий.

Как бы то ни было, в 1671-1672 годах Ньютон продемонстрировал свой телескоп перед самим королём и в Королевском обществе, что вызвало немало восторгов. Ньютон стал знаменит и его сделали членом Королевского общества. Впоследствии телескоп-рефлектор стал основным астрономическим инструментом и позволил совершить многие важнейшие открытия.

Современная модель рефлектора Ньютона

Современная модель рефлектора Ньютона

С тех пор мало что изменилось, хотя появилось много других конструкций телескопов, в том числе и рефлекторов. Однако рефлектор Ньютона, как самый простой и одновременно эффективный инструмент, пользуется заслуженной любовью астрономов-любителей по всему миру, причём многие конструировали свой первый рефлектор Ньютона своими руками.

Что лучше наблюдать в рефлектор Ньютона

В телескоп такой конструкции можно наблюдать практически всё, но он будет неудобен для наземных наблюдений, так как даёт перевернутое изображение – для астрономических целей это совершенно несущественно.

Благодаря большому диаметру зеркала по сравнению с рефракторами и меньшим потерям света, рефлектор позволяет лучше рассмотреть слабосветящиеся объекты – туманности, галактики, планеты. Также по этим причинам он более эффективен при фотографировании.

Конечно, в рефлектор можно прекрасно наблюдать Луну, и он даст прекрасную детализацию её поверхности.

Как сделать рефлектор Ньютона своими руками

Сейчас рефлектор Ньютона можно легко купить в магазине, притом за сравнительно небольшие деньги можно получить самую разную конфигурацию, которая позволит увидеть многие космические объекты.

Однако при желании и настойчивости можно сделать рефлектор Ньютона своими руками. Дело это, конечно, кропотливое, но зато можно получить в свое распоряжение достаточно мощный телескоп, стоимость которого в магазине составляет десятки, а то и сотни тысяч рублей. Например, вполне успешно при некотором опыте любители создавали для домашних обсерваторий 200 и 250-мм телескопы.

Зачем это нужно сейчас, когда можно все купить в магазине? Причины могут быть разные – от простой экономии до чисто практического интереса. В конце-концов, телескоп, созданный своими руками, под собственные требования, может оказаться ничем не хуже покупного, а приобретенные навыки точно лишними не будут.

Где купить рефлектор Ньютона

Купить рефлектор Ньютона сейчас не составляет труда. Это очень популярная конструкция, которая во множестве вариантов выпускается практически всеми производителями телескопов. В городах в магазинах оптики наверняка можно встретить такие модели во множестве.

Можно купить рефлектор Ньютона и через Интернет. Здесь представлены модели такой конструкции практически любого размера и любого производителя. Выбрать нужную модель по характеристикам или цене не составит проблемы, а заказать можно прямо на сайте.

Показатель преломления не зависит от угла падения светового пучка, но он зависит от его цвета. Это было открыто Ньютоном.

Не призма окрашивает белый свет, как предполагалось раньше. Призма не изменяет свет, а лишь разлагает его на составные части.

Белый свет имеет сложную структуру. Из него можно выделить пучки различных цветов, и лишь совместное их действие вызывает у нас впечатление белого цвета.

Спектроскоп–это прибор для получения и изучения спектра электромагнитного излучения (света или других длин волн). Спектроскоп является основным инструментом спектроскопии, где он применяется для исследования химического состава и физических параметров объекта. Спектроскопы применяются в астрономии для изучения света звезд и в химии для обнаружения следов различных химических элементов в образцах, которые слишком малы, чтобыприсутствие элементов можно было установить другими методами. Свет, входящий в спектроскоп, сводится втонкий пучок при помощи щели и линзы. Затем луч проходит либо через призму, либо через дифракционную решетку, разлагаясь в спектр. С решеткой или призмой соединена шкала, по которой можно определить спектральные длины волн.

Радуга над плато УКОК на Алтае

Радуга над плато УКОК на Алтае

Хорошее разрешение достижимо

В интернете много публикаций о том, как используя DVD-R диск и смартфон можно собрать спектрометр, однако характеристики таких устройств не позволяют проводить точные измерения. Мне же удалось сделать прибор с разрешением 0,3 нм.



Основные характеристики

Конструкция и изготовление прибора

Дифракционная решетка

Просто красивый спектр свечи на DVD-R диске

Просто красивый спектр свечи на DVD-R диске

Диск был расслоен на две половины и разрезан на части, которые после промывания спиртом были помещены в рамки. Дифракционная решетка готова.

Дифракционная решетка из DVD-R диска

Дифракционная решетка из DVD-R диска

Изготовление сменных оптических щелей


В дюралевой пластине сверлю отверстие диаметром 8 мм. Клеевым пистолетом закрепляю половинку лезвия безопасной бритвы, располагая режущую кромку по центру отверстия. Вставляю в отверстие щуп толщиной 50 мк, плотно прижимаю вторую половину лезвия и приклеиваю ее. Аналогично делаю щели 100 мк, 200 мк и 300 мк. Сменные оптические щели готовы.

Корпус спектрометра


Делаю деревянный корпус. Окрашиваю внутри и снаружи в черный цвет.

Оптика и регистрация спектра - фотоаппарат NIKON D5100

Зеркальная фотокамера NIKON D5100

Зеркальная фотокамера NIKON D5100

Примерно на 3000 пикселей матрицы приходится около 300 нм видимого спектра. Т.е. 1 пикселю соответствует 0.1 нм. Для надежной регистрации линии нам нужно два-три пикселя. Расчеты показывают, что для такого разрешения размеры оптической щели должны быть порядка 100 микрон. Было сделано несколько щелей для выбора лучшего варианта экспериментальным путем.


Чтобы получить такое разрешение необходим зеркальный фотоаппарат с хорошим объективом. Смартфон и веб-камера не подходят. Требуется большая апертура и ручные настройки. На данный момент на Авито можно приобрести подходящую камеру по цене от 5 до 10 тысяч рублей.

Настройка и калибровка спектрометра

Калибровка прибора проводилась перед каждой серией экспериментов по известному спектру компактной ртуть содержащей люминесцентной лампы.

Лампа для калибровки

Лампа для калибровки

Определение длины волны линий исследуемого спектра возможно без специального программного обеспечения. Ниже спектр лампы с линиями ртути 435,8 нм, 546,0 нм, 577,0 нм и 579,1 нм. Линия 611 это уже Европий.

Спектр лампы с линиями ртути Две линии ртути крупным планом Еще крупнее

Расстояние между линиями 2, 1 нм. Половина ширины линии на кадре не более 0,3 нм, что соответствует примерно 3 пикселям матрицы. Делаем вывод – разрешение прибора 0,3 нм. Что в дальнейшем подтвердится съемкой двойной линии натрия.

Для построения спектральных кривых можно использовать программу сайта Spectral Workbench

Спектр лампы, которую я применял для калибровки

Спектр лампы, которую я применял для калибровки

Измерение различных спектров

Были проведены несколько классических экспериментов.

Снят спектр Солнца. Высота 13 градусов над горизонтом. Полдень Спектр от трех лазеров с длинами волн 405 нм, 532 нм и 650 нм Опыты по определению концентраций растворов KMnO4 Спектр пламени газовой горелки

Самый интересный эксперимент, ради которого и был изготовлен спектрометр - измерение спектра пламени костра

Исследуемое пламя костра в камине Я разжигал костер в камине и проводил исследования, фиксируя спектр пламени

На фоне непрерывного спектра была зарегестрированна яркая линия, которую я назвал линией огня.

Обработка результата

Совмещаем спектр калибровочной лампы и исследуемый спектр на одном кадре. Зная расположение известных линий ртути, можно определить искомую длину волны, путем замеров и последующих расчетов.

Слева спектр калибровочной лампы. По центру спектр пламени

Слева спектр калибровочной лампы. По центру спектр пламени

Полезные ссылки:

Сайт Spectral Workbench. Используя программы на сайте можно обрабатывать спектры и получать графики интенсивности в зависимости от длины волны.

Можно отлить в пластилиновую форму изо льда (читай Жуля Верна! - или Перельмана) , модно выпилить из прозрачного карбонатного пластика, или в крайнем случае из оргстекла, хотя у него коэфф. преломления невысок.. .
Если нужно просто разложить, без особой точности - можно использовать угол (грань) толстого плоского стекла.
Если важен сам эффект - можно использовать линзу и плоское стекло и получить кольца Ньютона

Купить можно кстати в сувенирных киосках призму, в которой лазером выгравирован какой- нибудь рисунок - год назад эти сувениры были модны, и их и сейчас полно. Обычно они как раз из карбонатного пластика и делались.

Самые лучшие призмы из биноклей (мощных, призматических) Один бинокль = 4 первоклассные призмы, в детстве баловались:)

Если нужно разложить солнечный свет на составляющие, то можно обойтись без призмы. Обычный CD или DVD-диск при наклонном падении лучей – это недорогая замена дифракционной решетки. Можно пробовать сделать призму из подручных материалов, но расходимость лучей разного цвета у дифракционной решетки лучше.

Вряд ли кто-то стал бы винить Ольденбурга, если бы он принял это заявление за нелепые и наглые бредни страдающего болезненным самолюбием юнца. Ньютон и впрямь был крайне сложным человеком: чрезвычайно ранимым и одновременно крайне агрессивным, и при этом еще и параноидально скрытным. Однако в данном случае его претензия на эпохальное открытие была вовсе не преувеличением.

Оптика, наука о свете, в те времена быстрыми темпами набирала научную значимость. С древних времен мыслители накапливали фундаментальные сведения относительно отражения и рефракции (преломления лучей при прохождении прозрачных материалов) света. Но до семнадцатого столетия зеркала и линзы были очень низкого качества. Более того, исследованиям в этой сфере мешал распространенный предрассудок, что оптические явления не заслуживают серьезного изучения, так как они эфемерны. Могут ли столь искаженные и обманчивые образы представлять какой-либо научный интерес?

Рис. 9. Продолговатое пятно на экране, оставленное солнечным лучом после прохождения круглого отверстия и треугольной призмы (чертеж Ньютона)

Чертеж для experimentum crucis , нарисованный ученым на листе бумаги в ходе своей первой лекции по оптике, показан на рис. 10. Тонкий луч света, проникавший через отверстие в окне, проходил через первую призму и превращался в веер цветов спектра на доске, находившейся на расстоянии десяти футов. Этот радужный веер был продолговатой формы в вертикальном направлении, а цвета в нем были расположены горизонтально, от красного к синему. Всякий, кто когда-либо развлекался с призмами, видел упомянутый эффект, хотя вряд ли кто-либо до Ньютона задумывался о значимости формы. Но затем Ньютон сделал еще более новаторский шаг: он добавил еще одну призму и еще одну доску. Он просверлил отверстие в доске, пропустил сквозь нее часть удлиненной световой полосы на другую призму на противоположной стороне и затем направил эту полосу на вторую доску. Путем вращения первой призмы он смог перемещать удлиненную полосу света вверх и вниз так, чтобы свет различного цвета проходил бы через отверстие и через вторую призму на вторую доску. После чего тщательно анализировал полученный результат.

Но что же было такого решающего в данном эксперименте, одном из сотен, проведенных Ньютоном со сходными результатами? Уверенность в выводах, связанных с этим экспериментом, базировалась не на нем одном, а на всех попытках ученого анализировать свет с помощью призм и линз. Однако Ньютон не видел смысла в том, чтобы его коллеги повторяли его собственный, столь сложный путь исследований. Чтобы дать им верное направление, достаточно было ясного описания одного эксперимента. Поэтому с experimentum crucis связана определенная театральность. Он стал демонстрацией или своеобразным резюме того, что самому Ньютону уже было ясно. Целью данной демонстрации было убедить коллег, поэтому она должна была быть простой, доступной по инструментарию и показывать результат четко и максимально наглядно. Ньютон писал позже одному из тех, кто пытался воспроизвести его эксперименты:

По словам Ньютона, он тотчас же принялся за изготовление телескопа, работающего на зеркалах, однако его работа была прервана чумой. В 1671 году Ньютон наконец создал зеркальный телескоп, которым гордился настолько, что смог преодолеть свою навязчивую скрытность и продемонстрировать изобретение Лондонскому королевскому обществу.

Ньютон пришел к важному выводу, что белый свет является составным. Он подтвердил это предположение в ряде других экспериментов, в ходе которых использовал дополнительные призмы и линзы, с их помощью восстанавливая расщепленный на спектральные линии свет:

Как работают призмы и как возникает продолговатая форма производимого ими светового пятна? Они не трансформируют, а просеивают свет, разделяя его на полосы соответственно степени преломляемости. Представьте (сравнение принадлежит не Ньютону) группу бегунов, каждый из которых совершает поворот во время бега под разным углом. Когда они движутся по прямой, они держатся вместе, но при первой же необходимости совершить резкий поворот разворачиваются веером.

Убедить ученых за пределами Англии оказалось еще сложнее. Одним из них был пожилой профессор Иезуитского колледжа в Льеже по имени Фрэнсис Лайн (в письмах он использовал латинский вариант своей фамилии Линус, а также псевдоним Холл). Осенью 1674 года Линус, приближавшийся к своему восьмидесятилетнему юбилею, написал Ольденбургу, что в собственных экспериментах с призмами, проведенными за тридцать лет до того, он никогда не наблюдал удлиненную форму спектра в солнечные дни и потому объяснял увиденное Ньютоном последствием пасмурной погоды. Ньютон, считавший Линуса абсолютно некомпетентным, не счел нужным ему отвечать. Тем не менее Ольденбург попросил Гука устроить демонстрацию ньютоновского experimentum crucis на заседании Королевского общества в марте 1675 года. Однако погода выдалась совершенно неподходящая, и (в частности, приняв во внимание замечания Линуса) было сочтено нецелесообразным продолжать эксперимент в пасмурный день. Линус скончался осенью того же года, но его дело продолжил верный ученик Энтони Лукас, ставший преемником Линуса в колледже. Он выражал уверенность, что правильность подозрений его наставника будет подтверждена, если повторить эксперимент в солнечную погоду.

Гук вновь назначил демонстрацию эксперимента в Лондонском королевском обществе, на сей раз на 27 апреля 1676 года, и день оказался солнечным. Хотя сам Ньютон на демонстрации не присутствовал – он, как правило, избегал подобных публичных мероприятий, – она стала значимой вехой в истории зарождения современной науки, так как это был первый эксперимент, спланированный и проведенный научным обществом с целью получения окончательного ответа на научный вопрос, породивший ожесточенную дискуссию. В официальном докладе Королевского общества говорится:

Эксперимент позволил понять много удивительных явлений, связанных со светом, снабдил нас методикой выделения света различного цвета и технологией изготовления более качественных телескопов. Ньютоново открытие было подобно взрыву, отголоски которого разошлись во множестве самых разных направлений.

Совершенно очевидно, что красота описываемого эксперимента не имеет никакого отношения к красоте цветов. Ньютон, подобно Эратосфену с его тенями, смотрел не просто на отблеск цветов, он вглядывался в то, что заставляло их вести себя именно так и никак иначе. Однако, подобно эксперименту Галилея с наклонной плоскостью, experimentum crucis Ньютона высветил и нечто принципиально важное относительно самой природы эксперимента. От многих других великих экспериментов experimentum crucis отличает то, что он обладает особой, нравственной , красотой.

Читайте также: