Приставки к мультиметру своими руками

Добавил пользователь Skiper
Обновлено: 05.10.2024

Сразу предупреждаю, статью пишу как любитель для любителей, так что уровень и стиль изложения соответствующий. Итак, к сути вопроса.

Существует масса схем для измерения, или же оценки эквивалентного последовательного сопротивления (equivalent series resistance) конденсаторов, особо желающие могут ознакомиться с ними, например, здесь:

Останавливаться на теории, а также полезности устройства — не буду, данную информацию несложно найти на просторах интернет.

Перейду сразу к делу — существует множество причин, по которым для меня интерес представляли простые схемы, без использования трансформаторов, микроконтроллеров, с готовыми печатными платами, и очень желательно — на имеющейся у меня в наличии элементной базе.

Таким образом, выбор был между схемами на базе микросхем К155ЛА3 (четыре логических элемента 2И-НЕ), К561ЛА7 (четыре логических элемента 2И-НЕ), таймера 555 (NE555, LC555, LM555, LC7555).

В результате я остановился на схеме, разработанной финским радиолюбителем, и подробно описанной на следующем сайте:

Там же имеются ссылки на схему и архив с файлами проекта для программы Eagle, при помощи которых в несколько нажатий мышью получаем готовую печатную плату.

Совсем ленивые могут скачать готовый PDF файл здесь.

Плату собирал по схеме №2:


Но за ненадобностью не запаивал операционный усилитель LM358 и его обвязку, так как мне не требуется подключать схему к стрелочному амперметру, то есть получать на выходе зависимость мА/Ом, а достаточно получить зависимость В/Ом.

В основном схема выбрана по причине того, что в её основе лежит высокостабильный генератор прямоугольных импульсов, или просто — таймер. Таким образом, не требуется специальных ухищрений, чтобы получить необходимую для измерения ESR частоту, в данном случае — 100кГц.

У данной схемы, конечно же, есть недостатки, как например:

— узкий диапазон измерений: от 0,1 мОм, до 1 Ом, что накладывает ограничение на нижний порог диапазона емкостей конденсаторов — он начинает где-то от 100мкФ, ниже справочная информация:


— автор часто забывал указывать номиналы деталей, так что приходилось сверять два варианта схемы, а также фотографию готовой платы на оригинальном сайте;

Далее всё просто — при помощи прямых рук и технологии лазерного утюга, была получена следующая печатная плата:


Которая была сразу же вручную залужена при помощи канифоли и самого обычного припоя, а предварительно не иначе как сдуру — засверлены отверстия:


И были запаяны детали, резисторы и конденсаторы в подавляющем большинстве в SMD исполнении, размера 0805:




Таймер NE555N вставил на запаянную ранее панельку.

Также были сделаны следующие отступления от оригинала:

— D3 — диод Шоттки 1N5819 (40В, 1А);

— диоды D2 и D5 — вместо стандартных выпрямительных BY255 (1300В, 3А) использовал ультрабыстродействующие HER308 (1000В, 3А);

— D4 — вместо универсального выпрямительного диода 1N4004 (400В, 1А) использовал RL205 (600В, 2А);

— конденсаторы C1, C2 и C4 — 100мкФ (C1, C2 — на напряжение где-то на 1/3 больше 18В, лично я взял то, что было под рукой — 100мкФ, 50В и 63В);

— в качестве стабилизатора 12В использовал К142ЕН8Б (итоговое напряжение 11,87В).

В итоге устройство запустилось сразу, после описанных ранее манипуляций с подстроечным резистором — показания при измерении стали похожи на правду, в действии выглядит следующим образом:



В принципе я доволен, хоть и осталось нерешенными несколько вопросов:

1) Думаю над вариантами питания схемы от блока питания, после чего определюсь в какой из имеющихся корпусов упаковать данный девайс. Возможно попробую собрать повышающий DC-DC преобразователь на MC34063, чтобы выбросить из схемы стабилизатор, и оставить для питания только одну батарейку.

2) Не могу придумать каким образом правильно откалибровать устройство, и есть подозрение, что точность измерения страдает, вот пример:

— выставляю 0,1 В по постоянному резистору 0,1 Ом (на фото), но при измерении сопротивления 1 Ом — получаю около 0,8 В;

— выставляю 1 В по резистору 1 Ом, измеряю сопротивление резистора 0,1 Ом — получаю около 0,2 В.


Прибор во временном корпусе:


Надеюсь мой опыт кому-нибудь будет полезен. Благодарю за терпение и внимание.

Комментарии ( 23 )

ESR метр вещь нужная. Только я бы предпочел в виде автономного устройства.
У вашей схемы большой минус — это невозможность проверить конденсатор не выпаивая его.
На самом деле есть схемы проще и лучше, вот например.
А я буду делать себе по схеме из журнала РЭТ №2 2008г. Там на конденсатор подается напряжение синусоидальной формы, что ещё лучше.

Данную схему несколько раз встречал, но в составе такой толковой статьи — впервые.
К сожалению под рукой нет указанного ОУ и стрелочного микроамперметра. Трансформатор возможно нашелся бы в кучке горелых, но не уверен что смогу разобрать и собрать транс, не говоря уже о намотке обмоток. В общем, спасибо, схема хороша, но не мой вариант.
Удачи в реализации, интересно будет посмотреть на результат.

Похожую схему по ссылке собирал, но там вместо генератора на ОУ применялась кажется 1553ЛА3, а трансформатор мотался на кольце. Плюс, этим же прибором можно было проверить конденсатор на пробой — что весьма и весьма удобно.

Не все цифровые мультиметры могут измерять частоту, а те недорогие, в которых есть такая возможность, обычно имеют низкую чувствительность и ограниченный частотный диапазон.

Предлагаемое устройство представляет собой преобразователь частота-напряжение и, конечно, не заменяет цифровой многоразрядный частотомер, а дополняет его. Оно имеет лучшие параметры, чем опубликованные в [1, 2]. С его помощью можно измерять частоту сигнала произвольной формы в диапазоне 5 Гц. 2,5 МГц. В интервале 5 Гц. 5 кГц измерения можно проводить с дискретностью в 1 Гц, если это позволяет разрядность мультиметра (для мультиметров с дисплеем на 3,5 знака - 5 Гц. 1999 Гц). Погрешность при измерении частот до 50 кГц не превышает 0,2%±1 ед. младшего разряда. На более высоких частотах погрешность немного увеличивается, но не более чем до 0,8%. Температурная нестабильность показаний в интервале комнатных температур - не более 0,04% на 1°С. Устройство потребляет ток не более 30 мА. Период измерения - 2. 3 раза в секунду, что соответствует периоду измерения мультиметра. Предусмотрен индикатор перегрузки по частоте.

Измеряемый частотный диапазон разбит на 4 интервала. Для мультиметров с неполным четырехразрядным дисплеем (3999) это будут:

  • первый диапазон - 5. 3999 Гц,
  • второй - 50. 39990 Гц,
  • третий - 500. 399900 Гц,<>
  • четвертый - 5 кГц. 2,5 МГц.

При измерении частоты переключатель рода работ на мультиметре устанавливается в положение для измерения постоянных напряжений. Это позволяет использовать с приставкой любой мультиметр с входным сопротивлением не менее 1 МОм без необходимости перестройки приставки.

Рис.1. Принципиальная схема приставки-частотомера

В зависимости от выбранного переключателем SA1 диапазона частот, на формирователь импульсов на DD1.3, DD1.4 подается сигнал с одного из счетчиков DD3. DD5 или с выхода инвертора DD1.2. Дифференцирующая цепь на C11-R16 задаёт постоянную длительность формируемых импульсов, скважность которых зависит от частоты исследуемого сигнала. Сформированные импульсы поступают на усилитель мощности на параллельно включенных инверторах DD2.2. DD2.4. С выхода усилителя стабильные по амплитуде и длительности импульсы поступают на термокомпенсированный генератор стабильного тока на VT5, VT6, R17, R18, VD9.

Когда напряжение на накопительном конденсаторе С9 превысит уровень 600 мВ (частота 6 кГц на выходе DD1.4), линейность преобразования частота-напряжение ухудшается. Чтобы не было ошибки, устройство оснащено индикатором перегрузки на транзисторе VT1, инверторе DD2.1 и мигающем светодиоде HL1.

Миниатюрная лампа накаливания EL1, включенная в разрядную цепь конденсатора С9, компенсирует небольшой отрицательный температурный дрейф напряжения на выходе приставки.

На микросхеме DA1 и светодиоде HL2 собран стабилизатор напряжения на 6. 6,5 В, которое необходимо для обеспечения высокой точности работы приставки. ИМС КР142ЕН17А способна работать при малом падении напряжения между входом и выходом и как нельзя лучше подходит для устройств с батарейным питанием. При ее отсутствии стабилизатор можно собрать по схеме, приведенной на рис.2. Подробные сведения о микросхеме КР142ЕН17 можно почерпнуть в [3].

Рис.2. Стабилизатор напряжения на 6. 6,5 В

Детали и конструкция. Постоянные резисторы можно использовать типа МТЛ-0,125, С1-4-0,125; подстроечные - СПЗ-38а, СПЗ-386, РП1-63М. Для облегчения настройки, R15 лучше взять многооборотный, типов СП5-2, СПЗ-39а, сопротивлением 470 Ом. Конденсатор С11 - пленочный, желательно, с минимальным ТКЕ, например, К31-10, К31-11. Оксидный конденсатор С9 - ниобиевый К53-4.

На его место можно поставить конденсатор другого типа с малой утечкой (К52, К53). Остальные оксидные конденсаторы - К50-24, К50-35 или их импортные аналоги. Неполярные блокировочные конденсаторы - КМ-5, КМ-6, К10-176. Диоды VD1. VD8, VD10 - КД503, КД510, КД522, 1N4148. Мигающий светодиод HL1 - любого типа, предпочтительнее красного свечения. Светодиод HL2 должен быть серии АЛ307 с индексами А, Б, К или Л. Диод VD9 - обязательно германиевый, например, Д20, Д9.

Полевой транзистор VT2 можно заменить на любой из серии КП305. При отсутствии полевых транзисторов с изолированным затвором и n-каналом, допустимо применить транзисторы с p-n-переходом, например, КП307, КПЗОЗ. VT1, VT3, VT4 - КТ3102, КТ3130, SS9018, 2SD734; VT5, VT6 - любые из серий КТ3107, SS9015.

Микросхемы DD1, DD2 заменимы аналогичными серий 564, КР1561. С изменением схемы включения счетчики DD3. DD5 можно заменить на К561ИЕ14, КР1561ИЕ14. На месте DD4, DD5 можно использовать и К176ИЕ4, К176ИЕ2, также включив их как делители частоты на 10.

Приставка смонтирована на плате размерами 110x60 мм (фото на обложке) навесным или печатным монтажом. Транзисторы VT5, VT6 и диод VD9 размещаются вплотную друг к другу. На них надвигается небольшой бумажный цилиндр, который потом заливается парафином. Блокировочные конденсаторы С6, С7 устанавливаются вблизи микросхем DD1, DD2. На рис.1 показано минимально необходимое число блокировочных конденсаторов. Если приставка будет эксплуатироваться только в стационарных условиях, то напряжение питания микросхем желательно увеличить до 9В.

Подав на устройство напряжение питания, в отсутствие сигнала на входе измеряют напряжение на стоке VT2, которое должно быть около 2,4 В. При необходимости оно устанавливается подбором R7. Далее VT5 и R18 временно отсоединяются от выходов DD2.2. DD2.4 и подключаются к выводу "+" конденсатора С8. Подбором R18 устанавливается ток коллектора VT6 в пределах 1,5. 2 мА. Восстановив прежнее соединение, на вход устройства с генератора подается синусоидальный сигнал частотой 1000 Гц и амплитудой 250 мВ. Контролируя осциллографом сигнал на коллекторе VT4, вращением движка R11 добиваемся меандра. Если это не удается, следует подобрать R8. Первый этап настройки закончен.

Далее, к выходу приставки подключается мультиметр, включенный на режим измерения постоянных напряжений (пределы -1999,9 мВ, 400 мВ или 200 мВ). К выходу генератора сигналов подключается эталонный частотомер. На генераторе устанавливается частота 3800 Гц или 1800 Гц амплитудой 1 В. Подбором R19 и подстройкой R15 добиваются показаний на дисплее 380,0 мВ (180,0 мВ). Затем частота генератора уменьшается в 10 раз. Если показания на цифровом частотомере и мультиметре разошлись более чем на ±2 ед. младшего разряда, то следует проверить VT5, VT6, VD10, С9. Практически же, никакого расхождения в показаниях быть не должно! Переключая SA1, убеждаемся в работе делителей частоты DD3. DD5.

Термокомпенсацию всего устройства можно произвести, подключая последовательно с R19 терморезистор или лампу накаливания. Если показания на мульметре уменьшаются с ростом окружающей температуры, то следует подключить терморезистор с положительным ТКС или малогабаритную лампу накаливания на 24. 60 В. Если показания мультиметра увеличиваются с ростом температуры (естественно, при неизменной частоте входного сигнала), то подключается терморезистор с отрицательным ТКС. Если получилась перекомпенсация, то термодатчик надо зашунтировать обычным резистором.

Примерное сопротивление подключаемого термодатчика при температуре 25°С - 30. 300 Ом. Термокомпенсацию можно выполнить и подругому, например, подключением параллельно с С11 керамического конденсатора на несколько десятков пико-фарад с требуемым ТКЕ.

При монтаже транзистора VT2 и микросхем следует соблюдать обычные меры предосторожности при работе с МОП-приборами. Выводы и корпус полевого транзистора перед снятием замыкающей трубочки временно обматываются мягкой проволочной перемычкой.

Если приставкой потребуется измерять более высокие частоты, то микросхемы необходимо заменить функциональными аналогами из серии КР1554, например, КР1554ИЕ6, переделать входной усилитель и снизить напряжение питания ИМС до 5,5 В. Соответственно, потребуется увеличить и число делителей. Когда от приставки потребуется более высокая чувствительность, можно добавить еще один каскад на полевом транзисторе или построить дифференциальный усилитель (VT3, VT4) по схеме токового зеркала.

При возникновении трудностей с приобретением подходящего малогабаритного переключателя, можно построить его функциональный аналог на микросхеме К561ТМ2, включенной как двухразрядный двоичный счетчик, и мультиплексоре К561КТЗ. Переключение диапазонов в этом случае производится одной кнопкой (TD-06XEX SMD). Следует учитывать, что после многократной перегрузки требуется несколько секунд для восстановления высокой точности счета (из-за локального разогрева кристаллов VT5, VT6).

  1. Нечаев И. Комбинированный частотомер. - Радио, 1993, N9, С.22-24.
  2. Гриев Ю. Аналоговый частотомер с автоматическим выбором предела измерения. В помощь радиолюбителю. - Москва: Патриот, 1990, N108, С.40-51.
  3. Нефедов А. Микросхемы серии КР142ЕН17 -стабилизаторы напряжения. - Радио, 1998, N6, С.65.

Автор: А.БУТОВ, с.Курба, Ярославской обл.

Мнения читателей

а что нет компактных схем или статьи взятые с журнала лучше? странно хотя в данный момент всё компактно на смд компонентах и думай как нарисовать печатку тема хорошая но старая и больше нечего сказать

Здрувствуйте уважаемый! Мне понравилась Ваша приставка, думаю повторить. У Вас случаем не найдётся рисованной печатки?Зарание спасибо.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Не ослабевает интерес наших читателей и авторов к разработке и изготовлению устройств измерения ЭПС (ESR) оксидных конденсаторов. Предлагаемая ниже приставка к мультиметрам серии 83х продолжает эту тему. Мультиметры, далее приборы, серии 83х — очень популярны среди радиолюбителей из-за доступной цены и приемлемой точности измерений.

На страницах журнала "Радио" неоднократно публиковались статьи по расширению возможностей этих приборов, например, [1—3]. При разработке предлагаемой приставки, так же как и в [2, 3], была поставлена задача не применять дополнительный источник питания.

Схема приставки показана на рис. 1.

Измеритель ESR ( ЭПС ) - приставка к мультиметру

В приборах, построенных на микросхемах АЦП ICL71x6 или их аналогах, есть внутренний стабилизированный источник напряжения 3 В с максимальным током нагрузки 3 мА [4]. С выхода этого источника подано напряжение питания на приставку через разъём "СОМ" (общий провод) и внешнее гнездо "NPNc", которое входит в состав восьмиконтактной розетки для подключения маломощных транзисторов в режиме измерения статического коэффициента передачи тока. Метод измерения ЭПС аналогичен применённому в цифровом измерителе, который описан в статье [5]. По сравнению с этим устройством предлагаемая приставка существенно отличается простотой схемы, малым числом элементов и их низкой ценой.

Основные технические характеристики
Интервал измерения ЭПС, Ом:
при разомкнутых контактах выключателя SA1 0,1. 199,9
при его замкнутых контактах (положение "х0,1") 0,01. 19,99
Ёмкость проверяемых конденсаторов, не менее, мкФ 20
Ток потребления, мА 1,5

Измеритель ESR ( ЭПС ) - приставка к мультиметру

При работе с приставкой переключатель рода работ прибора устанавливают в положение измерения напряжения постоянного тока с пределом "200 мВ". Внешние вилки приставки "СОМ", "VΩmA", "NPNc" стыкуются с соответствующими гнёздами прибора. Временная диаграмма показана на рис. 2. Генератор, собранный на логическом элементе DD1.1 — триггере Шмитта, диоде VD1, конденсаторе С1 и резисторах R1, R2, вырабатывает последовательность положительных импульсов длительностью tr = 4 мкс с паузой 150 мкс и стабильной амплитудой около 3 В (рис. 2, а). Эти импульсы можно наблюдать осциллографом относительно общего провода гнезда "СОМ". Во время каждого импульса через проверяемый конденсатор, подключённый к гнёздам "Сх" приставки, протекает заданный резисторами R4, R5 стабильный ток, который равен 1 мА при разомкнутых контактах выключателя SA1 или 10 мА при его замкнутых контактах (положение "х0,1").

Рассмотрим работу узлов и элементов приставки с подключённым проверяемым конденсатором с момента появления очередного импульса длительностью tr на выходе элемента DD1.1. От инвертированного элементом DD1.2 импульса низкого уровня длительностью trтранзистор VT1 закрывается на 4 мкс. После зарядки ёмкости сток—исток закрытого транзистора VT1 напряжение на выводах проверяемого конденсатора будет зависеть практически только от тока протекающего через его ЭПС.

На логическом элементе DD1.3, резисторе R3 и конденсаторе С2 собран узел задержки фронта импульса генератора на 2 мкс. За время задержки t3 ёмкость сток—исток закрытого транзистора VT1, шунтирующая испытуемый конденсатор, успевает зарядиться и практически не влияет на точность следующего после t3 процесса измерения (рис. 2,б). Из задержанного на 2 мкс и укороченного по длительности до 2 мкс импульса генератора на выходе инвертора DD1.4 формируется измepиteльный импульс длительностью tизм= 2 мкс (рис. 2,в) высокого уровня. От него открывается транзистор VT2, а запоминающий конденсатор СЗ начинает заряжаться от падения напряжения на ЭПС проверяемого конденсатора через резисторы R6, R7 и открытый транзистор VT2. По окончании измерительного импульса и импульса с выхода генератора от высокого уровня на выходе элемента DD1.2 транзистор VT1 открывается, a VT2 от низкого уровня на выходе элемента DD1.4 закрывается. Описанный процесс повторяется каждые 150 мкс, что приводит к зарядке конденсатора СЗ до падения напряжения на ЭПС проверяемого конденсатора после нескольких десятков периодов. На индикаторе прибора отображается значение эквивалентного последовательного сопротивления в омах. При положении выключателя SA1 "х0,1" показания индикатора нужно умножить на 0,1. Открытый между импульсами генератора транзистор VT1 устраняет рост напряжения (заряд) на ёмкостной составляющей проверяемого конденсатора до значений ниже минимальной чувствительности прибора, равной 0,1 мВ. Наличие входной ёмкости транзистора VT2 приводит к смещению нуля прибора. Для устранения её влияния применены резисторы R6 и R7. Подбором этих резисторов добиваются отсутствия напряжения на конденсаторе СЗ при замкнутых гнёздах "Сх" (установка нуля).

О погрешностях измерений. Во-первых, имеет место систематическая погрешность, достигающая примерно 6 % для сопротивлений, близких к максимуму в каждом интервале. Она связана с уменьшением тока тестирования, но не так важна — конденсаторы с такими ЭПС подлежат браковке. Во-вторых, существует погрешность измерения, зависящая от ёмкости конденсатора.
Объясняется это ростом напряжения во время импульса с генератора на ёмкостной составляющей конденсаторов: чем меньше ёмкость, тем быстрее её зарядка. Эту погрешность нетрудно рассчитать, зная ёмкость, ток и время зарядки: U = М/С. Так, для конденсаторов ёмкостью более 20 мкФ она не влияет на результат измерений, а вот для 2 мкФ измеренное значение будет больше реального примерно на 1,5 Ома (соответственно, 1 мкФ — 3 Ома, 10 мкФ — 0,3 Ома и т. п.).

Чертёж печатной платы показан на рис. 3. Три отверстия под штыри следует просверлить так, чтобы последние входили в них с небольшим усилием.

Это облегчит процесс их пайки к контактным площадкам. Штырь "NPNc" — позолоченный от подходящего разьёма, подойдёт и кусок лужёного медного провода. Отверстие под него сверлят в подходящем месте после установки штырей "СОМ" и "VΩmA". Последние — от вышедших из строя измерительных щупов. Конденсатор СЗ желательно применить из группы ТКЕ не хуже Н10 (X7R). Транзистор IRLML6346 (VT1) можно заменить на IRLML6246, IRLML2502, IRLML6344 (в порядке ухудшения). Критерии замены — сопротивление открытого канала не более 0,06 Ом при напряжении затвор—исток 2,5 В, ёмкость сток—исток — не более 300. 400 пФ. Но если ограничиться только интервалом 0,01. 19,00 Ом (выключатель SA1 в этом случае заменяют перемычкой, резистор R5 удаляют), то максимальная ёмкость сток—исток может достигать 3000 пФ. Транзистор 2N7000 (VT2) заменим на 2N7002, 2N7002L, BS170C пороговым напряжением не более 2. 2,2 В. Перед монтажом транзисторов следует проверить соответствие расположения выводов проводникам печатной платы. Гнёзда XS1, XS2 в экземпляре автора — клеммник винтовой 306-021-12.


Перед налаживанием приставку следует подключить не к мультиметру, чтобы не вывести его из строя, а к автономному источнику питания напряжением 3 В, например, к двум последовательно соединённым гальваническим элементам. Плюс этого источника временно подключают к штырю "NPNc" приставки (не подключая этот штырь к мультиметру), а минус — к её общему проводу. Измеряют потребляемый ток, который не должен превышать 3 мА, после чего автономный источник отключают. Гнёзда "Сх" временно замыкают коротким отрезком медного провода диаметром не менее 1 мм. Штыри приставки вставляют в одноимённые гнёзда прибора. Подбором резисторов R6 и R7 устанавливают нулевые показания прибора при обоих положениях выключателя SA1. Для удобства эти резисторы можно заменить одним подстроечным, а после настройки нуля впаивают резисторы R6 и R7 с суммарным сопротивлением, равным подстроечному.

Удаляют отрезок провода, замыкающий гнёзда "Сх". К ним подключают резистор 1. 2 0м при замкнутом положении SA1, затем — 10. 20 Ом при разомкнутом. Сверяют показания прибора с сопротивлениями резисторов. В случае необходимости подбирают R4 и R5, добиваясь желаемой точности измерения. Внешний вид приставки показан на фото рис. 4.
Приставку можно использовать как омметр малых сопротивлений Также ею можно измерять внутреннее сопротивление малогабаритных гальванических или аккумуляторных элементов и батарей через последовательно соединённый конденсатор ёмкостью не менее 1000 мкФ, соблюдая полярность его подключения. Из полученного результата измерения необходимо вычесть ЭПС конденсатора, который должен быть измерен заранее.



ЛИТЕРАТУРА
1. Нечаев И. Приставка к мультиметру для измерения емкости конденсаторов. — Радио, 1999, №8,с.42,43.
2. Чуднов В. Приставка к мультиметру для измерения температуры. — Радио, 2003, № 1, с. 34.
3. Подушкин И. Генератор + одновибратор = три приставки к мультиметру. — Радио, 2010, № 7, с. 46, 47; № 8, с. 50—52.
4. Бирюков С. Цифровой измеритель ESR. — Схемотехника, 2006, № 3, с. 30—32; №4, с. 36,37.

Необходим быстродействующий преобразователь питания средней мощности с высоким КПД? Он должен быть компактным и недорогим? Решение – карбид-кремниевые модули средней мощности WolfPACK производства Wolfspeed. В статье рассмотрены основные особенности модулей WolfPACK и показано, что переход на эту универсальную и масштабируемую платформу позволяет не только быстро разработать новые устройства, но и без значительных затрат времени и средств модернизировать уже существующие схемы на традиционной элементной базе.

Он не отзывается, много людей писало - не отвечает. Может кто собирал или встречался с такой проблемой, или хороший теоретик, который мысленно модулирует в мозге))? Не знаю где копать.

Критически важные распределенные системы требуют синхронного преобразования во всех подсистемах и непрерывного потока данных. Распределенные системы сбора данных могут быть синхронизированы как на основе АЦП последовательного приближения, так и на основе сигма-дельта (∑-Δ)-АЦП. Новый подход, основанный на преобразователе частоты дискретизации (SRC), содержащемся в микросхемах линейки AD7770 производства Analog Devices, позволяет достигать синхронизации в системах на основе сигма-дельта-АЦП без прерывания потока данных.

Всё-таки желательно трансформатор взять такой, какой указан в схеме, ибо от него многое зависит.
И R3 пробовали подбирать .

Я R3 калибровал сопротивление/показание 1к1.

Вот сидел и мотал разные трансформаторы и на колечках, и на гантельках. Итог - везде разная линейность. Хорошо получилось с гантелькой с заводской первичкой + домотал Н-ное число витков. 1 ом - 1.31 вольта, 4.7 ом - 4.8 вольта. НО - при замыкании щупов ноль - 0.8 вольта, и низкий номинал R3. Очень плохая линейность ближе к нулю. Активное сопротивление 1.4 ома, из-за того и 0.8в при КЗ щупов. На ХХ очень малое напряжение для измерения - 10 вольт, значит маленькая индуктивность. На колечке ХХ получился 100 вольт. Но линейность похожа на квадрат сопротивления: 1ом-1в, 2ом-4в, 4ом-16в. Где же найти такое колечко Н2000, негде купить млин.

Прочитал на его форуме, он написал, что вытянул колечко из балласта люминисцентной лампы. Я порылся в закромах, и нашёл плату балласта (длинная и в маленькой коробочке). Сравнил с уже намотаным кольцом. У них абсолютно одинаковые размеры! И на цвет одинаковые. Мне кажется что у них и проницаемость одна и та-же. Оба кольца в балластах стояли, даже родные обмотки одинаковые! Не понимаю! Как у него работает, а у меня нет?


Часовой пояс: UTC + 3 часа

Кто сейчас на форуме

Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
Русская поддержка phpBB
Extended by Karma MOD © 2007—2012 m157y
Extended by Topic Tags MOD © 2012 m157y

Читайте также: