Порошковый сердечник своими руками

Добавил пользователь Skiper
Обновлено: 16.09.2024

Всем доброго времени суток! В прошлой статье я рассказывал об определении габаритной мощности трансформатора РГ и об определении коэффициента заполнении окна kок трансформатора. Для выбора трансформатора этих данных недостаточно. Существенное влияние на его параметры оказывают заданные величины, например, напряжение, частота, режим и условия работы. Часто тип трансформатора, его сердечник и обмотки известны изначально, в противном случае их следует выбирать исходя из заданных условий.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Как выбрать тип трансформатора?

Тип трансформатора определяется конструкцией применяемого в нём сердечника. В настоящее время выпускается большое разнообразие сердечников в особенности ферритовых. Но среди них можно выделить три основных типа: стержневой (СТ), броневой (БТ) и тороидальный (ТТ). Остальные же являются, по сути, их модификацией с различными конструктивными особенностями.

Сделать однозначный выбор в пользу того или иного типа невозможно, так как каждый обладает своими достоинствами и недостатками и должен применяться в зависимости от назначения и предъявляемых к нему требований. К трансформаторам могут предъявляться следующие требования и их комбинация: массогабаритные, по стоимости, влияние собственных и внешних магнитных полей, конструктивные факторы и технологичность производства.

основные типы трансформаторов


Основные типы конструкций сердечников трансформаторов: стержневой СТ, броневой БТ и тороидальный ТТ трансформаторы (слева направо).

При условии минимального падения напряжения (∆U) на промышленной частоте (50 Гц) наименьшим объемом обладает БТ, а весом – ТТ. Стержневые трансформаторы несколько уступают броневым (до 10%). При увеличении частоты, по весу – СТ улучшают свои параметры по сравнению с БТ, а по объему – ухудшаться. ТТ при возрастании частоты значительно улучшают массогабаритные показатели. Таким образом, при условии минимального падения напряжения при частоте 50 Гц рекомендуется применение броневых сердечников (БТ), а при повышении частоты следует использовать тороидальные сердечнике (ТТ), если вес и объем играет решающую роль.

Если ключевым требованием к трансформатору является постоянство рабочей температуры (∆T), то здесь рекомендации другие. При малой мощности БТ имеют преимущество, а в остальных случаях следует использовать СТ даже при повышенных частотах. Использование ТТ имеет смысл только на небольших мощностях особенно на повышенных частотах, так как с ростом мощности преимущества по массе и весу сглаживаются, а при больших мощностях (свыше сотен ватт) ТТ начинают уступать как СТ, так и БТ.

В итоге можно сказать, что для трансформаторов небольшой мощности (до 50 Вт) рекомендуется применять БТ и ТТ, а на высоких частотах – ТТ. При мощностях более 50 Вт показатели СТ становятся лучше, чем у БТ, а при мощностях более 250 Вт лучше, чем у ТТ.

Если условием для проектирования трансформатора является наибольшее значение КПД, то на промышленной частоте (50 Гц) лучшие показатели у БТ и СТ в порядке убывания, а на повышенных и высоких – ТТ и БТ, также в порядке убывания. Также стоит отметить, что ТТ обладает наименьшим намагничивающим током, при прочих равных условиях.

На высоких частотах важную роль часто играют магнитные поля рассеяния и восприимчивость к внешним магнитным полям. В этом отношении лучшими показателями отличаются тороидальные трансформаторы (при равномерно распределённой обмотке по сердечнику), а также стержневые трансформаторы (при равном разделении обмотки между стержнями). Собственная емкость у ТТ достаточно высокая по сравнению с БТ и СТ.

С точки зрения технологичности наилучшими показателями обладают БТ и СТ. Из недостатков ТТ здесь можно выделить следующее: необходимость последовательного изготовления сердечника и катушки, а также низкая производительность намотки катушки.

Рекомендуемые области применения различных типов трансформаторов.

Вид трансформатораНа штампованных сердечникахНа ленточных сердечниках
НизковольтныеМалой мощности (до 50 Вт)БТБТ, СТ
Средней и большой мощности (более 50 Вт)50 ГцБТСТ
10 кГцБТ, ТТТТ, СТ
Высоковольтные (тысячи вольт) 10 кГцБТ, ТТСТ, ТТ
С высоким потенциалом 10 кГцТТ, БТТТ, СТ
При необходимости надёжного экранированияТТ, СТТТ, СТ
Примечание. Первым указывается тип трансформатора, применение которого предпочтительней.

Магнитопровод трансформатора

магнитопровод
Как вы уже наверняка знаете, что все трансформаторы предназначены для преобразования разных величин напряжения. И его основными частями являются: магнитопровод и обмотки. Сегодня поговорим об магнитопроводе. Он представляет собой набор (пакет), состоящий из изолированных друг от друга пластин. Эти пластины изготовляют из специальных материалов — ферромагнетиков, способных хорошо намагничиваться. В основном пластины для магнитопроводов изготавливают из электротехнической стали, это высоко углеродистая сталь проста в изготовлении и соответственно дешёвая. Эти пластины собираются в пакет и образуют различные формы.

электротехническая сталь

Они могут быть Ш — образными

Т — образными и так далее.

В зависимости от формы магнитопровода различают несколько его типов

Стержневой тип:

магнитопровод

Броневой тип:

трансформатор

На фото, ниже представлен трансформатор выполненный на основе магнитопровода броневого типа. Этот вид магнитопровода служит в трансформаторе как каркасом так и защищает обмотки от механических воздействии, так же броневой тип магнитопровода создает хорошую магнитную связь между первичной и вторичной обмотками. Минусом является повышенный расход электротехнической стали при их изготовлении.

Тороидальный тип магнитопровода:

магнитопровод

Тороидальный тип магнитопровода является самым эффективным, так как магнитное поле, создаваемое таким магнитопроводом обладает самым малым коэффициентом рассеивания, и в нем создается практически однородное поле, которое обеспечивает наибольшую эффективность. Выполненные трансформаторы на его основе обладают самым высоким КПД, но из-за сложной формы они сложны в изготовлении, вследствие чего и повышается их цена.

тороидальная катушка


тороидальная катушка

Существует только один вид трансформаторов, в котором не используется магнитопровод, это воздушные трансформаторы, в таких трансформаторах протекает высокочастотный ток, при котором магнитопровод практически не намагничивается.

Так же следует запомнить, что все пластины в магнитопроводе изолированы друг от друга, для уменьшения потерь на вихревые токи. Дело в том, что как и во вторичной обмотке, так и в самом магнитопроводе индуцируется ЭДС, которая не является полезной и расходуется лишь на нагрев самого магнитопровода, а вследствие и самих обмоток. Для уменьшения этих потерь, каждая пластина магнитопровода изолируется друг от друга, таким образом увеличивается сопротивление, то есть уменьшается ток.

Бывают еще и ленточные магнитопроводы, которые не так уж часто встречаются в трансформаторах, но также являются весьма удачным вариантом исполнения магнитопровода.

Магнитопроводы применяются не только в трансформаторах, но и в других электрических машинах и электрических аппаратах, устройствах. Во всех электродвигателях, генераторах, как в неподвижных (статорах, станинах), так и в подвижных (роторах, якорях) частей. А также в дросселях, магнитных пускателях, реле и т.д.

Размеры магнитопровода определяются напряжением и мощностью изготовляемого трансформатора, а также в зависимости от его типа.

трансформатор

Основные размеры трансформатора

Геометрические размеры трансформатора в большинстве случаев являются определяющими для его технико-экономических показателей. Основными размерами катушки трансформатора являются её высота и ширина (толщина), ограниченные размерами сердечника. Для сердечника основными размерами будут: ширина стержня, несущего катушку а; толщина стержня b; ширина окна с и высота окна h.

Основные размеры сердечников трансформаторов разных типов.

В технических характеристиках на сердечники и литературе единицей измерения размеров, как правило, является миллиметры мм (mm).

Для упрощения расчётов и некоторой унификации сердечников в отечественной литературе и методиках расчёта был введен так называемый базовый размер. В качестве базового может быть взят один из основных размеров трансформатора. В большинстве случаев в качестве базового размера берётся ширина стержня а. Тогда геометрия сердечника описывается следующими соотношениями

Используя базовый размер а и безразмерные коэффициенты x, y, z можно выразить все геометрические характеристики трансформатора: длины, сечения, поверхности и объёмы. Например, сечение сердечника Sc = ab, а с учетом базового размера Sc = ya2. Объём броневого трансформатора БТ

а с учетом базового размера

то есть геометрические параметры трансформатора с учётом базового размера выражаются формулами типа

где k – может иметь значение от 1 до 3, в зависимости от типа величины (1 – длины; 2 – площади, поверхности, сечения; 3 – объёмы);

Характеристика трансформатораОбозначение функцииОбозначение характеристики
Длина средней магнитной линииφllc= φla
Средняя длина витка катушкиφwlw= φwa
Сечение сердечника (геометрическое)φssc= φsa2
Полное сечение (площадь) окна сердечникаφoksok= φoka2
Площадь поверхности охлаждения катушкиφпкПк= φпкa2
Площадь поверхности охлаждения сердечникаφпсПс= φпсa2
Объем, занимаемый катушкойφkVk= φka3
Объем, занимаемый сердечникомφсVс= φсa3

Геометрические характеристики трансформатора и их функции.

Функции геометрии не имеют размерности, поэтому с их помощью проще проводить анализ различных типов трансформаторов.

Выбор материала сердечника для трансформаторов/катушек индуктивности

Порошковые сердечники.

Порошковые сердечники изготавливаются из множества материалов. Магнитному сплаву придается форма мелкодисперсных частиц диаметром от 5 до 200 мкм. Частицы покрываются изолирующим материалом толщиной от 0,1 до 3 мкм, и прессуют в пресс-формах при усилии до 300.000 фунтов на квадратный дюйм (21.000 кг/см2). При таких высоких давлениях необходимо использовать оснастку из карбида вольфрама. Возможно большое разнообразие форм порошковых сердечников, но самыми распространенными являются тороиды. На маленькие тороиды наносится покрытие из парилена (поли-n-ксилилен, parylene), а на большие — эпоксидное. Покрытие необходимо для предотвращения короткого замыкания в процессе намотки обмотки и эксплуатации.

Изменение размера частиц, толщины их покрытия и давления позволяет изменять проницаемость готовых порошковых сердечников в диапазоне от 14 до 350. Затем сердечники отжигаются при высокой температуре в атмосфера водорода. Отжиг снимает внутренние напряжения, возникшие при прессовании, препятствует окислению и улучшает магнитные свойства порошковых сердечников.

Потери на вихревые токи в порошковых сердечниках минимальны из-за того, что каждая частица магнитного материала изолирована от других. Изолирующий материал обеспечивает распределенный воздушный зазор, который снижает проницаемость и дает возможность сердечнику запасать значительное количество энергии. Отсутствие локализованного воздушного зазора устраняет вредное действие краевого эффекта и связанных с ним потерь.

Порошковое железо

выпускается с проницаемостью от 10 до 90 и является самым дешевым порошковым материалом. Из-за сложности производства изготовление сердечников с более высокими проницаемостями практически нецелесообразно. Кроме тороидов оно выпускается в виде стержней и Е — и I — сердечников. Насыщается в районе 10 кГс, но имеет очень большие потери.

Хотя потери в порошковом железе и высокие, они ниже, чем в трансформаторной стали. Оно эффективно применяется в виде стержней при очень низких уровнях потока для подстройки резонансных контуров с трансформаторной связью. Порошковое железо также используется в фильтрах с низкими эксплуатационными характеристиками, которые должны выдерживать большие постоянные токи, а цена имеет определяющее значение. Под воздействием высокочастотного пульсирующего тока значительной величины порошковое железо становится очень горячим.

| След. | Конец | Все

Выбор материала сердечника

На данный момент разработано большое количество магнитных материалов, из которых изготавливают сердечники трансформаторов. Основными из них являются:

  1. Электротехнические стали используются на частотах до десятков кГц и имеют индукцию насыщения BS ≤ 2 Тл. На частоте 50 Гц применяется сталь толщиной 0,35 – 0,5 мм, а выше – толщиной 0,05 – 0,15 мм. Например, 3411, 3412, 3421, 3422 и т.д.
  2. Электротехнические сплавы используются на частотах до 100 кГц с индукцией насыщения до 1,5 Тл. Изготавливаются в виде ленты толщиной 0,05 – 0,1 мм. Например, 79НМ, 34НКМП и т.д.
  3. Ферриты применяются в широком диапазоне частот от единиц кГц до единиц МГц с индукцией насыщения до 0,5 Тл. Изготавливаются в виде сердечников различных типов. Например, 1500НМ3, 700НМ, N72, М33 и т.д.
  4. Магнитодиэлектрики имеют незначительную магнитную проницаемость до сотен единиц, а индукцию насыщения и рабочую частоту в широком диапазоне в зависимости от типа:
Толщина ленты, мм0,350,150,1-0,080,050,02
Коэффициент заполнения сердечника, kc0,930,90,850,75-0,80,65-0,7

Для приблизительных расчётов в случае ленточных и шихтованных сердечников можно принимать kс = 0,9.

Сварка постоянным электрическим током получила широкое применение не только в масштабах крупных производств, но и в домашних мастерских. Современный рынок предлагает десятки (если не сотни) аппаратов для сварки с помощью электрической дуги, начиная от компактных маломощных сварочников, заканчивая промышленными высокопроизводительными агрегатами. Вне зависимости от типа оборудования, применяемого для электросварки, всех их объединяет одна проблема — неконтролируемое падение напряжение, из-за чего розжиг дуги и формирование шва становится затруднительным.

дроссель для сварки

Принцип работы

Основное свойство катушки индуктивности, представляющей собой магнитопровод, намотанный с соблюдением определенных условий вокруг ферромагнитного сердечника, – это стабилизация силы тока по времени.

Проще говоря, напряжение, приложенное к катушке, вызывает плавное нарастание силы тока на выходе. Изменение полярности приводит к такому же плавному уменьшению силы тока.


Главным фактором является то условие, что ток, проходящий по дросселю, не может резко возрастать или снижаться. Именно это и определяет ценность использования дросселя для сварки — компенсация сопротивления позволяет избежать резких скачков по амперажу.

Это позволяет подстраховаться от случайного прожига свариваемых заготовок, уменьшить разбрызгивание плавящегося металла и точно подобрать параметры тока для сварки по заданной толщине металла. Шансы получить хороший шов с применением дросселя для сварки значительно выше.

Параметр, определяющий коэффициент изменения по току — индуктивность. Измеряется она в Гн (генри) — за 1 секунду при напряжении в 1 В через дроссель с индуктивностью в 1 Гн может пройти только 1 А.

Число витков на катушке напрямую влияет на величину индуктивности. Она прямо пропорциональна количеству витков, возведенному в квадрат. Но если надо изготовить сварочный дроссель своими руками, то высчитывать точное число витков не обязательно.

Так как параметры сварочных аппаратов бытового назначения в большинстве своем стандартны и общеизвестны, сварщику для изготовления дросселя собственноручно достаточно будет воспользоваться приведенной ниже инструкцией.

Регулировка тока

Регулировка сварочного тока крайне важна для правильной работы и формировании качественного шва. Она может осуществляться несколькими способами:

  • Регулировка тока путем изменения расстояния между элементами сварочного аппарата. Самый популярный способ. Чтобы уменьшить силу тока раздвиньте разрезанный сердечник трансформатора. Индукция несколько рассеется, и сила тока станет меньше. Чем больше сварочный агрегат, тем больше возможность регулировать ток, потому что интервал регулировки напрямую зависит от доступного размера в корпусе аппарата.
  • Регулировка тока на обмотке трансформатора. Таким способом можно отсечь часть катушки, тем самым увеличив значение напряжения, пуская ток по более короткому пути. Чтобы ослабить ток путь нужно наоборот увеличить.
  • Регулировка тока с помощью стальной пружины с креплением клемм через заданный интервал. Это неплохой способ регулировки, он позволяет плавно настраивать ток, но есть один существенный недостаток — пружина сильно нагревается и при этом постоянно находится под ногами у мастера, а это грубейшее нарушение техники безопасности.

Если внедрить в цепь дроссель, то решится большинство проблем, связанных с регулировкой тока. Это на первый взгляд небольшое приспособление способно в полной мере компенсировать недостающие напряжение или наоборот выполнять роль сопротивления, если напряжения слишком много. Настройка тока дросселем происходит очень плавно и сварщику не нужно держать под ногами раскаленную пружину.

Предназначение



В инверторе для сварки дроссель необходим, чтобы создать на электроде электрическую дугу. Поджиг происходит при достижении определенного уровня напряжения.

Сварочный дроссель увеличивает сопротивление, что смещает фазы между током и напряжением и позволяет производить более плавный поджиг. Сам по себе этот факт часто позволяет избежать прожигания заготовки, особенно если сварке подвергаются детали из тонкого листового металла.

Плавное изменение силы тока позволяет не испортить заготовку резкой подачей завышенной мощности, оптимально установить температуру дуги и, соответственно, не допустить разбрызгивания металла при сохранении нужной глубины обработки.

Другое ценное его свойство — это частичная защита от нестабильного напряжения в сети.

Дроссель для сварочного инвертора существенно облегчает поджиг электрода, который должен загораться при более высоком напряжении, чем выдает инвертор.

Примером может служить электрод MP-3, вольтаж для возгорания которого должен составлять 70 В. Выходной дроссель для сварки может существенно облегчить работу с этим электродом для инвертора, который выдает всего 48 В в режиме холостого хода.

Это происходит благодаря явлению самоиндукции. Устройство индуцирует ЭДС (электродвижущую силу), которая вызывает пробой воздуха и вспыхивание сварочной дуги, стоит только поднести присадку на расстояние в несколько миллиметров от поверхности металла.

Дроссель для сварки подключается ко вторичной обмотке трансформатора в аппарате. Его можно использовать в аппаратах любого типа — как в самодельных, так и заводского изготовления, работающих по любому принципу — инверторных, с понижающим трансформатором и тому подобное.

Расчет сечения проводов первичной обмотки трансформатора



Схема устройства сварочного трансформатора.
Теория трансформаторов сложна тем, что она основана на законах электромагнитной индукции и других явлений магнетизма. Однако, не используя сложный математический аппарат, можно пояснить, как работает трансформатор и можно ли его собрать самостоятельно.

Вручную трансформатор можно намотать на металлическом сердечнике, собранном из пластин трансформаторной стали. Проще выполнить намотку на стержневой или броневой сердечник, чем на тороидальный. Сразу же следует обратить внимание, что на изображении хорошо видна разница в толщине проводов: тонкий провод расположен непосредственно на сердечнике, и в нем явно видно большее количество витков. Это первичная обмотка. Более толстый провод и с меньшим количеством витков — это вторичная обмотка.

Не учитывая потери мощности внутри трансформатора, рассчитаем, каким должен быть ток I1 в его первичной обмотке. Идеальное напряжение сети равно U=220 В. Зная потребляемую мощность, например, P=5 кВт, имеем:

I1 = Р:U= 5000:220=22,7 А.

По току в первичной обмотке трансформатора определяем диаметр провода. Плотность тока для бытового сварочного трансформатора должна быть не более 5 А/мм2 сечения провода. Следовательно, для первичной обмотки потребуется провод сечением S1=22,7:5=4,54 мм2.

По сечению провода определяем квадрат, его диаметр d без учета изоляции:

Извлекая корень квадратный, получаем d=2,4 мм. Эти расчеты выполнены для медных жил провода. При намотке проводов с алюминиевым сердечником полученный результат необходимо увеличить в 1,6-1,7 раза.

Для первичной обмотки применяют медный провод, изоляция которого должна хорошо выдерживать высокие температуры. Это стеклотканевая или хлопчатобумажная изоляция. Подойдет резиновая и резинотканевая изоляция. Провода, имеющие ПВХ изоляцию, применять не следует.

Как самостоятельно и красиво создать дизайн гостиной?

Материалы для изготовления



Дроссель для дооборудования полуавтомата либо инвертора можно собрать своими руками, используя конструктивные элементы из старой техники — ламповых телевизоров, уличных фонарей старой конструкции и других устройств, в которых имеется трансформатор.

Конструктивно он представляет собой сердечник из материала, проводящего магнитное поле, но не проводящего электрический ток либо надежно заизолированного, и трех слоев обмоток, разделенных диэлектриком.

В качестве основы для сердечника подойдет либо специальный материал — феррит, обладающий данными свойствами, либо ярмо (подкова) от старого трансформатора. Намотка устройства ля сварки делается алюминиевым или медным проводом сечением 20-40 мм.

Если используется алюминий, то сечение провода должно быть не менее 36 мм, медный провод может быть тоньше. Подойдет плоская медная шина сечением 8 мм.

Габариты сердечника должны позволять намотку примерно 30 витков шины данного сечения, с учетом прокладок-диэлектриков. Рекомендуется сердечник от повышающего трансформатора советского телевизора ТСА 270-1.

Какие подручные средства можно использовать


Схема источника питания инверторного сварочного аппарата.

Чтобы соорудить дроссель для сварки своими руками, первым делом нужно подготовить материал. В данном случае можно применить практически любые неиспользуемые электротехнические приспособления. Конструкция являет собой обыкновенный сердечник с намотанным проводом. Для данной цели можно использовать трансформаторную конструкцию, которая ранее была смонтирована в старом телевизоре. Всю обмотку понадобится демонтировать. Сердечник можно будет использовать для намотки провода, длина которого рассчитывается заранее.

Если есть возможность, можно применить детали, которые были установлены в лампочках фонарей. Старые обмотки следует демонтировать, так как они часто неисправны. В процессе намотки провода их понадобится установить на прежнее место.

Для намотки дросселя можно применить любой сердечник сечением приблизительно 12-15 см. Между его элементами понадобится сделать немагнитную часть. Для этого следует закрепить прокладку для изоляции толщиной примерно 0,6-1 мм.

Плавной регулировки тока можно достичь благодаря монтажу подвижных обмоток трансформаторной конструкции. Путем смены расстояния между обмотками можно изменять величину магнитного потока и сопротивление в повторной обмотке.



Преобразование тока в сварочном инверторе.

Для сварки на непрерывном токе к обмотке на выходе трансформаторной конструкции нужно подключить элемент для преобразования временного тока в непрерывный. Такое приспособление называется выпрямителем. Ток может быть не непрерывным, а пульсирующим. Уменьшить пульсацию возможно исключительно путем увеличения емкости конденсаторного устройства.

Чтобы была возможность выполнять регулировку тока дуги с помощью дросселя, между выходом трансформаторной конструкции и точкой нужно включить 3 выпрямителя.

Элементы, которые будут нужны для сооружения дросселя:

  • электротехническая конструкция;
  • провода;
  • трансформатор;
  • лампа фонаря;
  • картон для изоляции.

Последовательность действий

Когда необходимые инструменты и материалы подготовлены, можно приступать к изготовлению дросселя для сварки. Алгоритм действий такой:

В случае ошибки перемычку можно установить и косо. Важно, чтобы ее установка превращала катушки с разным направлением обмотки в катушки с одинаковым направлением по факту.

Дроссель для сварочного аппарата своими руками

Электросварка широко применяется на крупных производствах и в мелких мастерских. Аппараты для соединения металлов электрической дугой тоже бывают разными по размерам и мощности. Но всех их объединяет одна возможная проблема — падение напряжения мешает розжигу дуги и ведению шва. Еще бывает трудно настроить нужную величину тока для конкретной толщины металла. Для решения всего этого используется дроссель в составе оборудования. Что это такое? Как он функционирует? Как сделать дроссель самому на свой аппарат?


Включение и проверка



Дроссель для сварки подключается к системе между диодным мостом и массой — контактом, который идет на соединение со свариваемым материалом. Выход диодного моста соединяется со входом дросселя, к выходу собранной катушки индуктивности — соответственно контакт массы.

Всю конструкцию для сварки в сборе необходимо протестировать на кусочке металла того же химического состава и толщины, с каким в дальнейшем планируется вести большую часть сварочных работ. Показателями качества являются:

  • легкий электроподжиг;
  • стабильность дуги;
  • относительно слабый треск;
  • плавное горение без сильных брызг расплава.

Учтите, что введение этого элемента в конструкцию сварочного аппарата приводит не только к стабилизации работы, но и к некоторому падению силы тока. Если инвертор или полуавтомат начал варить хуже, то значит — упала сила тока.

Дроссель нужно отсоединить и снять несколько витков с каждой катушки. Точное количество витков в каждом конкретном случае подбирается эмпирическим путем.

Общая информация

Для чего нужен дроссель? Эта небольшая деталь, подключенная в цепь, обеспечивает плавный розжиг дуги и поддерживает ее стабильность даже при перепадах напряжения, к тому же металл практически не разбрызгивается, шов получается более качественным, можно точно настроить аппарат и без проблем варить тонкий металл.

дроссель

Принцип работы прост: дроссель пропускает через себя ток, накапливая его от сварочного аппарата. Накопленный ток как раз и используется для компенсации потерянного напряжения. Также дроссель с подмагничиванием обеспечивает нужное сопротивление тока, если напряжение слишком велико.

Совсем не обязательно покупать дроссель в магазине, тем более это далеко не дешевая покупка. Этот агрегат вполне можно смастерить самостоятельно. Его конструкция состоит из сердечника и двух обмоток с сечением, рассчитанным на работу с определенным значением постоянного тока. Именно поэтому не получится изготовить универсальный дроссель, ведь маленькая деталь не справится с мощным сварочником, и наоборот. Так что важно правильно рассчитать, сколько обмотки понадобится для работы с тем или иным напряжением.

Дроссель своими руками

Чтобы знать как намотать дроссель правильно, важно разобраться в его устройстве. Хотя оно простое, поэтапное точное выполнение каждой части обеспечит качественный результат. Для полуавтомата или инвертора, используемых в частном доме и на даче, подойдет дроссель, сделанный следующим образом:



Предлагаю вашему вниманию простой прибор, который поможет рассчитывать и испытывать катушки на ферритах с неизвестными параметрами.

Содержание / Contents

↑ Теория

В наше время можно недорого купить микросхемы, позволяющие собирать простые и эффективные импульсные источники питания, например, MC34063 или LM2576. Есть даже программы-калькуляторы, помогающие определить номиналы деталей или можно воспользоваться datasheet. Но возникает одна маленькая проблема — нужно намотать дроссель, который должен обладать определенной индуктивностью и сохранять эту индуктивность при значительном токе подмагничивания — до нескольких Ампер .

К сожалению, ассортимент готовых индуктивностей в магазинах беден и нужные часто недоступны. В то же время можно купить ферритовые сердечники или взять их, например, из раскуроченных электронных балластов для люминесцентных или галогеновых ламп.
Определить индуктивность можно без специальных приборов с помощью компьютера и программного пакета Arta Software, о чем я писал в прошлых публикациях (LIMP - программный измеритель RCL).


В статье множество формул и таблиц, я же постараюсь объяснить всё ненаучно, на пальцах.

Для того чтобы сделать дроссель надо рассчитать или взять из datasheet нужную индуктивность. Берем сердечник, на котором будем наматывать катушку и мотаем несколько десятков витков удобным проводом, например, 0,3 мм. Измеряем индуктивность, затем рассчитываем, сколько надо витков для будущего дросселя. Для этого вспоминаем, что индуктивность прямо пропорциональна квадрату числа витков. Если намотано 30 витков и индуктивность 20 мкГн, то чтобы получить 180 мкГн, надо намотать 90 витков.

Теперь вспомним что такое Ампер -витки. Это произведение числа витков на протекающий ток. Сердечник одинаково намагнитят 200 витков при токе 1 А или 1 виток при токе 200 А, или 50 витков при токе 4 А. Значит, если мы узнаем, при каком токе насытится сердечник от нашей пробной катушечки в 30 витков, мы легко узнаем какой ток выдержит наш дроссель с рабочей катушкой в 90 витков.

Надо только не забывать, что индуктивность лучше делать немного бОльшей, чем рекомендуется и что при уменьшении числа витков индуктивность падает гораздо быстрее, чем растет допустимый ток. Кроме того, для уменьшения потерь надо использовать толстый провод.
Не исключено, что данный сердечник может не подойти, тогда, если это кольца, можно сложить два-три кольца или взять другой типоразмер или даже включить два дросселя последовательно.

↑ Схема


Я собрал измеритель на небольшой плате, детали самые обычные, там, где удобно, ставлю SMD и вам советую. Полевой транзистор — любой с нужной проводимостью на ток от 20 А и выше, с низким сопротивлением канала в открытом состоянии, можно низковольтный. Я поставил IFRP150. Стабилизатор 6 В на микросхеме 78L06. Если ее нет, можно ставить 78L05 и добавить 1-2 диода типа КД522 в разрыв общего провода 78L05 анодом к стабилизатору. Емкости С3С4 я поставил по 2200 мкФ на 35 В. Номиналы деталей не критичны. В процессе испытаний я понял, что нужна небольшая доработка схемы. Вместо VD3 VD4 я поставил один стабилитрон Д816В. Для увеличения импульса тока до 12 А между базой и эмиттером VT1 надо поставить резистор с номиналом, как у R5. Эти небольшие изменения позволяют испытать готовые индуктивности в несколько миллигенри. Номинал R4 я уменьшил втрое, что сделало луч на экране более ярким. Сигнал к входу синхронизации осциллографа снимается с вывода 11 микросхемы через резистор 1 кОм.

↑ Наладка

Вместо L1 подключить резистор примерно 1 кОм и проверить прямоугольную форму импульсов на выводе 11 микросхемы, на стоке, проверить регулировку изменения скважности от R3. При исправных деталях наладка не требуется. Если необходимо, можно по вкусу изменить частоту и диапазон регулировки емкостью С2 и резисторами R3R4.

↑ Работа с прибором

Установить R3 минимальную длительность импульса, плавно увеличивая ее, получить изображение на экране осциллографа. Сначала можно включить непрерывную развертку и внутреннюю синхронизацию, получить нестабильное изображение . Потом, подобрав чувствительность и частоту развертки, включить ждущую развертку и внешнюю синхронизацию, картинка станет как влитая.



На осциллографе с1-94 при чувствительности 0,1 В/дел, одна клетка соответствует току катушки 1 А. Увеличивая длительность импульса, добьемся перелома формы импульса вверх, считываем сколько клеток по оси Y снизу до перелома и определяем ток. Это и будет ток насыщения.


Возможны варианты – перелома не будет, а будет треугольник, который не растет при повороте регулятора R3. Это значит, насыщения нет, надо увеличить число витков катушки. Или форма не треугольная, а сглаженная – велико активное сопротивление катушки.
Если вы проверяете трансформатор, будьте осторожны, на неподключенных обмотках может быть значительное напряжение! И категорически запрещаю проверять так строчные телевизионные трансформаторы или силовые трансформаторы компьютерных блоков питания! Если катушка имеет индуктивность несколько миллигенри, она накапливает значительную энергию, которую поглощает мощный стабилитрон (он за этим и нужен), при этом он сильно разогревается (я это почувствовал по запаху), поэтому измерения таких катушек должны быть непродолжительны (я не спеша настраиваю осциллограф с небольшим импульсом, а потом поворачиваю ось R3 и засекаю ток перелома).

↑ Печатная плата

Размеры платы (80 на 60 мм) и деталей некритичны, при желании можно добавить переключатель, который изменением С2 расширит диапазон работы, выключатель питания (я просто уменьшаю длительность импульсов до минимума), поставить VD3 на теплоотвод, внести другие опции. Синим цветом показаны перемычки (красная перемычка от диода VD3). VT1 — КТ3102.

Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.

↑ Итого

Для тех, кто занимается импульсными источниками питания, данный прибор будет полезен. Радиолюбитель обычно делает единичные устройства из тех узлов из деталей, которые может найти. Я не согласен с теми, кто пишет, что для LM2576 дроссель можно намотать на гвозде. Работать он может и будет (за счет внутримикросхемных ограничителей и предохранителей), но получить хороший КПД и хорошую стабилизацию не получится. Прибор, конечно, не первой необходимости, но дешев, прост и портативен, поэтому иметь его полезно.

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Катушка индуктивности (inductor. -eng)– устройство, основным компонентом которого является проводник скрученный в кольца или обвивающий сердечник. При прохождении тока, вокруг скрученного проводника (катушки), образуется магнитное поле (она может концентрировать переменное магнитное поле), что и используется в радио- и электро- технике.

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

К точной и компьютерной технике технике больше близок дроссель (Drossel, регулятор, ограничитель), так как он чаще всего применяется в цепях питания процессоров, видеокарт, материнских плат, блоков питания & etc. В последнее время, применяются индукторы закрытые в корпуса из металлического сплава для уменьшения наводок, излучения, шумов и высокочастотного свиста при работе катушки.

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Дроссель служит для уменьшения пульсаций напряжения, сглаживания или фильтрации частотной составляющей тока и устранения переменной составляющей тока. Сопротивление дросселя увеличивается с увеличением частоты, а для постоянного тока сопротивление очень мало. Характеристики дросселя получаются от толщины проводника, количества витков, сопротивления проводника, наличия или отсутствия сердечника и материала, из которого сердечник сделан. Особенно эффективными считаются дроссели с ферритовыми сердечниками (а также из альсифера, карбонильного железа, магнетита) с большой магнитной проницаемостью.

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Как работает дроссель.

В цепях переменного тока, для ограничения тока нагрузки, очень часто применяют дроссели - индуктивные сопротивления. Перед обычными резисторами здесь у дросселей имеется серьезные преимущества - значительная экономия электроэнергии и отсутствие сильного нагрева.

Каково устройство дросселя, на чем основан принцип его работы?

Устроен дроссель очень просто - это катушка из электрического провода, намотанная на сердечнике из ферромагнитного материала. Приставка ферро, говорит о присутствии железа в его составе (феррум - латинское название железа), в том или ином количестве.

Принцип работы дросселя основан на свойстве, присущем не только катушкам но и вообще, любым проводникам - индуктивности. Это явление легче всего понять, поставив несложный опыт.

Для этого требуется собрать простейшую электрическую цепь, состоящую из низковольтного источника постоянного тока (батарейки), маленькой лампочки накаливания, на соответствующее напряжение и достаточно мощного дросселя (можно взять дроссель от лампы ДРЛ-400 ватт).

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Без дросселя, схема будет работать как обычно - цепь замыкается, лампа загорается. Но если добавить дроссель, подключив его последовательно нагрузке(лампочке), картина несколько изменится.

Присмотревшись, можно заметить, что во первых, лампа загорается не сразу, а с некоторой задержкой, во вторых - при размыкании цепи возникает хорошо заметная искра, прежде не наблюдавшаяся. Так происходит потому что, в момент включения ток в цепи возрастает не сразу - этому препятствует дроссель, некоторое время поглощая электроэнергию и запасая ее в виде электромагнитного поля. Эту способность и называют - индуктивностью.

Чем больше величина индуктивности, тем большее количество энергии может запасти дроссель. Еденица величины индуктивности - 1 Генри В момент разрыва цепи запасеная энергия освобождается, причем напряжение при этом может превысить Э.Д.С. используемого источника в десятки раз, а ток направлен в противоположную сторону. Отсюда заметное искрение в месте разрыва. Это явление называется - Э.Д.С. самоиндукции.

Если установить источник переменного тока вместо постоянного, использовав например, понижающий трансформатор, можно обнаружить что та же лампочка, подключенная через дроссель - не горит вовсе. Дроссель оказывает переменному току гораздо большое сопротивление, нежели постояному. Это происходит из за того, что ток в полупериоде, отстает от напряжения.

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Получается, что действующее напряжение на нагрузке падает во много раз(и ток соответственно), но энергия при этом не теряется - возвращается за счет самоиндукции обратно в цепь. Сопротивление оказываемое индуктивностью переменному току называется - реактивным. Его значение зависит от величины индуктивности и частоты переменного тока. Величина индуктивности в свою очередь, находится в зависимости от количества витков катушки и свойства материала сердечника, называемого - магнитной проницаемостью, а так же его формы.

Магнитная проницаемость - число, показывающее во сколько раз индуктивность катушки больше с сердечником из данного материала, нежели без него(в идеале - в вакууме.)

Т. е - магнитная проницаемость вакуума принята за еденицу.

В радиочастотных катушках малой индуктивности, для точной подстройки применяются сердечники стержеобразной формы. Материалами для них могут являться ферриты с относительно небольшой магнитной проницаемостью, иногда немагнитные материалы с проницаемостью меньше 1.

В электромагнитах реле - сердечники подковоообразной и цилиндрической формы из специальных сталей.

Для намотки дросселей и трансформаторов используют замкнутые сердечники - магнитопроводы Ш - образной и тороидальной формы. Материалом на частотах до 1000 гц служит специальная сталь, выше 1000 гц - различные ферросплавы. Магнитопроводы набираются из отдельных пластин, покрытых лаком.

У катушки, намотанной на сердечник, кроме реактивного(Xl) имеется и активное сопротивление(R). Таким образом, полное сопротивление катушки индуктивности равно сумме активной и реактивной составляющих.

Как работает трансформатор.

Рассмотрим работу дросселя собранного на замкнутом магнитопроводе и подключенного в виде нагрузки, к источнику переменного тока. Число витков и магнитная проницаемость сердечника подобраны таким образом, что его реактивное сопротивление велико, ток протекающий в цепи соответственно - нет.

Ток, переодически изменяя свое направление, будет возбуждать в обмотке катушки (назовем ее катушка номер 1) электромагнитное поле, направление которого будет также переодически меняться - перемагничивая сердечник. Если на этот же сердечник поместить дополнительную катушку(назовем ее - номер 2), то под действием переменного электромагнитного поля сердечника, в ней возникнет наведенная переменная Э.Д.С.

Если количество витков обеих катушек совпадает, то значение наведенной Э.Д.С. очень близко к значению напряжения источника питания, поданного на катушку номер 1. Если уменьшить количество витков катушки номер 2 вдвое, то значение наведенной Э.Д.С. уменьшится вдвое, если количество витков наоборот, увеличить - наведенная Э.Д.С. также, возрастет. Получается, что на каждый виток, приходится какая-то определенная часть напряжения.

Обмотку катушки на которую подается напряжение питания (номер 1) называют первичной. а обмотка, с которой трансформированое напряжение снимается - вторичной .

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Отношение числа витков вторичной(Np ) и первичной (Ns ) обмоток равно отношению соответствующих им напряжений - Up (напряжение первичной обмотки) и Us (напряжение вторичной обмотки).

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Таким образом, устройство состоящее из замкнутого магнитопровода и двух обмоток в цепи переменного тока можно использовать для изменения питающего напряжения - трансформации. Соответственно, оно так и называется - трансформатор .

Если подключить к вторичной обмотке какую-либо нагрузку, в ней возникнет ток(Is ). Это вызовет пропорциональное увеличение тока(Ip ) и в первичной обмотке. Будет верным соотношение:

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Трансформаторы могут применяться как для преобразовния питающего напряжения, так и для развязки и согласования усилительных каскадов. При работе с трансформаторами необходимо обратить внимание на ряд важных параметров, таких как:

1. Допустимые токи и напряжения для первичной и вторичной обмоток.

2. Максимальную мощность трансформатора - мощность которая может длительное время передаваться через него, не вызывая перегрева обмоток.

3. Диапазон рабочих частот трансформатора.

Параллельный колебательный контур.

Если соединить катушку индуктивности и конденсатор - получится очень интересный элемент радиотехники - колебательный контур. Если зарядить конденсатор или навести в катушке Э.Д.С. используя электромагнитное поле - в контуре начнут происходить следующие процессы: Конденсатор разряжаясь, возбуждает электромагнитное поле в катушке индуктивности. Когда заряд истощается, катушка индуктивности возвращает запасенную энергию обратно в конденсатор, но уже с противоположным знаком, за счет Э.Д.С. самоиндукции. Это будет повторяться снова и снова - в контуре возникнут электромагнитные колебания синусоидальной формы. Частота этих колебаний называется резонансной частотой контура, и зависит от величин емкости конденсатора(С), и индуктивности катушки (L).

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Параллельный колебательный контур обладает очень большим сопротивлением на своей резонансной частоте. Это позволяет использовать его для частотной селекции(выделения) в входных цепях радиоаппаратуры и усилителях промежуточной частоты, а так же - в различных схемах задающих генераторов.

Цветовая и кодовая маркировка индуктивностей.

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Обычно для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Номинальное значение кодируется цифрами, а допуск — буквами. Применяется два вида кодирования.

Первые две цифры указывают значение в микрогенри (мкГн), последняя — количество нулей. Следующая за цифрами буква указывает на допуск. Например, код 101J обозначает 100 мкГн ±5%. Если последняя буква не указывается —допуск 20%. Исключения: для индуктивностей меньше 10 мкГн роль десятичной запятой выполняет буква R, а для индуктивностей меньше 1 мкГн — буква N.

D=±0,3 нГн; J=±5%; К=±10%; M=±20%

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Катушка индуктивности, дроссель. Катушка индуктивности, Дроссель, Ремонт техники, Видео, Длиннопост

Индуктивности маркируются непосредственно в микрогенри (мкГн). В таких случаях маркировка 680К будет означать не 68 мкГн ±10%, как в случае А, а 680 мкГн ±10%.

Читайте также: