Пилотная дуга для плазмореза своими руками

Добавил пользователь Alex
Обновлено: 04.10.2024

скажу сразу у меня его нет, даже самого дешевого плазмореза так что я говорю практически на основе мнений других и теории.

из теории скажу что хорошими параметрами для мощного . 100 ампер, напряжение холостого хода 150 вольт и выше.

хорошие аппараты в основном инверторные.

так вот мысль такая

на 100 -150 тыс руб я могу купить столько деталей для плазмы что соберу несколько штук.

самое главное это источник самой плазмы

в тырнете есть прецеденты сборки плазморезов но все сталкивались в основном с одной проблемой

это источник дуги,хороший транс.

в общем его сами мотают кто на что горазд

у меня в голове бегает мысль что если взять два аппарата типа дуга 318 соеденить последовательно

получится источник 140 вольт 300 ампер.

аппараты на 380 вольт.

могу их купить за 20 000 т.р.

где то давно читал что когда еще плазморезы была редкость подключали последовательно аппараты типа вд

и прекрасно все работало.

ребят общем нужно ваше мнение опыт.

Он трансформаторный, в принципе можно. Может лучше будет вторички трансформаторов последовательно включить, естественно соблюдая фазировку, а выпрямитель один общий использовать. Схему бы глянуть. Только с поджигом надо вопрос решить, может и с дежурной дугой. Громоздко и неудобно будет, да и стоит ли овчинка выделки?

громоздко ну незнаю мощные плазморезы весят под сотню и все на колесиках так что.

схему сварочного выпрямителя дуга 318 ?

а зачем здесь дежурка мощи вроде хватает

Koval33 ,А я не знаю, нужна плазмотрону дежурная дуга для стабильной работы или нет. Поджиг точно нужен. Есть ещё вариант - взять мощный ММА инвертор, вторичку перемотать. Можно получить 120 ампер при НХХ вольт 160 -180. Только диоды выходные надо глянуть, вольт на 250 - 300 нужны.

вот такой выпрямитель

Прикрепленные изображения

Да, их придётся тупо последовательно включить, и пожалуй регулировку сварочного тока синхронно переключать. Может кто по дежурной дуге подскажет, и поджиг добавить.

как мне один дятька рассказывал

когда работал на экскаваторном заводе

они резали металл для экскаваторов ну думаю представляете толщину заготовок

называли их дугорезами

так вот это коробка с релюшками и огромным трансом ну еще всякие детали

могу в общем то уточнить при необходимости.

плазмотрон представлял собой трубку и к ней два электрода зажигалась дуга и тут же подавался воздух.

сидел оператор на пантографе с образцами деталей в масштабе .

Koval33 , да как плазмотрон устроен, я знаю. Здесь много весьма грамотных людей, кто нибудь подскажет. Это я его в работе два раза видел, даже в руках не держал. А мужики ими работают, многое всё досконально знают.

вот вот, нужен их опыт

грамотные вы где .

На сильно грамотных претендовать не буду)), но поделюсь своим мнением, хотя у меня опыт по современным системам, ну и кое-что из советских времен тоже рассказывали.

Источник тока - это еще пол-беды и с ним, думаю, все получится.

Дальше у нас идет система подачи и регулировки газа (сж. воздух), которая легко организовывается компрессором и редукторами.

Дальше это все, энергию и сжатый воздух, надо соединить в плазмотроне, и это не просто трубка. Наверное можно любой машинный плазмотрон (например ПВР) приспособить к делу, вопрос поджига. Или нужен ручной? Из поста этого не понял. Тут искал себе ручной плазмотрон на 35 А, так это стоило минимум порядка 13 тысяч рублей и были предложения за 1000 евро.

Затем плазму надо зажечь. Самый простой, но и самый небезопасный - добывать плазму проволочкой, замыкая катод на сопло (анод). Короче сам это делал, когда осциллятор был сдохший, а надо было проверить силовую часть на одном из плазморезов. При этом надо, чтобы была организована дежурная дуга, а это еще кусок схемы надо добавлять в управление источником. Конечно можно без дежурной дуги обойтись и замыкать проволочкой катод прямо на металл, чтобы добыть плазму. Вроде так раньше и делали, но на мой взгляд это совсем жестко.

Вобщем если сложить всю комплектацию, учесть свое время и получить неизвестный результат, то я бы сказал, что занятие рискованное.


Своими руками

Для резки листового металла используются различные механические приспособления, а также электросварка или газовый резак. Но кроме этих методов есть эффективный способ резки металла – плазменный резак. Установка заводского производства стоит достаточно дорого, но ее можно заменить самодельным плазморезом из сварочного трансформатора.

Внешний вид

Установка плазменной резки состоит из следующих частей:

  • плазменный резак или плазмотрон, создающий поток плазмы;
  • сварочный трансформатор, питающий плазмотрон;
  • осциллятор или блок поджига дуги, подающий высокое напряжение в момент начала реза для формирования потока плазмы;
  • компрессор для создания потока воздуха через плазмотрон;
  • кабеля, соединяющие сварочный аппарат, плазменную горелку и разрезаемую деталь;
  • шланги, по которым подается воздух или другой газ и, при необходимости, охлаждающая жидкость.

Плазменная головка внешне напоминает горелку для сварочного полуавтомата. К ней также подключаются кабеля и шланги, но из сопла вместо проволоки выходит поток плазмы, разогретой до 8000°С.

Принцип работы устройства

Установка плазменной резки представляет из себя своего рода гибрид электросварки и газового резака – металл плавится электричеством, а расплав выдувается потоком газа.

Основной частью этого аппарата является плазмотрон. Внутри него находится медный электрод со стержнем из тугоплавкого металла – бериллия, тория, циркония или гафния. На конце головки находится сопло, формирующее поток плазмы. Сопло отделено от электрода изолятором. Рез производится обратной полярностью – электрод является анодом, а сопло и разрезаемый металл катодом.

Работает установка следующим образом:

  • при включении агрегата на электрод и сопло подается напряжение от сварочного трансформатора;
  • при помощи осциллятора между этими элементами возникает вспомогательная электрическая дуга, ограниченная добавочным сопротивлением;
  • эта дуга разогревает газ, подаваемый в плазмотрон до 8000°С, что превращает его в плазму и увеличивает давление внутри головки;
  • потоком воздуха или другого газа поток плазмы выдувается из сопла;
  • при выходе из него плазма сжимается в узкий пучок, скорость которого может достигать 1500м/с, а температура 30000°С;
  • при соприкосновении плазмы и разрезаемой детали ток начинает идти через массу трансформатора;
  • токовое реле, установленное последовательно с деталью, отключает осциллятор и вспомогательную дугу.

Толщина разрезаемого металла зависит от силы тока сварочного трансформатора.

Информация! При токе более 100А плазмотрон и подходящий к нему кабель нуждаются в охлаждении проточной водой или другой охлаждающей жидкостью.

Достоинства и недостатки плазменной резки

Резка металла плазмой имеет преимущества перед другими способами:

  • возможность реза любых металлов и сплавов;
  • высокая скорость обработки;
  • чистая линия разреза без наплывов и потеков материала;
  • обработка производится без прогрева разрезаемых деталей;
  • не используются огнеопасные материалы, такие, как баллоны с кислородом и природным газом.

Недостатками плазменной резки являются:

  • сложность и высокая цена установки;
  • для каждого оператора с плазмотроном необходим отдельный трансформатор и пульт управления;
  • угол реза не более 50°;
  • большой шум при работе.

Для чего нужен трансформатор

Источником питания плазменной дуги служит трансформатор с выпрямителем. От его мощности зависит сила тока и скорость реза металла, а от выходного напряжения толщина разрезаемого материала.

Подключить установку плазменной резки можно не только к специальному трансформатору, но и к сварочному аппарату, обладающему необходимыми характеристиками.

Обойтись без такого устройства нельзя по нескольким причинам:

  • Трансформатор по самому принципу своей работы ограничивает ток во вторичной обмотке. При питании плазмотрона прямо от сети аппарат будет работать в режиме КЗ, поэтому ток реза и потребляемая мощность превысят любые допустимые величины.
  • Сварочный аппарат при работе выполняет роль разделительного трансформатора. При подключении плазмотрона без него горелка и деталь окажутся под напряжением, что опасно для жизни людей.

Схема

Как любая электроустановка, агрегат плазменной резки собирается согласно электросхемам.

Принципиальная

На этой схеме указаны все элементы установки независимо от их расположения. Основной целью этого чертежа является показать связи между деталями и упростить понимание работы установки.

На принципиальной схеме аппарата изображены следующие элементы:

  • питающий трансформатор с выпрямителем;
  • осциллятор;
  • токовое реле;
  • резистор, ограничивающий ток вспомогательной дуги;
  • контактор, отключающий эту дугу;
  • пускатель, включающий аппарат;
  • кнопка включения реза;
  • компрессор с аппаратурой управления.

Информация! Силовые цепи могут изображаться толстыми линиями.

Управления

В схеме управления показаны все кнопки и регуляторы, которые находятся на пульту или непосредственно на плазмотроне:

  • кнопки включения компрессора;
  • регулятор давления воздуха;
  • при наличии охлаждающей жидкости кнопки и регуляторы ее потоком;
  • амперметр;
  • вольтметр;
  • датчики протока воды и воздуха;
  • кнопка управления резом (может находиться на рукоятке плазмотрона).

схема управления самодельный плазморезом

Информация! Все эти элементы изображены так же на принципиальной схеме.

Подключения

На схеме подключения указаны кабеля и шланги, соединяющие все элементы между собой. На ней указывается сечение и длина проводов, а также место подключения.

схема подключения плазмореза

Как изготовить плазменный резак

Рабочим инструментом установки плазменной резки является резак, или плазмотрон. Он создает поток воздуха, превращенный в плазму, разогретую до 30000°С, которая разрезает металл.

Изготовить его можно самостоятельно. Желательно в качестве образца использовать готовую конструкцию. Состоит плазмотрон из нескольких основных элементов:

  • Центральный держатель со сменным электродом. При токе реза до 100А и толщине металла до 50 мм держатель изготавливается из медного прута, в более мощных аппаратах внутри есть каналы для водяного охлаждения. Для поджига дуги расстояние между электродом и соплом должно быть 2 мм, поэтому для регулировки плазмотрона центральный стержень делается подвижным.
  • Изолятор между центральным электродом и наружным корпусом. Часть изолятора, ближняя к соплу, изнашивается и изготавливается сменной из фторопласта.
  • Наружный корпус со сменным соплом. Плазма образуется в камере между электродом и соплом. При изготовлении устройства с водяным охлаждением внутри стенок находятся каналы для охлаждающей жидкости.
  • Сменные насадки, кабеля – силовой и для вспомогательной дуги, шланги.

Информация! В устройствах с водяным охлаждением силовой кабель без изоляции и находится внутри шланга, подающего воду к горелке.

Один из способов изготовить такое устройство – это сделать его из горелки для аргонно-дуговой сварки. В ней есть большинство необходимых элементов:

  • вольфрамовый электрод Ø4мм с возможностью регулировки положения;
  • клемма и кабель для подачи к нему тока для сварки;
  • направляющие каналы и шланг для подвода газа к соплу.

Для доработки необходимо:

  • снять тонкостенное латунное сопло;
  • накрутить вместо него изолирующую прокладку из фторопласта цилиндрической формы с резьбой снаружи и внутри цилиндра;
  • сверху на прокладку накрутить латунный корпус с креплением для медного сопла;
  • к корпусу припаять или прижать хомутом кабель для вспомогательной дуги;
  • в рукоятке установить микровыключатель, включающий режим реза.

Сменные насадки

Сменными элементами, которые изнашиваются во время работы, являются электроды и сопла:

  • Электрод изготавливается из меди со вставкой из тугоплавкого металла – бериллия, тория, циркония и гафния. Вставка находится в центре, напротив отверстия сопла. Вспомогательная кратковременная дуга появляется между краем электрода и соплом, рабочая постоянная между вставкой и деталью, поэтому вставка, является самым изнашивающимся элементом и заменяется вместе с электродом.
  • Сопло формирует плазменную струю, образованную электродом. Оптимальный размер сопла 30мм, в центре находится отверстие Ø2мм. Во время работы плазма, проходящая через него, увеличивает диаметр канала, что делает поток газа шире, а рез менее аккуратным. Поэтому сопло, как и электрод, следует периодически менять.

Выбор газа

Несмотря на то, что любой металл можно разрезать потоком воздуха, создаваемым компрессором, для каждого из металлов есть оптимальный состав газа:

  • медь, латунь и титана – азот;
  • алюминий – смесь азота с водородом;
  • высоколегированная сталь – аргон.

Как изготовить сварочный трансформатор

Источником питания плазмы является сварочный трансформатор. Как и некоторые другие элементы его можно изготовить самостоятельно.

Необходимые параметры

Трансформатор для плазменной резки отличается от обычного сварочника напряжением холостого хода и составляет 220-250В. Это необходимо для создания и поддержания дуги между электродом и разрезаемой деталью. Мощность и ток вторичной обмотки зависят от предполагаемой толщины металла:

Источник питания необходим с “мягкой” характеристикой, напряжение при работе составляет 70В. Для работы вспомогательной дуги достаточен ток 5А. Он ограничивается сопротивлением 30-50Ом, изготовленным из толстой нихромовой проволоки.

Информация! Использовать обычный или инверторный сварочник не получится. У этих аппаратов недостаточное напряжение ХХ.

Как рассчитать

Расчет питающего трансформатора сводится к определению необходимых сечений магнитопровода, первичной и вторичной обмотки и числа витков.

Для аппарата, предназначенного для разрезания металла до 12 мм при токе 50А, напряжении холостого хода 200В и напряжении сети 220В эти параметры составляют:

  • сечение магнитопровода – 107 мм²
  • первичная обмотка – 225 витков медным проводом Ø4,7 мм;
  • вторичная обмотка – 205 витков медной проводом Ø5,04 мм².

Изготовление трансформатора

В связи с тем, что трансформатор должен иметь “мягкую” характеристику, катушки располагаются отдельно друг от друга. При использовании О-образного сердечника они находятся на разных стержнях, на Ш-образном магнитопроводе обмотки располагаются вдоль средней части.

Намотка катушек производится по расчетным параметрам на каркасах их электротехнического картона. Готовые обмотки обматываются стеклолентой или киперной лентой и покрываются краской.

После намотки обмоток и сборки магнитопровода на трансформатор крепится и подключается диодный мост из 4 диодов с радиаторами, собранный на текстолитовой площадке. Собранный трансформатор помещается в корпус, а вывода обмоток и диодного моста подключаются к клеммам на передней панели. Подключение выполняется согласно принципиальной схеме, учитывая наличие амперметров, вольтметров, пускателей и других деталей.

Осциллятор, подключенный последовательно со сварочником, имеет высокое выходное напряжение высокой частоты. Поэтому диоды в выпрямителе необходимо использовать высокочастотные или установить отдельный диодный мост, специально для вспомогательной дуги.

Другие комплектующие

Кроме плазмотрона и трансформатора в агрегате плазменной резки есть и другие элементы.

Компрессор

Самый распространенный рабочий газ – это сжатый воздух. Его можно использовать при резке почти всех металлов и сплавов. Источником сжатого воздуха является компрессор. Его можно использовать любой конструкции, минимальная производительность зависит от толщины металла:

  • 16 мм – 140л/мин;
  • 20 мм – 170л/мин
  • 30 мм – 190л/мин.

Для более стабильной работы необходим ресивер емкостью от 50 литров, давление создаваемое компрессором должно быть более 4,5Бар.

Кабели и шланги

Для работы плазмореза с воздушным охлаждением кабель-шланговый пакет состоит из следующих элементов:

  • Силовой кабель. Его сечение зависит от номинальной мощности устройства. При токе 50А, достаточным для резки металла толщиной 10 мм и проводе в виниловой изоляции оно составляет 6мм². При использовании кабеля в жаропрочной изоляци сечение соответственно уменьшается. Этих кабелей необходимо 2 – один в кабель-шланговом пакете для электрода и второй для массы.
  • Провод для вспомогательной дуги. Сечение достаточно 1,5 мм². По допустимому нагреву кабель допускается более тонкий, но он имеет недостаточную механическую прочность.
  • Шланг для подачи воздуха. Внутренний диаметр 10 мм.
  • Провода для подключения микровыключателя.

Осциллятор

Это прибор, увеличивающий напряжение ХХ сварочного трансформатора до величины, обеспечивающий появление электрической дуги без предварительного контакта электрода и массы.

Осцилляторы, используемые в агрегатах плазменной резки, подключаются последовательно с трансформатором и добавляют к постоянному напряжению 220В переменное, частотой до 250кГц и напряжением до 6кВ.

Сам по себе этот прибор не выдает ток, опасный для здоровья людей и, тем более, не способен создать дугу для сварки или резки металла. Основное предназначение этого устройства в создании искры между электродами. Эта искра является проводником и “прокладывает путь” для сварочного выпрямителя.

Совет! Вместо осциллятора допускается использование электронного зажигания автомобиля.

Окончательная сборка

Сборка самодельного агрегата плазменной резки заключается в соединении всех элементов кабелями и шлангами:

  • кабеля для электрода, массы и вспомогательной дуги подключаются к соответствующим клеммам на сварочном трансформаторе;
  • воздушный шланг присоединяется к ресиверу компрессора;
  • провода, идущие к микровыключателю на рукоятке, подключаются к схеме управления.

Проверка

Для проверки собранного устройства необходимо произвести пробный рез металла:

После завершения испытаний отключить аппарат от сети и снова проверить все элементы на нагрев.

Правила техники безопасности при работе плазморезом

Процесс плазменной резки при несоблюдении правили работы является опасным для здоровья и жизни людей. Основными вредными факторами являются:

  • Брызги расплавленного металла. Во время реза поток плазмы расплавляет металл и выдувает его из разрезаемой детали. Попадание расплавленных капель на горючие вещества приводит к их возгоранию, а попадание на кожу вызывает сильные ожоги, вплоть до IV степени (обугливание). Для защиты необходимо направлять поток плазмы в сторону от людей и горючих материалов.
  • Вредные газы и пыль. Во время реза металл на только расплавляется, но и горит. Образующийся при этом дым вреден для здоровья. Кроме того горят загрязнения на поверхности деталей. Поэтому рабочее место необходимо оборудовать вытяжной вентиляцией и работать в респираторе.
  • Яркий свет. Во время работы электросварки и резки плазмой, образованной электрической дугой, кроме видимого света появляется ультрафиолет. Этот вид излучения приводит к ожогам сетчатки глаз. Для защиты рабочее место огораживается переносными щитами, а резчик должен пользоваться защитным щитком.
  • Температура. После завершения работы края детали некоторое время остаются нагретыми до высокой температуры и прикосновение к ним может привести к ожогам. Для того, чтобы избежать подобных травм к разрезанным деталям можно прикасаться только в защитных рукавицах или через некоторое время, достаточное для остывания кромок.

Средняя стоимость трансформаторного плазмореза, собранного своими руками

Стоимость самодельного плазмореза зависит от цены комплектующих. В идеале такой аппарат собирается из различного старого хлама и запчастей, имеющихся в мастерской.

В любом случае следует ориентироваться на цену магазинного плазмореза, которая зависит от толщины разрезаемого металла, наличия дополнительных аксессуаров, фирмы производителя и других факторов.

Средняя стоимость подобных устройств зависит от толщины разрезаемого металла:

  • до 30 мм – 150–300 тыс. руб.;
  • 25 мм – 81–220 тыс. руб.;
  • 17 мм – 45–270 тыс. руб.;
  • 12 мм – 32–230 тыс. руб.;
  • 10 мм – 25–20 тыс. руб.;
  • 6 мм – 15–20 тыс. руб.

Совет! У разных производителей различная цена на комплектующие, поэтому один из способов сэкономить — это приобрести все детали по-отдельности и собрать аппарат самостоятельно из готовых элементов.

Параметры плазменной резки различных металлов

Несмотря на то, что все материалы можно резать в одном режиме, для улучшения качества обработки различные металлы и сплавы требуют разных режимов реза, газа и настройки оборудования:

  • Углеродистая сталь – воздух, азот, кислород. Диаметр сопла 3 мм, скорость реза 0,3-5,5 мм/мин.
  • Нержавеющая сталь – воздух, азот, водородно-аргонная смесь. Диаметр сопла 3 мм, скорость реза 0,3-5,5 мм/мин.
  • Алюминий – азот, водородно-аргонная смесь. Диаметр сопла 2-3 мм, скорость реза 0,1-1,6 мм/мин.
  • Медь и сплавы – воздух свыше 40 мм, азот – 5-15 мм. Диаметр сопла 3-3,5 мм, скорость реза 0,4-3 мм/мин

Информация! Скорость реза зависит от тока установки и толщины детали. При этом важно, чтобы конец дуги “не отставал” от ее начала.

Плазменная резка металла — это современный способ обработки. Наличие такого аппарата, сделанного из сварочного трансформатора, в мастерской расширяет возможности мастера.


Часто приходится резать металл болгаркой, инструмент конечно отличной, но вырезать отверстия или различные фигуры то еще удовольствие. Мысль о покупке плазмореза посетила меня давно, присмотрел себе самый дешевый cut40, хотел брать, но перебила мысль о постройке аппарата плазменной резки своими руками, по сути это все тот же сварочный инвертор, но выходное напряжение выше, а ток ниже.
За основу была взята простая схема сварочника по схеме прямоходового преобразователя.


Изменению подверглась выходная часть, был добавлен второй силовой транзистор в параллель, питание шим и драйвера сделал от отдельного блока питания. На плате с блоком питания разместил автоматику для управления плазморезом, схема автоматики простая, без микроконтроллеров, на "рассыпухе"


С разводкой плат пришлось повозится, в итоге получилось три платы: основная плата инвертора с осциллятором, плата выпрямителя с софт стартом и плата блока питания с автоматикой.


Помимо деталей, были куплены на алиэкспресс: резак PT-31, штуцер для шланга резака, электромагнитный клапан и осушитель


Оборудование

Плазменные резаки активно используются в мастерских и предприятиях, связанных с цветными металлами. Большинство небольших предприятий применяют в работе плазменный резак, изготовленный своими руками.

Плазменный резак хорошо себя показывает при разрезе цветных металлов, поскольку позволяет локально прогревать изделия и не деформировать их. Самостоятельное производство резаков обусловлено высокой стоимостью профессионального оборудования.

В процессе изготовления подобного инструмента используются комплектующие от других электроприборов.

Особенности и назначение плазменного резака

Инвертор плазменной резки используется для выполнения работ как в домашних, так и в промышленных условиях. Существует несколько видов плазморезов для работы с различными типами металлов.

  1. Плазморезы, работающие в среде инертных газов, например, аргона, гелия или азота.
  2. Инструменты, работающие в среде окислителей, например, кислорода.
  3. Аппаратура, предназначенная для работы со смешанными атмосферами.
  4. Резаки, работающие в газожидкостных стабилизаторах.
  5. Устройства, работающие с водной или магнитной стабилизацией. Это самый редкий вид резаков, который практически невозможно найти в свободной продаже.

Большинство инверторных плазменных резаков состоят из:

  • форсунки;
  • электрода;
  • защитного колпачка;
  • сопла;
  • шланга;
  • головки резака;
  • ручки;
  • роликового упора.

Принцип действия простого полуавтоматического плазмореза состоит в следующем: рабочий газ вокруг плазмотрона прогревается до очень высоких температур, при которых происходит возникновение плазмы, проводящей электричество.

Затем, ток, идущий через ионизированный газ, разрезает металл путем локального плавления. После этого струя плазмы снимает остатки расплавленного металла и получается аккуратный срез.

По виду воздействия на металл различают такие виды плазматронов:

  1. Аппараты косвенного действия.
    Данный вид плазматронов не пропускает через себя ток и пригоден лишь в одном случае – для резки неметаллических изделий.
  2. Плазменная резка прямого действия.
    Применяется для разрезки металлов путем образования плазменной струи.

Конструкция плазменного резака и рекомендации по работе с ним серьезно разнятся в зависимости от типа устройства.

Делаем плазменный резак своими руками

Плазменная резка своими руками может быть изготовлена в домашних условиях. Неподъемная стоимость на профессиональное оборудование и ограниченное количество представленных на рынке моделей вынуждают умельцев собирать плазморез из сварочного инвертора своими руками.

Самодельный плазморез можно выполнить при условии наличия всех необходимых компонентов.

Перед тем как сделать плазморежущую установку, необходимо подготовить следующие комплектующие:

  1. Компрессор.
    Деталь необходима для подачи воздушного потока под давлением.
  2. Плазмотрон.
    Изделие используется при непосредственной резке металла.
  3. Электроды.
    Применяются для розжига дуги и создания плазмы.
  4. Изолятор.
    Предохраняет электроды от перегрева при выполнении плазменной резки металла.
  5. Сопло.
    Деталь, размер которой определяет возможности всего плазмореза, собранного своими руками из инвертора.
  6. Сварочный инвертор.
    Источник постоянного тока для установки. Может быть заменен сварочным трансформатором.

Источник питания устройства может быть либо трансформаторным, либо инверторным.

схема резака

Схема работы плазменного резака.

Трансформаторные источники постоянного тока характеризуются следующими недостатками:

  • высокое потребление электрической энергии;
  • большие габариты;
  • труднодоступность.

К преимуществам такого источника питания можно отнести:

  • низкую чувствительность к перепадам напряжения;
  • большую мощность;
  • высокую надежность.

Инверторы, в качестве блока питания плазмореза можно использовать, если необходимо:

  • сконструировать небольшой аппарат;
  • собрать качественный плазморез с высоким коэффициентом полезного действия и стабильной дугой.

Благодаря доступности и легкости инверторного блока питания плазморезы на его основе могут быть сконструированы в домашних условиях. К недостаткам инвертора можно отнести лишь сравнительно малую мощность струи. Из-за этого толщина металлической заготовки, разрезаемой инверторным плазморезом, серьезно ограничена.

Одной из главнейших частей плазмореза является ручной резак.

Сборка данного элемента аппаратуры для резки металла осуществляется из таких компонентов:

  • рукоять с пропилами для прокладки проводов;
  • кнопка запуска горелки на основе газовой плазмы;
  • электроды;
  • система завихрения потоков;
  • наконечник, защищающий оператора от брызг расплавленного металла;
  • пружина для обеспечения необходимого расстояния между соплом и металлом;
  • насадки для снятия окалин и нагара.

Резка металла различной толщины осуществляется путем смены сопел в плазмотроне. В большинстве конструкций плазмотрона, сопла закрепляются специальной гайкой, с диаметром, позволяющим пропустить конусный наконечник и зажать широкую часть элемента.

После сопла располагаются электроды и изоляция. Для получения возможности усиления дуги при необходимости в конструкцию плазматрона включают завихритель воздушных потоков.

Сделанные своими руками плазморезы на основе инверторного источника питания являются достаточно мобильными. Благодаря малым габаритам такую аппаратуру можно использовать даже в самых труднодоступных местах.

Чертежи

В глобальной сети интернет имеется множество различных чертежей плазменного резака. Проще всего изготовить плазморез в домашних условиях, используя инверторный источник постоянного тока.

схема принципиальная

Электрическая схема плазмореза.

Наиболее ходовой технический чертеж резака на основе плазменной дуги включает следующие компоненты:

  1. Электрод.
    На данный элемент подается напряжение от источника питания для осуществления ионизации окружающего газа. Как правило, в качестве электрода используются тугоплавкие металлы, образующие прочный окисел. В большинстве случаев конструкторы сварочных аппаратов используют гафний, цирконий или титан. Лучшим выбором материала электрода для домашнего использования является гафний.
  2. Сопло.
    Компонент автоматического плазменный сварочного аппарата формирует струю из ионизированного газа и пропускает воздух, охлаждающий электрод.
  3. Охладитель.
    Элемент используется для отвода тепла от сопла, поскольку при работе температура плазмы может достигать 30 000 градусов Цельсия.

Большинство схем аппарата плазменной резки подразумевают такой алгоритм работы резака на основе струи ионизированного газа:

  1. Первое нажатие на кнопку пуск включает реле, подающее питание на блок управления аппаратом.
  2. Второе реле подает ток на инвертор и подключает электрический клапан продувки горелки.
  3. Мощный поток воздуха попадает в камеру горелки и очищает ее.
  4. Через определенный промежуток времени, задаваемый резисторами, срабатывает третье реле и подает питание на электроды установки.
  5. Запускается осциллятор, благодаря которому производится ионизация рабочего газа, находящегося между катодом и анодом. На данном этапе возникает дежурная дуга.
  6. При поднесении дуги к металлической детали зажигается дуга между плазмотроном и поверхностью, называющаяся рабочей.
  7. Отключение подачи тока для розжига дуги при помощи специального геркона.
  8. Проведение резальных или сварочных работ. В случае пропажи дуги, реле геркона вновь включает ток и разжигает дежурную струю плазмы.
  9. При завершении работ после отключения дуги, четвертое реле запускает компрессор, воздух которого охлаждает сопло и удаляет остатки сгоревшего металла.

Наиболее удачными считаются схемы плазмореза модели АПР-91.

Что нам понадобится?

устройство плазмореза

Чертеж плазменного резака.

Для создания аппарата плазменной сварки необходимо обзавестись:

  • источником постоянного тока;
  • плазмотроном.

В состав последнего входят:

  • сопло;
  • электроды;
  • изолятор;
  • компрессор мощностью 2-2.5 атмосферы.

Большинство современных мастеров изготавливают плазменную сварку, подключаемую к инверторному блоку питания. Сконструированный при помощи данных компонентов плазмотрон для ручной воздушной резки работает следующим образом: нажатие на управляющую кнопку зажигает электрическую дугу между соплом и электродом.

После завершения работы, после нажатия на кнопку выключения, компрессор подает струю воздуха и сбивает остатки металла с электродов.

Сборка инвертора

В случае, если фабричного инвертора нет в наличии, можно собрать самодельный.

Инверторы для резаков на основе газовой плазмы, как правило, имеют в строении такие комплектующие:

  • блок питания;
  • драйвера силовых ключей;
  • силовой блок.
  • набора отверток;
  • паяльника;
  • ножа;
  • ножовки по металлу;
  • крепежных элементов резьбового типа;
  • медных проводов;
  • текстолита;
  • слюды.

Блок питания самодельного инвертора для плазменной резки собирается на базе ферритового сердечника и должен иметь четыре обмотки:

  • первичную, состоящую из 100 витков проволоки, толщиной 0.3 миллиметра;
  • первая вторичная из 15 витков кабеля с толщиной 1 миллиметр;
  • вторая вторичная из 15 витков проволоки 0.2 миллиметра;
  • третья вторичная из 20 витков 0.3 миллиметровой проволоки.

Обратите внимание! Для минимизации негативных последствий от перепадов напряжения в электрической сети, намотку следует проводить по всей ширине деревянного основания.

Силовой блок самодельного инвертора должен состоять из специального трансформатора. Для создания данного элемента следует подобрать два сердечника и намотать на них медную проволоку толщиной 0.25 миллиметров.

Отдельного упоминания стоит система охлаждения, без которой инверторный блок питания плазмотрона может быстро выйти из строя.

Рекомендации по работе

плазменная резка

Чертеж технологии плазменной резки.

При работе на аппарате плазменной резки для достижения наилучших результатов нужно соблюдать рекомендации:

  • регулярно проверять правильность направления струи газовой плазмы;
  • проверять правильность выбора аппаратуры в соответствии с толщиной металлического изделия;
  • следить за состоянием расходных деталей плазмотрона;
  • следить за соблюдением расстояния между плазменной струей и обрабатываемым изделием;
  • всегда проверять используемую скорость резки, чтобы избежать возникновения окалин;
  • время от времени диагностировать состояние системы подвода рабочего газа;
  • исключить вибрацию электрического плазмотрона;
  • поддерживать чистоту и аккуратность на рабочем месте.

Заключение

Аппаратура для плазменной резки – это незаменимый инструмент для аккуратной нарезки металлических изделий. Благодаря продуманной конструкции плазмотроны обеспечивают быстрый, ровный и качественный порез металлических листов без необходимости последующей обработки поверхностей.

Большинство рукоделов из небольших мастерских предпочитают своими руками собирать мини резаки для работы с не толстым металлом. Как правило, самостоятельно сделанный плазморез по характеристикам и качеству работы не отличается от заводских моделей.

Читайте также: