Направляющие для светильников своими руками

Добавил пользователь Евгений Кузнецов
Обновлено: 19.09.2024

В этой статье мы рассмотрим примеры изготовления самодельных светодиодных светильников для различных нужд.

1. Простейший светильник для бытовых нужд.

Для начала стоит определиться с тем, какие светодиоды лучше использовать. Если выбирать между мощными и маломощными - первые лучше с точки зрения трудоемкости. Чтобы заменить один мощный 1 Вт светодиод, понадобится 15-20 маломощных 5 мм или smd светодиодов. Соответственно, пайки с маломощными гораздо больше. Остановимся на мощных. Обычно они делятся на два вида - выводные и поверхностного монтажа. Для облегчения жизни лучше использовать выводные . Мощность светодиода лучше выбирать не более 1 Вт.

Также нам понадобится драйвер тока, чтобы светодиоды получали необходимое напряжение и долго служили.
Кроме того, для продолжительной работы светодиода (особенно для мощного)необходимрадиатор. Для его изготовления лучше всего подходит алюминий. На каждый одноваттный светодиод нужен кусок алюминия 50х50 мм, толщиной около 1 мм. Кусок может быть меньше, если его изогнуть. Если Вы возьмете кусок 25х25 мм и толщиной 5 мм - нужного эффекта не получите. Чтобы рассеивать тепло, нужна площадь, а не толщина.

Рассмотрим модель простейшего светильника. Нам понадобятся : три светодиода 1 Вт , драйвер 3х1 Вт , двухсторонний теплопроводящий скотч , радиатор (например, кусок П-образного профиля толщиной 1 мм и длиной 6-8 см).

Теплопроводящий скотч может проводить тепло. Поэтому обычный двусторонний скотч из не подойдет. Отрезаем полоску скотча шириной 6-7 мм.

Обезжириваем радиатор и донышки светодиодов. Ацетон для этого использовать нежелательно - пластиковая линза светодиода может помутнеть.

Наклеиваем скотч на радиатор. Затем размечаем радиатор, чтобы установить светодиоды ровно.

Устанавливаем светодиоды на скотч. При этом соблюдаем полярность - все светодиоды должны быть развернуты одинаково так, чтобы "плюс" одного светодиода смотрел на "минус" соседнего. Слегка прижимаем их для лучшего контакта. После этого наносим олово на выводы светодиодов для облегчения дальнейшей пайки. Если у вас есть опасение, что скотч при этом может прогореть - просто приподнимите выводы светодиодов так, чтобы они не касались скотча. Корпус светодиода при этом нужно придерживать пальцем, чтобы от скотча не оторвался. Впрочем, можно отогнуть выводы заранее.

Соединяем светодиоды между собой. Для этого вполне достаточно жилки от любого многожильного провода.

Рекомендуется оставить включенным светильник на 2-3 часа, после чего приложить палец к задней стенке радиатора. Если он нагрелся не чрезмерно, все в порядке.

Простейшая модель светильника готова. Теперь Вы можете вставить его в любой подходящий корпус. Разумеется, можно сделать и более мощный светильник, только диодов нужно по больше и драйвер помощнее, а принцип останется тем же. Подобная методика подойдет как для изготовления одиночного светильника, так и для мелкосерийного производства.

2. Люстра на основе светодиодов.

Нам понадобятся:
1. Цоколь от сгоревшей энергосберегающей лампы.
2. Два захвата (чтобы подключиться к светодиоду);
3. Мощный десятиваттный светодиод, цвет по вашему выбору;
4. Два маленьких винта;
5. Один десяти ваттный светодиодный драйвер;
6. Термопаста;
7. Радиатор;
8. Термоусадочная трубка (или изолирующая лента);
9. провода сечением 2 мм.


Для начала необходимо разобрать старую или сгоревшую энергосберегающую лампу. Важно проявлять осторожность и не повредить стеклянную колбу. Иначе из нее выйдет очень вредный для здоровья ртутный газ.


Нам нужна только часть корпуса с цоколем. Обрежем повода от платы идущие к цоколю и припаяем свои, идущие от драйвера светодиода, изолируем термоусадочными трубками.

Паяльником проделаем пару отверстий для проволоки, которая будет удерживать всю конструкцию.

Далее в центре радиатора сверлим два отверстия для крепления светодиода и нарезаем резьбу. Сажаем светодиод. Для этого смазываем обе поверхности термопастой и плотно прикручиваем светодиод к радиатору.

Далее,используем клеммы, обжимаем, подключаем к светодиоду соблюдая полярность. Проверяем. Не рекомендуется смотреть на включенный светодиод. Сила света очень велика и может нанести вред Вашим глазам. Если все работает - собираем светильник в единое целое.

Светодиод очень яркий и бросает резкие тени. Вы можете сделать свет более гладким и мягким, используя самодельный рассеиватель. В качестве рассеивателя можно использовать множество различных материалов. Самый простой - вырежем из двухлитровой пластиковой бутылки дно, обработаем наждачной бумагой со всех сторон, что бы придать полную непрозрачность прямому свету. Делаем четыре отверстия и проволокой крепим ее к радиатору.

3. Домашняя светодиодная лампа.

В качестве источника света используем светодиоды Cree MX6 Q5 мощностью 3 Вт и светоотдачей 278 лм. Светодиод будет размещен на радиаторе размером 5х5 см, снятом с процессора старой материнской платы.


Для простоты будем использовать импульсный источник вместе с электронным адаптером, который даст необходимое напряжение и ток для питания светодиодов. Для этой цели в нашем случае было выбрано зарядное устройства нерабочего мобильного телефона имеющее, по заявлению производителя, выходное напряжение 5 В и ток 420 мА.

Для предохранения от внешних воздействий вся электронная часть будет помещена в патрон от старой лампы.

В соответствии с указаниями производителя, светодиоды Cree MX6 Q5 могут работать на максимальном токе 1 А при напряжении 4,1 В. По логике, для нормальной работы нам понадобится резистор 1 Ом, чтобы понизить напряжение примерно на один вольт тех пяти, которые дает зарядное устройство, чтобы получить искомые 4,1 В и это только при том, если зарядка выдает ток максимальной силы в 1 А.Однако, как позже выяснилось, зарядное устройство с конструктивным ограничением по силе тока в 0,6 А без проблем работает. Тестируя таким же образом зарядки для других мобильных телефонов, было обнаружено, что все они имеют ограничение на питание током, сила которого на 20-50% выше той, что указана производителем.Смысл этого заключается в том, что любой производитель будет стремиться разработать блок питания так, чтобы он не перегревался, даже если питаемое устройство будет повреждено или произойдет короткое замыкание, и самый простой способ в этом случае — ограничение тока.

Таким образом, мы имеем источник постоянного тока ограниченный 0,6 А, питаемый от переменного тока 230 В, сделанный фабричным методом и имеющий небольшие размеры. При этом во время работы он лишь незначительно нагревается.

Переходим к сборке. Для начала необходимо вскрыть блок питания для того, чтобы извлечь детали, которые будут вставлены в корпус новой лампы. Так как большинство блоков питания соединено пайкой, вскрываем блок ножовкой.

Для того, чтобы закрепить плату в корпусе лампы, в нашем случае использовался санитарный силикон. Силикон был выбран за его сопротивляемостью высоким температурам.

Перед тем, как закрыть лампу, крепим к крышке (используя болты) радиатор, к которому и был прикреплен светодиод.

Лампа готова. Потребляемая мощность составляет чуть менее 2,5 Вт, световой поток – 190 лм, что идеально подходит для экономичной, долговечной и прочной настольной лампы.


4. Светильник в коридоре.

Для освещения светодиодными светильниками прихожей мы использовал два светодиода Cree MX6 Q5, каждый из которых обладает мощностью 3 Вт и светоотдачей 278 лм и питается от старого блока питания от мобильного телефона Samsung. И хотя производителем в спецификации указана сила тока в 0,7 А, после замеров былоустановлена, что она ограничена 0,75 А.

Схема изготовления основы светильника аналогична предыдущему варианту. Вся внешняя конструкция собрана при помощи текстильной липучки, клея и пластиковых шайб от материнских плат.

Общее потребление этой конструкции составляет около 6 Вт при световом потоке 460 лм.

5. Светильник в ванной комнате.

Для ванной комнаты использовался светодиод Cree XM-L T6 с питанием от двух зарядок для телефонов LG.


Каждое из зарядных устройств может выдавать по заявлению производителя ток силой 0,9 А, но я обнаружил, что фактически сила тока равна 1 А. Оба источника питания соединены параллельно для получения тока силой 2 А.

При таких показателях светодиодный светильник будет вырабатывать световой поток в 700 лм при потребляемой мощности 6 Вт.

6. Светильник для кухни.
Если для прихожей и ванной комнаты не было необходимости для обеспечения определенного минимума освещенности, то на кухне это не так. Поэтому было решено использовать для кухни не один, а два последовательно соединенных светодиода Cree XM-L T6, каждый из которых имеет максимальную потребляемую мощность 9 Вт и максимальной световой поток 910 люменов.

Для эффективного охлаждения в нашем случае использовался радиатор, снятый со Slot 1 процессора Pentium 3, к которому были прикреплены оба светодиода при помощи термоклеяArcticAlumina. Хотя светодиоды Cree XM-L T6 могут потреблять ток силой 3 А, производитель для надежности работы рекомендует использовать ток силой 2 А, при котором они создают световой поток около 700 лм. В качестве источника питания использовался генерирующий 12В при токе 1.5A. После тестирования его при помощи резисторов, было обнаружено, что ток ограничен до значения в 1,8 А, что очень близко к искомому значению в 2 А.

Для предохранения радиатора и двух светодиодов использовались две пластиковых шайбы от материнской платы и два неодимовых магнита, снятых с поврежденного DVD-привода, закрепив их суперклеем и текстильной липучкой.

Ожидал, что такой светодиодный светильник будет выдавать 1200 лм, что сравнимо со световым потоком заменяемой люминесцентной лампой 23 Вт, однако было обнаружено, что на самом деле излучаемый свет даже более интенсивный, при потребляемой мощности около 12 Вт — почти половиной по сравнению со старой лампочкой.

7. Офисный светильник
Нам понадобится:

1. Светодиодные линейки 4 шт (на мощных Американских диодах CREE)
2. Подходящий драйвер (блок питания) 1 шт.
3. Металлический корпус будущего светильника.
4. Проводки, паяльник, ручной инструмент и крепеж.й светильник.

Можно использовать для изготовления корпус старого светильника

Либо использовать специальный алюминиевый профиль со стеклом. В этом случае драйвер устанавливается внутри профиля.

Устанавливаем диодные линейки 4 шт.

Делаем крепление к потолку (на тросиках) + ставим матовое стекло.

Вариант LED светильника в корпусе (от люминесцентного 2х36Вт)

Или можно все поставить в офисный светильник 600х600 мм.

Ну и в качестве бонуса рассмотрим несколько примеров декоративных светильников на основе светодиодов.

8. Декоративный настольный ночник.

Для декоративного светильника нам потребуются:
- 4 деревянных дощечки одинакового размера;
- дрель со сверлом 15 мм.;
- клей для дерева;
- морилка для дерева;
- кисть с карандашом;
- наждачная бумага;
- светодиодные свечи.
Прежде всего, необходимо дрелью проделать несколько отверстий в каждой дощечке, предварительно сделав разметку карандашом, – так мы получим своеобразный рисунок из кругов.

Наносим морилку на дерево.


С помощью клея соединяем 4 дощечки в светильник.

Проходимся наждачной бумагой по светильнику, чтобы придать ему винтажности.


Ставим внутрь светильника светодиодные свечи.

9. Светильник в восточном стиле.
В качестве плафонов для светильников, используем банки от клея пва.


Нам понадобятся:
- 2-3 банки из-под клея ПВА
- патроны, провод
- ножницы, острый нож
- горячий клеевой пистолет
- бамбуковые салфетки или соломенные потолочные плитки


Для начала надо разрезать салфетки на куски нужных размеров.

Далее острым ножом отрезать верхнюю часть банки с крышкой.

На основании банки маркером обвести патрон со светодиодом в 1 Ватт и вырезать круг ножом.

Затем при помощи горячего клеевого пистолета приклеиваем салфетки к банкам.

К пустым местам приклеиваем тесьму.

На этом этапе уже можно посмотреть, как будет светиться.

Осталось задекорировать на стыках тесьму деревянными бусинами.

В целях безопасности нужно насверлить отверстий для вентиляции. Можно побольше, их все равно не будет видно.

Вот и все, светильник готов.

10. Необычный декоративный светильник.

Изготовление светильника своими руками, было начато с нанесения предварительных эскизов на бумагу. Было желание, чтобы светильник не только был изогнут в плоскости, но и в пространстве, и имел причудливую форму 3d волны.

После того как эскиз на бумаге готов, приступаем к изготовлению светильника. Была измерена каждая труба на рисунке, и по этим размерам производилась резка труб. Чтобы получить необходимые углы, из бумаги вырезались шаблоны и крепились скотчем на трубе.


Все трубы были выложены на столе, и сделана подгонка относительно формы волны

Пропилы делались на стационарной циркулярной пиле. Таким образом получается ровные пропилы без задиров шириной 2 мм.

Теперь нужно соединить все трубы в одно целое. Главная задача сделать плавные изгибы, для этого не помешает применить шаблон (лист ДВП) на столе.

Поскольку трубы картонные, то соответственно соединять их можно при помощи клея ПВА, но я бы рекомендовал использовать клеи которые по крепче и быстрее застывают (момент, суперклей).

С обратной стороны на саморезы были привинчены деревянные планки, чтобы самодельный светильник можно было повесить на стену. И в каждой трубе были просверлены отверстия для вывода проводов от светодиодных лент.

Окраска труб производилась обычной краской в баллончике. Использовался красный цвет, поскольку стена, на которой должен быть расположен светильник, была белой, то хотелось получить некий контраст.

Краска высыхает очень быстро, по этому можно приступать к монтажу светодиодов. Главное запомните, что разрезать светодиодную ленту можно только в специально отмеченных местах. Ленту заранее необходимо разметить, чтобы ее хватило на все 12 труб.

Припаиваем к “+” контакту красные провода, а к “-” черные, чтобы в последствии не перепутать полярность.

Светодиодные полоски размещаем внутри труб и фиксируем клейкой стороной к стенке трубы, а провода выводим через заранее проделанные отверстия. Остается только параллельно соединить все провода (красные соединить с красными, а черные с черными) и подключить к блоку питания.


Теперь пришло время, чтобы повесить самодельный светильник на стенку.
Светильник готов.

Сегодня сложно представить, как раньше люди жили при свечах, а дети делали уроки при керосиновых лампах. Лампами накаливания тоже ныне никого не удивишь. Прогресс пошёл ещё дальше. Пожалуй, нет помещения, где бы сегодня не применялись светодиодные приборы всевозможных конструкций и дизайна.


Купить такой светильник проблем не составляет. Пользуются ими уже довольно давно и у многих имеются в доме в нерабочем состоянии. Поэтому возникает желание светодиодный светильник сделать своими руками из тех деталей, что уже есть, или отремонтировать.


Содержимое статьи

Параметры и управление светодиодами

LED-технологии – это преобразование тока в световое излучение. Для тех, кто, возможно, захочет отремонтировать или задастся вопросом, как сделать светодиодный светильник своими руками, информация об этом полезна.













  • ток потребления в большинстве – 20 мА;
  • цвет и напряжение. Цвету соответствует и напряжение: красный – 1,5-2,6В, зелёный – 1,7-4,0В, жёлтый – 1,7-2,5В, оранжевый – 1,7-2,8В;
  • мощность рассеивания – по этому параметру можно определить, какой блок питания выбрать для нужного количества светодиодов;
  • угол свечения – осветительный угол больше, у индикаторных – меньше, но в общим колеблется от 4 до 180 градусов;
  • температура свечения – обозначается на упаковках и измеряется в Кельвинах. Тепловые оттенки 2700-3000К, нейтральные 3500-4000К, холодные 5700-7000К;
  • период старения – зависит от правильности эксплуатации и может не совпадать с обозначенным.


Отличие между БП и драйвером

Управление светодиодами осуществляется через (БП). Драйвер участвует в управлении, но это не БП и между ними есть различие.


При питании прибора от 220 В это БП, а 12В или 24В – это драйвер. Он не преобразует входное напряжение, а стабилизирует ток и позволяет управлять интенсивностью освещения светодиодов.



Знания этих характеристик способствуют правильному подбору светодиодов и средств управления.


Конструктивно БП бывают:

  • открытые;
  • полу герметичные;
  • герметичные.


При подключении светодиодов различного цвета необходим контроллер. Информация, на первый взгляд, сложна в понимании, но не ориентируясь в ней, невозможно произвести элементарный ремонт светодиодного светильника своими руками, не говоря уже о сборке.


Варианты сборки и ремонта светодиодных светильников

Приступая к самостоятельной работе надо помнить, что это сопряжено с риском, ведь напряжение 220 В опасно для жизни. И всё, что придётся предпринять, делается на свой страх и риск.







Вариант первый

Для работ по этому варианту необходимы элементарные знания по электротехнике, умение пользоваться паяльником и измерительным прибором мультиметром. Для исходного материала можно использовать неисправную светодиодную лампу.


  1. Отделить (выбор способа произвольный) колбу от цоколя, в котором уже имеется источник управления светодиодами (драйвер).
  2. Осмотреть плату со светодиодами. При обнаружении чёрной точки на полупроводнике – выпаяв из платы, впаять новый.


Этот вариант, более подходящий для сборки потолочного светодиодного светильника своими руками.


Вариант второй

  • компоновка схемы;
  • резистор на 100Ом;
  • мощный выпрямитель на диодах;
  • конденсатор на 400пФ номиналом напряжении не мене 350В;
  • сглаживающая емкость на 10 мкФ.


Третий вариант

Спаять последовательно не менее 60 светодиодов и подключить через диодный мост к сети 220В. Это типичные варианты как сделать светодиодный светильник на 220В своими руками.







Четвёртый вариант

  • светодиодная лента;
  • БП промышленного изготовления (см. выше по тексту).


Преимущества светодиодной техники

  • Работа в тяжёлых условиях.
  • Малая потребительская мощность и более высокий КПД, чем у ламп накаливания.
  • Экологическая чистота.
  • Более долговечный срок эксплуатации.
  • Возможный вариант ремонта.


Неисправную лампочку накаливания выбрасывают. Светодиодный же прибор спешить отправлять в мусор не следует. Нужно задаться вопросом: Как отремонтировать светодиодный светильник своими руками?









  • светодиодного модуля;
  • цоколя со светофильтром;
  • драйвера.


  • отсутствие свечения;
  • кратковременное мерцание;
  • пропадание света.


Многие неисправности указаны в инструкциях на прибор. Используя это во время самостоятельной сборки, можно избежать ошибок и собрать надёжный и оригинальный с точки зрения дизайна прибор.


Все, кто связан с ремонтом светодиодных приборов утверждают, что самый лучший ремонт, это замена неисправного элемента на новый.

Кандидат наук, бессменный эксперт сайта, реальный, а не абстрактный (в отличие от прочих ресурсов) человек.

Монтаж встраиваемых светильников

Установка встраиваемых светильников в натяжной потолок имеет строгую последовательность работ:

  1. определение схемы расположения трассы кабеля на стене, выключателей, распределительных коробок и, при необходимости, драйверов;
  2. расчет сечения кабелей и проводов;
  3. прокладка проводки на стене, установка выключателей;
  4. составление схемы крепления светильников;
  5. разметка потолка;
  6. установка закладной платформы;
  7. сборка светильника;
  8. монтаж люстры.

Для сведения: первые три пункта будут рассмотрены в отдельной работе.

Составление схемы

Начинать работы по установке светильников в натяжной потолок своими руками следует с разработки схемы расположения распределительных коробок, драйверов, светильников, люстры и трасс прохождения электропроводов, а также мест их крепления к перекрытию. При этом необходимо соблюдать некоторые правила:

  • Расстояние осветительных приборов от стены не менее 20 см, друг от друга — 30 см, от шва на пленке — 15 см;

Демонстрационная схема подключения проводов для натяжного потолка

  • Провода по отношению к стенам и друг другу должны идти параллельно или перпендикулярно. Диагональные трассы запрещаются;
  • Изменение направления должно быть только под углом 90 o ;
  • После монтажа натяжного полотна, к распределительным коробкам должен быть доступ — они не могут быть под багетом или на стене в межпотолочном пространстве;
  • На потолочном перекрытии должны быть отмечены не только места крепления светильников, но и хомутов для крепления кабелей.

Необходимые материалы и инструменты

Монтаж точечных светильников в натяжной потолок требует наличия следующих материалов, инструментов и приспособлений:

  • стремянки или крепкого стола;
  • кабеля ВВГнг;

строение кабеля

Инструменты и материалы для установки встроенных светильников

  • гофрированной трубки для проводов, если планируется использовать кабель модели АППВ;
  • хомутов для крепления кабеля или гофрированной трубки;

Хомуты

Крюк для легкой люстры

  • Кольца из пластика для закладного каркаса (платформы), универсальные или под конкретный размер;

Универсальная платформа

Платформа под конкретный размер

  • перфорированной ленты 12×0,7мм или жесткой стойки с регулируемой высотой (как вариант, можно использовать прямые подвесы, применяемые для крепления потолочного профиля);

Перфорированная лента

  • клеммных блоков;
  • мелков для разметки потолочного перекрытия и скотча для пола;
  • рулетки;
  • термоколец из термостойкого АБС пластика толщиной 0,2 см — предохраняют пленку от перегрева и разрыва (могут быть также квадратной и прямоугольной формой);

Термокольцо

  • ножа электрика для зачистки проводов;
  • строительного ножа;
  • клея для ПВХ;
  • крестообразной отвертки.

Разметка

Монтаж светильников в натяжной потолок требует обязательной разметки на потолочном перекрытии мест крепления источников света с записью на схеме расстояний каждой точки от стены и друг от друга.

Делается это в первую очередь для того, чтобы после монтажа полотна можно было точно под закладными вырезать отверстие для лампочек. Работа с рулеткой трудоемкая и требует внимательности — ошибка в 3-4 см может оказаться роковой, в результате чего установить светильник не получится.

Все изменилось с появлением современных лазерных уровней. Разметку стали проводить не на потолке, а на полу. Затем с помощью лазерных лучей место установки светильника проецируется на потолок с точностью до нескольких миллиметров.

При этом прибору нет разницы, куда проецировать отметку с пола, на перекрытие потолка или уже натянутое полотно. К этому времени уже накоплен некоторый опыт:

Разметка на полу с помощью шаблона

  1. Вымерять на полу расстояния удобнее не рулеткой, а шаблоном с отметками. Это может быть любой длинный предмет, например, ручка от швабры или кусок кабеля;
  2. Крестики ставить на полу мелом или другими красящими предметами не совсем удобно: мел может за время установки потолка стереться, а следы фломастера придется замывать. Не создают проблем обозначения, сделанные скотчем — по окончании работ он легко удаляется.

Работа по устройству освещения в натяжных потолках делится на два этапа:

  1. До монтажа пленочного потолка — установка стоек (платформ);
  2. После монтажа — сборка светильника.

Установка стоек

Технология установки платформы для крепления светильников имеет строгую последовательность работ:

Схема монтажа точечного светильника

1. Закладные кольца соединяются со стойкой. Для этого берется универсальная платформа. Из нее ножом вырезаются кольца меньшего диаметра — оставленное отверстие должно иметь тот же размер, что и корпус светильника (если все аккуратно вырезалось, светильник должен свободно входить в закладное кольцо). Если платформы покупались под конкретный размер светильника, вырезать ничего не нужно.

Закладная платформа в собранном виде

На следующем этапе рассчитывается длина перфорированной ленты для стоек. Она равна наружному диаметру закладного кольца и двойному расстоянию между натяжным потолком и перекрытием (две стойки), плюс 2 см на каждую стойку.

Виды стоек

Внимание: многие специалисты считают, что до начала работ необходимо установить багет (крепление для натяжного полотна), и только затем заниматься электрикой (помогает точно рассчитать длину стойки). Но такая схема работы идет в разрез с интересами фирмы-установщика натяжной конструкции: приехать для установки багета, а затем через день-два для натяжки полотна монтажники отказываются. Перестановка очередности операций не влияет на качество работы электриков — стойки можно ставить более длинные, а затем их выгнуть, уменьшая длину. После крепления полотна платформы вытягивают вниз до нужных размеров.

Внимание: определяя высоту межпотолочного пространства необходимо учитывать тип лампочки (для лед-светильника с цоколем GX53 достаточно опустить пленку на 35-50 мм, для остальных 50-70 мм) (см. фото).

Схема установки светильника с цоколем GX53

Схема установки лампы с патроном GU53

2. Готовая платформа крепится к потолку. Для этого в потолочном перекрытии электродрелью высверливается отверстие, загоняется дюбель и крепится платформа.

Установка встроенных источников света

В инструкции, как установить точечный светильник в натяжной потолок, всего несколько пунктов:

  • С помощью лазерного уровня на натянутый потолок проецируются места установки встроенных источников света;

Нанесение места монтажа светильника на натянутое полотно

  • Специальным клеем к пленке приклеивается термокольцо так, чтобы отметка на пленке была в его центре. Для этого кольцо смазывается клеем и прикладывается к потолку. При этом нельзя допускать его сдвига по пленке;

Важно: максимально допустимый внутренний диаметр термокольца — 15 см.

Размеры светильников

Результат отсутствия термокольца

Вырезается отверстие

  • Платформа вытягивается вниз, до плоскости натянутого потолка;
  • К проводам крепятся клеммы;
  • У патрона ножом электрика зачищаются провода и крепятся в блоке клеммника. При напряжении 220V соблюдать цветовую расцветку проводов не обязательно, при напряжении 12 или 24V ноль должен соединяться с нолем (синий провод), фаза с фазой (черный или красный цвет). Если не соблюдать это требование, многие типы светодиодных ламп не будут работать;
  • Лампочка вставляется в патрон;
  • Пружины светильника пальцами прижимаются к цоколю и заводятся в кольцо платформы.

Установка светильника

Операция повторяется с каждым светильником до последнего.

Установка накладного светильника

Накладной осветительный прибор крепится к потолку по той же технологии, что и люстра на каркас — инструкция идентична. Набирающие популярность трековые светильники также крепятся на каркас, но монтируются в основном на подвесном потолке. На пленке или ткани сложно замаскировать места крепления трассы и вывод кабелей из межпотолочного пространства.

Как установить люстру на натяжной потолок

Люстра может крепиться на крюк, а так же на линейные или крестообразные планки.

Крюк. В зависимости от количества плафонов у люстры, крюк может быть на резьбе — вкручивается в дюбель или забитую в высверленное отверстие пробку. Используется для люстр с 3-5 рожками. Для более тяжелых осветительных приборов используют крюк-бабочку. Для этого в бетонном перекрытии высверливается отверстия до внутренней полости плиты. В него загоняется крюк до раскрытия лепестков.

Крюк-бабочка для тяжелых люстр

Чтобы декоративный колпак имел жесткий упор и фиксировал осветительный прибор над натянутой пленкой, к перекрытию потолка крепиться жесткий каркас из фанеры. Для этого в нем посредине перфоратором или дрелью с насадкой-коронкой вырезается круглое отверстие под провода и подвес (трос или цепочку).

Затем с помощью перфорированной ленты дюбелей и саморезов фанера крепится к основному потолку так, чтобы крюк и кабель были над вырезанным отверстием. Длина прямого подвеса или перфорированной ленты должна быть с запасом.

Как и в случае со встроенными светильниками, платформа прижимается руками к перекрытию, чтобы после окончания работ по устройству натяжного потолка ее можно было потянуть вниз до контакта с поливинилхлоридной пленкой или тканью полиэстера.

Элементы крепления люстры

После установки натяжного потолка, в полотне вырезается отверстие, но только после наклеивания пластикового кольца (его можно вырезать самостоятельно из любой пластмассы, так как не требуется термозащита пленки, а только предотвращение ее разрыва).

Через отверстия в пленке и фанере люстра подключается через клеммный блок к проводам, а затем подвешивается на крюк. Если подвесить сразу — сложно проводить соединение проводов. Завершается процесс поднятием декоративного колпака к потолку, до упора. Если все же фанера легла не плотно и колпак оставляет след на полотне, то нужно опустить или каркас или колпак.

Планка. Производители люстр для крепления их к потолку используют также одну или две планки (располагаются крестом под прямым углом). В этом случае берется брус под каждую планку (немного длиннее, чтобы люстра не качалась) и крепится к потолку перфорированной металлической лентой. Но перед этим в сплошном брусе посредине высверливается отверстие под болт.

Если люстра легкая, болт можно заменить саморезом. Тогда высверливать отверстие нет необходимости. Второй брус разрезается пополам и так же крепиться к перекрытию, а для большей устойчивости с помощью углового крепежа и к первой планке. Длина крепежных стоек должна быть с запасом, чтобы при необходимости брус можно было опустить вниз к натянутому потолку.

Крестообразное основание для крепления люстры фиксируется с помощью дюбелей и саморезов

После того, как пленка ПВХ или полиэстер будут натянуты для установки люстры необходимо:

  • концы планок с вставленными болтами обмотать изолентой, чтобы не повреждалось полотно потолка;
  • накладную планку прикрепить к брусу;
  • подключить люстру через клеммы к электросети;
  • корпус люстры прикрепить к планкам;
  • место крепления закрыть декоративным колпаком — поднять его до натянутого потолка.

Декоративный колпак скроет провода и отверстие

Нюансы установки светодиодной ленты на натяжной потолок

Светодиодная лента используется в основном в качестве декоративного освещения. С ее помощью можно добавлять многочисленные световые эффекты к основному освещению. Размещают ленту над потолком или под потолком.

Схема крепления светодиодной ленты на натяжной потолок

В первом случае Led-светильник клеем ПВА или двусторонним скотчем крепится к потолочному перекрытию. Для обеспечения хорошего сцепления клея или скотча с перекрытием его обезжиривают, а затем грунтуют по трассе прохождения. Соединяют ленты с помощью коннектора.

Для установки ленты под натянутой пленкой или тканью раньше необходимо было монтировать двухуровневую потолочную систему. Светодиоды крепились на боковой планке, закрывающей пространство между уровнями. В настоящее время разработаны специальные крепления из профилей, которые можно располагать по натянутому потолку в любом направлении.

Светодиодная лента крепиться внутри профиля. От наблюдателя ее скрывает специальный плафон. В зависимости от числа светодиодов на погонном метре, освещение может быть вспомогательным или основным — необходимо 240 кристаллов на погонный метр.

Заключение и резюме

Изучив приведенные выше материалы о том, как устанавливать лампы в натяжной потолок, работы можно выполнить самостоятельно до выезда на квартиру фирмы-установщика потолка. Главное придерживаться определенного порядка работ:

  1. составить схему расположения точечных источников света и люстры, проложить трассы прохождения силовых кабелей;
  2. перенести чертеж на перекрытие потолка;
  3. провести и закрепить электропровода;
  4. смонтировать, а затем прикрепить к перекрытию потолка платформы;
  5. по натянутому потолку нанести схему крепления светильников;
  6. под платформами приклеить к пленке или полиэстеру термокольца, прорезать в них отверстия;
  7. подсоединить светильники к силовым кабелям.

Для люстры процесс проще:

  1. закрепить крюк на потолке;
  2. приклеить к натянутой пленке термокольцо и вырезать в нем отверстие;
  3. соединить провода люстры с подведенными проводами через клеммный блок;
  4. повесить люстру на крюк и закрыть отверстие в потолке декоративным колпаком.

Видео по теме

Постепенно приборы освещения переходят на светодиодные лампы. Произошло это не сразу, был затяжной переходный период с применением так называемых экономок – компактных газоразрядных лампочек со встроенным блоком питания (драйвером) и стандартным патроном Е27 или Е14.

При неплохом балансе цены и экономичности (разница в цене с обычными лампами накаливания со временем окупается за счет экономии электроэнергии), газоразрядные источники света имеют ряд недостатков:

  • Срок службы ниже, чем у ламп накаливания.
  • Высокочастотные помехи от блока питания.
  • Лампы, не любят частого включения – выключения.
  • Постепенное снижение яркости.
  • Влияние на расположенные рядом поверхности: на поверхности потолка (над лампой) со временем появляется темное пятно.
  • Да и вообще, иметь в доме колбу с некоторым количеством ртути как-то не очень хочется.

Прекрасная альтернатива – светодиодные светильники. Список достоинств весомый:

  • Направленность светового потока предъявляет высокие требования при конструировании рассеивателя.
  • Все-таки они дорого стоят (речь идет о качественных брендах, безымянные изделия среднего уровня вполне доступны).

Если ценовой вопрос регулируется подбором производителя, то конструктивные особенности не всегда позволяют просто заменить лампу в любимой люстре. Разумеется, есть богатый выбор классических грушевидных LED ламп, которые подходят под любой размер.

Перед нами качественная (при этом относительно недорогая) лампа с яркостью свечения 1000 Lm (эквивалент 100 ваттной лампы накаливания), и потребляемой мощностью 13 Вт. У меня такие LED источники света работают по много лет, светят приятным теплым светом (температура 2700 K), и никакой деградации яркости со временем не наблюдается.

Но для мощного света, требуется серьезное охлаждение. Поэтому корпус у этой лампы на 2/3 состоит из радиатора. Он пластиковый, не портит внешний вид, и достаточно эффективен. Из конструкции следует главный недостаток – реальным источником света является полусфера в верхней части лампы. Это затрудняет подбор светильника – не в каждой рожковой люстре такая лампа будет выглядеть гармонично.

Есть лишь один выход – покупать готовые LED светильники, конфигурация которых изначально рассчитана под конкретные источники света.

Ключевое слово – покупать. А куда девать любимые торшеры, люстры и прочие светильники в квартире?

Поэтому было принято решение конструировать LED лампы самостоятельно

Основной критерий – минимизация стоимости.

Есть два основных направления при разработке светодиодных источников света:

1. Применение маломощных (до 0.5 Вт) светодиодов. Их требуется много, можно сконфигурировать любую форму. Не нужен мощный радиатор (мало греются). Существенный недостаток – более кропотливая сборка.

2. Использование мощных (1 Вт – 5 Вт) LED элементов. Эффективность высокая, трудозатраты в разы меньше. Но точечное излучение требует подбора рассеивателя, и для реализации проекта нужны хорошие радиаторы.

  • прямой ток = 20 мА (0.02 А)
  • падение напряжения на 1 диоде = 3,2-3,4 вольта
  • цвет – теплый белый

Такое добро продается по 3 рубля пучок на любом радиорынке.

Я купил несколько упаковок по 100 шт. на aliexpress (ссылка на покупку). Обошлось чуть меньше, чем по 1 р. за штуку.

В качестве блоков питания (точнее сказать источников тока), я решил использовать проверенную схему с гасящим (балластным) конденсатором. Достоинства такого драйвера – экстремальная дешевизна, и минимальное потребление энергии. Поскольку нет ШИМ контроллера, или линейного стабилизатора тока – лишняя энергия в атмосферу не уходит: в этой схеме нет элементов с рассеивающим тепло радиатором.

Недостаток – отсутствие стабилизации тока. То есть, при нестабильном напряжении электросети, яркость свечения будет меняться. У меня в розетке ровно 220 (+/- 2 вольта), поэтому такая схема в самый раз.

Элементная база тоже не из дорогих.

  • диодные мосты серии КЦ405А (можно любые диоды, хоть Шоттки)
  • пленочные конденсаторы с напряжением 630 вольт (с запасом)
  • 1-2 ваттные резисторы
  • электролитические конденсаторы 47 mF на 400 вольт (можно взять емкость побольше, но это выходит за рамки экономности)
  • такие мелочи, как макетная плата и предохранители, обычно есть в арсенале любого радиолюбителя

Чтобы не изобретать корпус с патроном Е27, используем сгоревшие (еще один повод от них отказаться) экономки.

После аккуратного (на улице!) извлечения колбы со ртутными парами, остается прекрасная заготовка для творчества.

Основа основ – расчет и принцип работы токового драйвера с гасящим конденсатором

Типовая схема изображена на иллюстрации:

Как работает схема:

Резистор R1 ограничивает скачок тока при подаче питания, пока схема не стабилизируется (около 1 секунды). Значение от 50 до 150 Ом. Мощность 2 Вт.

Резистор R2 обеспечивает работу балластного конденсатора. Во-первых, он его разряжает при отключении питания. Как минимум для того, чтобы вас не тряхнуло током при выкручивании лампочки. Вторая задача – не допустить токового броска в случае, когда полярность заряженного конденсатора и первой полуволны 220 вольт не совпадают.

Собственно, гасящий конденсатор С1 – основа схемы. Он является своеобразным фильтром тока. Подбирая емкость, можно установить любой ток в цепи. Для наших диодов он не должен превышать 20 мА в пиковых значениях напряжения сети.

Далее работает диодный мост (все-таки светодиоды – это элементы с полярностью).

Электролитический конденсатор C2 нужен для предотвращения мерцания лампы. Светодиоды не имеют инертности при включении-выключении. Поэтому глаз будет видеть мерцание с частотой 50 Гц. Кстати, этим грешат дешевые китайские лампы. Проверяется качество конденсатора с помощью любого цифрового фотоаппарата, хоть смартфона. Посмотрев на горящие диоды через цифровую матрицу, можно увидеть моргание, неразличимое для человеческого глаза.

Кроме того, этот электролит дает неожиданный бонус: светильники выключаются не сразу, а с благородным медленным затуханием, пока емкость не разрядится.

Расчет гасящего конденсатора производится по формуле: I = 200*C*(1.41*U cети - U led) I – полученный ток цепи в амперах

200 – это константа (частота сети 50Гц * 4)

С – емкость конденсатора С1 (гасящего) в фарадах

U сети – предполагаемое напряжение сети (в идеале – 220 вольт) U led – суммарное падение напряжения на светодиодах (в нашем случае – 3,3 вольта, помноженное на количество LED элементов)

Подбирая количество светодиодов (с известным падением напряжения) и емкость гасящего конденсатора, надо добиться требуемого тока. Он должен быть не выше указанного в характеристиках светодиодов. Именно силой тока вы регулируете яркость свечения, и обратно пропорционально – срок жизни светодиодов.

Для удобства можно создать формулу в Exel.

LED светильники своими руками

Схема проверена неоднократно, первый экземпляр собран почти 3 года назад, трудится в светильнике на кухне, сбоев в работе не было.

Переходим к практической реализации проектов. Количество LED элементов и емкость конденсатора в отдельных схемах обсуждать нет смысла: проекты индивидуальные для каждого светильника. Рассчитывались строго по формуле. Приведенная выше схема на 60 светодиодов с конденсатором на 68 микрофарад – не просто пример, а реальный расчет для тока в цепи 15 мА (для продления жизни светикам).

LED лампа в рожковую люстру

Выпотрошенный патрон от экономки используем в качестве корпуса для схемы и несущей конструкции. В этом проекте я не использовал макетную плату, собрал драйвер на кругляше из ПВХ толщиной 1 мм. Получилось как раз в размер. Два конденсатора – по причине подбора емкости: не нашлось нужного количества микрофарад в одном элементе.

В качестве корпуса для размещения LED элементов использована баночка от йогурта. В конструкции также использовал обрезки листов вспененного ПВХ 3 мм.

После сборки получилось аккуратно и даже красиво. Такое расположение патрона связано с формой люстры: рожки направлены вверх, на потолок.

Далее размещаем светодиоды: по схеме 150 шт. Протыкаем пластик шилом, трудозатраты: один полноценный вечер.

Забегая вперед, скажу: материал корпуса себя не оправдал, слишком тонкий. Следующий светильник был изготовлен из листового ПВХ 1 мм. Для придания формы рассчитал развертку конуса на те же 150 диодов.

Получилось не так изящно, но надежно, и отлично держит форму. Лампа полностью скрыта в рожке люстры, поэтому внешность не столь важна.

Постепенно приборы освещения переходят на светодиодные лампы. Произошло это не сразу, был затяжной переходный период с применением так называемых экономок – компактных газоразрядных лампочек со встроенным блоком питания (драйвером) и стандартным патроном Е27 или Е14.

При неплохом балансе цены и экономичности (разница в цене с обычными лампами накаливания со временем окупается за счет экономии электроэнергии), газоразрядные источники света имеют ряд недостатков:

  • Срок службы ниже, чем у ламп накаливания.
  • Высокочастотные помехи от блока питания.
  • Лампы, не любят частого включения – выключения.
  • Постепенное снижение яркости.
  • Влияние на расположенные рядом поверхности: на поверхности потолка (над лампой) со временем появляется темное пятно.
  • Да и вообще, иметь в доме колбу с некоторым количеством ртути как-то не очень хочется.

Прекрасная альтернатива – светодиодные светильники. Список достоинств весомый:

  • Направленность светового потока предъявляет высокие требования при конструировании рассеивателя.
  • Все-таки они дорого стоят (речь идет о качественных брендах, безымянные изделия среднего уровня вполне доступны).

Если ценовой вопрос регулируется подбором производителя, то конструктивные особенности не всегда позволяют просто заменить лампу в любимой люстре. Разумеется, есть богатый выбор классических грушевидных LED ламп, которые подходят под любой размер.

Перед нами качественная (при этом относительно недорогая) лампа с яркостью свечения 1000 Lm (эквивалент 100 ваттной лампы накаливания), и потребляемой мощностью 13 Вт. У меня такие LED источники света работают по много лет, светят приятным теплым светом (температура 2700 K), и никакой деградации яркости со временем не наблюдается.

Но для мощного света, требуется серьезное охлаждение. Поэтому корпус у этой лампы на 2/3 состоит из радиатора. Он пластиковый, не портит внешний вид, и достаточно эффективен. Из конструкции следует главный недостаток – реальным источником света является полусфера в верхней части лампы. Это затрудняет подбор светильника – не в каждой рожковой люстре такая лампа будет выглядеть гармонично.

Есть лишь один выход – покупать готовые LED светильники, конфигурация которых изначально рассчитана под конкретные источники света.

Ключевое слово – покупать. А куда девать любимые торшеры, люстры и прочие светильники в квартире?

Поэтому было принято решение конструировать LED лампы самостоятельно

Основной критерий – минимизация стоимости.

Есть два основных направления при разработке светодиодных источников света:

1. Применение маломощных (до 0.5 Вт) светодиодов. Их требуется много, можно сконфигурировать любую форму. Не нужен мощный радиатор (мало греются). Существенный недостаток – более кропотливая сборка.

2. Использование мощных (1 Вт – 5 Вт) LED элементов. Эффективность высокая, трудозатраты в разы меньше. Но точечное излучение требует подбора рассеивателя, и для реализации проекта нужны хорошие радиаторы.

  • прямой ток = 20 мА (0.02 А)
  • падение напряжения на 1 диоде = 3,2-3,4 вольта
  • цвет – теплый белый

Такое добро продается по 3 рубля пучок на любом радиорынке.

Я купил несколько упаковок по 100 шт. на aliexpress (ссылка на покупку). Обошлось чуть меньше, чем по 1 р. за штуку.

В качестве блоков питания (точнее сказать источников тока), я решил использовать проверенную схему с гасящим (балластным) конденсатором. Достоинства такого драйвера – экстремальная дешевизна, и минимальное потребление энергии. Поскольку нет ШИМ контроллера, или линейного стабилизатора тока – лишняя энергия в атмосферу не уходит: в этой схеме нет элементов с рассеивающим тепло радиатором.

Недостаток – отсутствие стабилизации тока. То есть, при нестабильном напряжении электросети, яркость свечения будет меняться. У меня в розетке ровно 220 (+/- 2 вольта), поэтому такая схема в самый раз.

Элементная база тоже не из дорогих.

  • диодные мосты серии КЦ405А (можно любые диоды, хоть Шоттки)
  • пленочные конденсаторы с напряжением 630 вольт (с запасом)
  • 1-2 ваттные резисторы
  • электролитические конденсаторы 47 mF на 400 вольт (можно взять емкость побольше, но это выходит за рамки экономности)
  • такие мелочи, как макетная плата и предохранители, обычно есть в арсенале любого радиолюбителя

Чтобы не изобретать корпус с патроном Е27, используем сгоревшие (еще один повод от них отказаться) экономки.

После аккуратного (на улице!) извлечения колбы со ртутными парами, остается прекрасная заготовка для творчества.

Основа основ – расчет и принцип работы токового драйвера с гасящим конденсатором

Типовая схема изображена на иллюстрации:

Как работает схема:

Резистор R1 ограничивает скачок тока при подаче питания, пока схема не стабилизируется (около 1 секунды). Значение от 50 до 150 Ом. Мощность 2 Вт.

Резистор R2 обеспечивает работу балластного конденсатора. Во-первых, он его разряжает при отключении питания. Как минимум для того, чтобы вас не тряхнуло током при выкручивании лампочки. Вторая задача – не допустить токового броска в случае, когда полярность заряженного конденсатора и первой полуволны 220 вольт не совпадают.

Собственно, гасящий конденсатор С1 – основа схемы. Он является своеобразным фильтром тока. Подбирая емкость, можно установить любой ток в цепи. Для наших диодов он не должен превышать 20 мА в пиковых значениях напряжения сети.

Далее работает диодный мост (все-таки светодиоды – это элементы с полярностью).

Электролитический конденсатор C2 нужен для предотвращения мерцания лампы. Светодиоды не имеют инертности при включении-выключении. Поэтому глаз будет видеть мерцание с частотой 50 Гц. Кстати, этим грешат дешевые китайские лампы. Проверяется качество конденсатора с помощью любого цифрового фотоаппарата, хоть смартфона. Посмотрев на горящие диоды через цифровую матрицу, можно увидеть моргание, неразличимое для человеческого глаза.

Кроме того, этот электролит дает неожиданный бонус: светильники выключаются не сразу, а с благородным медленным затуханием, пока емкость не разрядится.

Расчет гасящего конденсатора производится по формуле: I = 200*C*(1.41*U cети - U led) I – полученный ток цепи в амперах

200 – это константа (частота сети 50Гц * 4)

С – емкость конденсатора С1 (гасящего) в фарадах

U сети – предполагаемое напряжение сети (в идеале – 220 вольт) U led – суммарное падение напряжения на светодиодах (в нашем случае – 3,3 вольта, помноженное на количество LED элементов)

Подбирая количество светодиодов (с известным падением напряжения) и емкость гасящего конденсатора, надо добиться требуемого тока. Он должен быть не выше указанного в характеристиках светодиодов. Именно силой тока вы регулируете яркость свечения, и обратно пропорционально – срок жизни светодиодов.

Для удобства можно создать формулу в Exel.

LED светильники своими руками

Схема проверена неоднократно, первый экземпляр собран почти 3 года назад, трудится в светильнике на кухне, сбоев в работе не было.

Переходим к практической реализации проектов. Количество LED элементов и емкость конденсатора в отдельных схемах обсуждать нет смысла: проекты индивидуальные для каждого светильника. Рассчитывались строго по формуле. Приведенная выше схема на 60 светодиодов с конденсатором на 68 микрофарад – не просто пример, а реальный расчет для тока в цепи 15 мА (для продления жизни светикам).

LED лампа в рожковую люстру

Выпотрошенный патрон от экономки используем в качестве корпуса для схемы и несущей конструкции. В этом проекте я не использовал макетную плату, собрал драйвер на кругляше из ПВХ толщиной 1 мм. Получилось как раз в размер. Два конденсатора – по причине подбора емкости: не нашлось нужного количества микрофарад в одном элементе.

В качестве корпуса для размещения LED элементов использована баночка от йогурта. В конструкции также использовал обрезки листов вспененного ПВХ 3 мм.

После сборки получилось аккуратно и даже красиво. Такое расположение патрона связано с формой люстры: рожки направлены вверх, на потолок.

Далее размещаем светодиоды: по схеме 150 шт. Протыкаем пластик шилом, трудозатраты: один полноценный вечер.

Забегая вперед, скажу: материал корпуса себя не оправдал, слишком тонкий. Следующий светильник был изготовлен из листового ПВХ 1 мм. Для придания формы рассчитал развертку конуса на те же 150 диодов.

Получилось не так изящно, но надежно, и отлично держит форму. Лампа полностью скрыта в рожке люстры, поэтому внешность не столь важна.

Читайте также: