Намотка тороидального трансформатора своими руками

Добавил пользователь Евгений Кузнецов
Обновлено: 19.09.2024

Любой трансформатор – это преобразователь переменного напряжения, работающий по закону электромагнитной индукции, выявленному М. Фарадеем.

Технически подавляющее большинство использующихся в радиоэлектронике трансформаторов выполнены с применением ферромагнитных сердечников, ходя на сверхвысоких частотах можно обойтись и без них. Ферромагнетики практически без искажений передают электромагнитные колебания (поле) от одной катушки к другой.

Для справки, ферромагнетики – это вещества, способные сохранять намагниченность даже без внешнего источника магнитного поля.

Если говорить о видах трансформаторов, то среди действующих моделей выделяют:

1. Двух- или трехфазные;

6. Напряжения, тока;

7. Разделительные и согласующие;

9. Воздушные и масляные;

10. А также другие.

По типу конструкции бывают:

1. Броневые (обмотки окружены сердечниками);

2. Стержневые (магнитопровод преимущественно расположен только внутри обмоток);

3. Тороидальные (подразумевается сердечник в форме тора/тороида, то есть кольца).

Рис. 1. Стержневой трансформатор

Рис. 2. Броневой трансформатор

Принцип работы не зависит от типа конструкции. Исполнение корпуса влияет преимущественно на технологический процесс изготовления конечного изделия.

Ниже подробнее остановимся только на тороидальных трансформаторах.

Рис. 3. Тороидальный трансформатор

Принцип работы тороидальных трансформаторов

Работа тороидального трансформатора ничем не отличается от других типов преобразователей:

1. Переменное напряжение на первичной обмотке порождает переменное магнитное поле;

2. Ферромагнетик (сердечник) передает магнитное поле на вторичную и другие обмотки (если их больше, чем одна);

3. В проводнике вторичной обмотки (и последующих) по закону электромагнитной индукции создается электрический ток с той же частотой, что и на первичной обмотке.

Конечно, идеальная модель предполагает преобразование без потерь мощности, но на практике энергия передается на вторичные обмотки не вся. Потери возможны из-за вихревых токов в самом сердечнике, незадействованных петлях гистерезиса (силовых линиях магнитного поля) и др.

При идеальной трансформации работает следующее соотношение:

Где n – коэффициент трансформации, U1 и U2 – напряжения на первичной и вторичной обмотках, а I1, I2 – силы тока, N1 и N2 – количество витков.

Отсюда видно, что чем больше витков на вторичной обмотке, тем выше напряжение и меньше сила тока на ней, и наоборот.

Намотка тороидального трансформатора

Прежде, чем намотать трансформатор, необходимо правильно его рассчитать.

Подробно на процессе расчета останавливаться не будем, но отметим ряд моментов:

1. Количество витков и диаметр проволоки напрямую влияют на габариты сердечника (тора). Чем больше витков и диаметр проводника, тем больший объем займет обмотка, а значит в определенных габаритах она может не вписаться в кольцо текущего сердечника;

2. Изоляцию проводника обязательно стоит учитывать. Диаметр провода при расчете габаритов считается только вместе с изоляцией;

3. Без изоляции провод для намотки использовать нельзя;

4. Сечение магнитопровода (тора) должно быть взято с запасом не менее 30% от расчетной мощности получаемой энергии в первичной обмотке (в общем случае сечение в см2 равно квадратному корню от мощности первичной обмотки в ваттах);

5. Сердечник должен быть изолирован от обмоток;

6. Мощность первичной и вторичной обмотки – одинаковая, поэтому при уменьшении количества витков на вторичной, растет сила тока, а значит, должна быть и больше площадь сечения провода.

Технология намотки тороида заметно медленнее, чем во всех остальных типах трансформаторов. Это связано с тем, что провод необходимо каждый раз вдевать в кольцо, чтобы сделать каждый виток. И чем длиннее провод, тем дольше будет процесс "вдевания".

В качестве проверенных решений применяются:

1. Челноки (небольшие катушки, способные протиснуться во внутренний диаметр тора вместе с намотанным на них проводом);

2. Специальные разъемные кольца (обычно они большого диаметра, после сборки на торе, провод сначала наматывается на разъемном кольце, а потом переносится на тороид).

Рис. 5. Разъемные кольца

Последний способ применяется в промышленном производстве.
Ну и напоследок – технология намотки (смотри изображение ниже). Мотать каждую отдельную обмотку на своем участке тора – неправильно! Провода должны быть распределены по всей площади тора.

Рис. 6. Технология намотки тороидального трансформатора

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:



Часовой пояс: UTC + 3 часа

Намотка тороидальных трансформаторов

вот я наконец провод достал(правда, алюминиевый), магнитопровод заизолировал электрокартоном. А вот с намоткой торможу. Тор ОЛ50х80х20 - габаритная мощность всего 90Вт. Из чего лучше круглый челнок сделать для него? И так, чтобы побольше провода влезло.


подтверждаю. 2500 витков проводом 0,2 намотал практически голыми руками. в качестве челнока - линейка с вырезанными углублениями по торцам. так что бери и пробуй. дорогу осилит идущий. а по поводу станка - забудь, 99% что не доделаешь.

JLCPCB, всего $2 за прототип печатной платы! Цвет - любой!

стоит ли делать изоляцию между слоями? Как лучше делать межобмоточную изоляцию по внутреннему диаметру?

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

а как расчитать вторую обмотку тороидального трансформатора на 50 вольт и 12 вольт или есть ли какая нибуть программа для расчета трансформатора

_________________
Энергия ядерного взрыва равна примерно 22030000000ккал
что примерно соответствует 4,3 тысяч тонн копченой колбасы.
День рождения 11.02.1995

Необходим быстродействующий преобразователь питания средней мощности с высоким КПД? Он должен быть компактным и недорогим? Решение – карбид-кремниевые модули средней мощности WolfPACK производства Wolfspeed. В статье рассмотрены основные особенности модулей WolfPACK и показано, что переход на эту универсальную и масштабируемую платформу позволяет не только быстро разработать новые устройства, но и без значительных затрат времени и средств модернизировать уже существующие схемы на традиционной элементной базе.

Помогите есть несколько вопросов есть транс габаритная мощность 80-100Вт на нём намотана вторичка на 12В проводом 0,5мм я думаю её перемотать проводом 1мм такой вопрос нужно ли будет перематывать первичку проводом потолще?
Да и ещё смущает одна вещь я для пробы намотал 20 витков провода ну чтобы узнать склько вольт на виток будет а тестер при 20 витках показывает 1,8В но при этом на вторичке так и остаётся 13 В

_________________
У кошки четыре ноги - вход, выход, земля и питание.

Критически важные распределенные системы требуют синхронного преобразования во всех подсистемах и непрерывного потока данных. Распределенные системы сбора данных могут быть синхронизированы как на основе АЦП последовательного приближения, так и на основе сигма-дельта (∑-Δ)-АЦП. Новый подход, основанный на преобразователе частоты дискретизации (SRC), содержащемся в микросхемах линейки AD7770 производства Analog Devices, позволяет достигать синхронизации в системах на основе сигма-дельта-АЦП без прерывания потока данных.

Помогите есть несколько вопросов есть транс габаритная мощность 80-100Вт на нём намотана вторичка на 12В проводом 0,5мм я думаю её перемотать проводом 1мм такой вопрос нужно ли будет перематывать первичку проводом потолще?
Да и ещё смущает одна вещь я для пробы намотал 20 витков провода ну чтобы узнать склько вольт на виток будет а тестер при 20 витках показывает 1,8В но при этом на вторичке так и остаётся 13 В


Померяйте диаметр провода первички. Он примерно определяется по формуле: d1=0,02 sqr I общ., отсюда Iобщ.=d^2/0,0004 (ток в мА, диаметр в мм). Зная ток, можно определить допустимую мощность, а её пересчитать в допустимый ток вторички.
Думаю, что при такой габаритной мощности первичку перематывать не придётся, если, конечно, вторичка только одна. Если есть и другие вторичные обмотки, то нужно считать.
По второму вопросу: 20 вит / 1,8 В = 11,11 вит/В - вполне нормальная цифра для такого транса.
А почему на вторичке должно меняться напряжение?

КАК НАМОТАТЬ ТОРОИДАЛЬНЫЙ ТРАНСФОРМАТОР

Технология намотки и способ изоляции на самом деле очень прост и не предполагает ни в коем случае ни какой обмотки, ни лакотканью, ни чем-либо другим. Дело в том, что при любой обмотки сердечника трансформатора лакотканью или другими изоляторами внутреннее окно ТОРА мгновенно заполняются, так как, на внешней стороне получается один слой, а на внутренней 5- 10 слоев, да еще неровных.
Я давно собирался написать статью о способе качественной намотки тороидальных трансформаторов. Это довольно долго объяснять и лучше показать на фото. Причем после намотки обмотки не превращаются в колесо, а сам трансформатор не становиться, яйцеобразным и расход провода минимален. Ввиду всего этого и КПД трансформатора максимален. А что из этого получается, Вы можете посмотреть в моем усилителе.
Сразу оговорюсь, речь идет о мощных тороидальных трансформаторах . Габаритная мощность, которых более 500 Вт. Которые мотаются проводами от 1 до 3 мм. естественно виток к витку. И, как правила, сетевая обмотка которых лежит в приделах от 100 до 400 витков, всего, то есть 0,5-2 витка на вольт. Мотать таким способом менее мощные трансформаторы хлопотно, но при желании можно.
Что нужно для намотки:
1) Необходимо сделать подставку для намотки тороида, делается это очень просто. Берем квадратный кусок ДСП или фанеры толщиной 10-15мм. Размерами 200Х200мм еще нам нужны два деревянных бруска длинной 200мм и с квадратом 20Х20мм. Эти два бруска нам нужно либо приклеить по центру нашей площадки, параллельно друг другу, на расстоянии между ними 100мм. А еще лучше привернуть к площадке эти бруски с помощью шурупов, но с потайными головками и головки утопить в фанеру иначе они будут царапать стол. Теперь если на эту подставку поставить то- роид, он будет прочно и устойчиво стоять.
2) Нужен челнок, челнок я выпиливаю из оргстекла толщиной 5-бмм. Ширина обычно 30-40мм. длинна 300-400мм. Торцевые пропилы я делаю не углом, а полукругом и обрабатываю их напильником, что бы не портилась изоляция провода и даже проклеиваю одним двумя полосками изоленты опять же для защиты провода. На челнок мы наматываем провод, не страшно, если провода не хватит, можно аккуратно спаять провод и мотать дальше. Но лучше все-таки рассчитать, так что бы провода хватило.
3) Теперь нам нужен материал для изоляции между слоями, это очень просто нужно найти тонкий картон (упаковочный), я например, применяю коробки от динамиков для автомобилей. Главное что бы это был не толстый, но и не тонкий материал - толщина картона, где-то 0,5мм. Если он будет с одной стороны глянцевый, то это тоже хорошо.
4) Еще нам потребуется нитки толстые 10-20 номер. Но на худой конец можно и 40 номер. Сама намотка ведется от себя в правую сторону.

Тороидальный сердечник

А теперь самое главное, это изготовление самих изоляционных прокладок между слоями. Нам потребуется штангель-циркуль, с острыми концами.
Измеряем, внешний диаметр нашего тора, прибавляем 20мм. (для нахлеста) и делим пополам. Например, внешний диаметр тора 150 мм.+ 20 мм.= 170 мм. 170мм./2 = 85 мм.
Выставляем штангель на 85мм. и фиксируем винтом. Сам штангель мы будем использовать как циркуль для черчения кругов на картоне. Почему именно штангелем, а не обычным циркулем, которым и проще и удобнее? А все очень просто, когда мы будем острым и прочным концом штангеля чертить по картону, то на картоне останется продавленная борозда и именно она поможет нам. Эта борозда очень полезна для удобства сгибания внутренней рассеченной окружности наших прокладок. В общем, сами поймете, что штангелем лучше, чем удобным циркулем.

Разметка изоляционных прокладок

И так чертим, внешний круг на картоне и вырезаем его ножницами, в принципе внешний круг можно нарисовать и обычным циркулем.
Далее замеряем внутренний диаметр тора ничего не прибавляем, не убавляем, а просто делим пополам. Например, диаметр 60мм./2 = 30 мм. Выставляем, именно штангель-циркуль, на 30мм. фиксируем винтом и чертим внутренний диаметр на картоне.

Вырезание центрального отверстия

Далее мы берем карандаш и линейку и работаем над внутренним кругом, сначала рисуем крест, то есть, делим круг на 4 части, потом на 8 частей, если внутренний диаметр ТОРА больше 60мм. то еще и на 16 частей.
Далее мы рисуем обычным циркулем еще один круг, который меньше внутреннего в два раза, то есть, раздвигаем циркуль на 15 мм.
А теперь нам потребуется ровный кусок, фанеры или ДСП на который, мы положим нашу картонную заготовку для прорезания концом острого скальпеля или ножа, нанесенных карандашом наших частей. Прорезать нужно по кругу от внешнего края окружности к центральной точке, не далее иначе картон будет задираться. Прорезать нужно насквозь картона.

Первый подготовительный этап

Потом ножницами вырезаем внутренний круг нарисованный нами обычным циркулем. Полученные дольки отгибаем перпендикулярно заготовки. Понятно, что таких заготовок нужно на каждый слой по две штуки, каждый раз замеры диаметров делаются вновь, так как от слоя к слою их значение меняется.

Второй этап

Далее меряем высоту тора и вырезаем две полоски картона такой же ширины. Одну полоску вставляем внутрь тора, так что бы нахлест был не более 10 мм. Вторую полоску накручиваем одним слоем на внешнюю сторону тора с таким же нахлестом. Надеваем обе круглые заготовки на торцы тора, крепим ниткой в трех-че- тырех местах по кругу. И далее начинаем мотать.

Отгиб насечек

Самые опасные места для пробоя это углы окружностей ТОРА внешний и особенно внутренний. Поэтому если во время намотки мы увидим, что провод может соприкасаться с проводом внутреннего слоя, особенно по внутреннему углу окружности ТОРА. То необходимо подложить под провод полоски такого же картона шириной 10 мм. и длинной по 20-30 мм., там, где это необходимо.

Установка изоляционных шайб на сердечник трансформатора

Фиксания изоляторов при помощи ниток

На внешней стороне, как правила этого делать не приходится, так как внешняя сторона заготовки наслаивается на край и хорошо предохраняет провод от замыкания. Вся разметка и прорезка картонных заготовок делается с матовой стороны картона, применять картон с двух сторон глянцевый не желательно. Перед тем как начать мотать тор, на пальцы рук нужно намотать два слоя изоленты на оба сгиба мизинца и на сгиб указательного пальца, иначе будут огромные водяные мозоли.

Намотка обмоток на тороидальный трансформатор

Многих интересует, как рассчитать тороидальный трансформатор.

Дело в том что количество витков будет зависеть от качества железа но приблизительный расчет делается просто, как и у обычного трансформатора только коэффициент берем 20-30.
Ну, например измеряем высоту, она = 10 см.
Измеряем толщину стенки, она = 5 см. 10x5=50 см.
25/50=0,5 витков на 1вольт.
220x0,5=110 витков сетевой обмотки.
Теперь начинаем мотать сетевую обмотку трансформатора, намотав приблизительно 90 витков пробуем включить в сеть, меряя при этом ток холостого хода.
Совсем несложно подключить кончик провода прямо на челноке. Постепенно доматывая провод, доводим ток холостого хода до 50-100 мА и на этом прекращаем мотать, полученное количество витков и будет реально.
Теперь это реальное количество делим на 220 и получаем реальное значение количества витков на 1 вольт. И в соответствии с этой цифрой рассчитываем все выходные обмотки.
Имейте ввиду, что при включении трансформатора в сеть первичный мгновенный бросок тока очень большой. И для того, что бы не спалить тестер нужно делать так:сетевой провод подключаем через замкнутый тумблер параллельно тумблеру включаем тестер, включаем вилку в розетку и только потом размыкаем тумблер, что бы посмотреть ток холостого хода.
Кстати, именно из за мощного первичного броска тока трансформаторы мощностью более 1 КВт, обязательно нужно включать с помощью схемы мягкого включения. Тем более схема эта очень проста.


Преобразование тока или напряжения применяется практически в каждом электроприборе. Для чего нужен трансформатор? Более практичного и универсального прибора для преобразования напряжения еще не придумали.

Конструкция


Первый двухполярный трансформатор был изготовлен еще Фарадеем, и согласно данным, это было именно тороидальное устройство. Тороидальный автотрансформатор (марка Штиль, ТМ2, ТТС4)– это прибор, предназначенный для преобразования переменного тока одного напряжения в другое. Они используется в различных линейных установках. Этот электромагнитный прибор может быть однофазным и трехфазным. Конструктивно состоит из:

  1. Металлического диска, изготовленного из рулонной магнитной стали для трансформаторов;
  2. Резиновой прокладки;
  3. Выводов первичной обмотки;
  4. Вторичной обмотки;
  5. Изоляции между обмотками;
  6. Экранирующей обмотки;
  7. Дополнительным слоем между первичной обмоткой и экранирующей;
  8. Первичной обмотки;
  9. Изоляционного покрытия сердечника;
  10. Тороидального сердечника;
  11. Предохранителя;
  12. Крепежных элементов;
  13. Покрывной изоляции.

Для соединения обмоток используется магнитопровод.

Этот тип преобразователей может классифицироваться по назначению, охлаждению, типу магнитопровода, обмоткам. По назначению бывает импульсный, силовой, частотный преобразователь (ТСТ, ТНТ, ТТС, ТТ-3). По охлаждению – воздушный и масляный (ОСТ, ОСМ, ТМ). По количеству обмоток – двухобмоточный и более.

принцип работы трансформатора

Фото – принцип работы трансформатора

Устройство этого типа используется в различных аудио- и видеоустановках, стабилизаторах, системах освещения. Главным отличием этой конструкции от других устройств является количество обмоток и форма сердечника. Физиками считается, что кольцевая форма – это идеальное исполнения якоря. В таком случае, намотка тороидального преобразователя выполняется равномерно, как и распределение тепла. Благодаря такому расположению катушек, преобразователь быстро охлаждается и даже при интенсивной работе не нуждается в использовании кулеров.

тороидальный кольцевой преобразователь

Фото – тороидальный кольцевой преобразователь

Достоинства тороидального трансформатора:

  1. Небольшие габариты;
  2. Выходной сигнал на торе очень сильный;
  3. Обмотки имеют небольшую длину, и как результат уменьшенное сопротивление и повышенный КПД. Но также из-за этого при работе слышен определенный звуковой фон;
  4. Отличные характеристики энергосбережения;
  5. Простота в самостоятельной установке.

Преобразователь используется как сетевой стабилизатор, зарядное устройство, в качестве блока питания галогенных ламп, лампового усилителя УНЧ.

готовый ТПН25

Фото – готовый ТПН25

Видео: назначение тороидальных трансформаторов

Трансформатор тока

Кроме стандартного типа трансформаторов напряжения существует особый вид, называемый трансформатором тока. Основное его назначение — изменять значение тока относительно своего входа. Другое название такого вида устройства — токовый.

Токовый трансформатор — измерительный прибор, предназначенный для измерения силы переменного тока. Применяются токовые устройства тогда, когда нужно измерить ток большой силы или для защиты полупроводниковых приборов от возникших на линии нештатных его значений.

Токовое устройство по виду ничем не отличается от трансформатора напряжения, его отличия — в подключении и количестве витков в обмотке. Первичка выполняется с помощью одного или пары витков. Эти витки пропускаются через тороидальный магнитопровод, и именно через них измеряется ток. Токовые устройства выполняются не только тороидального типа, но и могут быть выполнены и на других видах сердечниках. Главным условием является то, чтобы измеряемый провод совершил полный виток.

Вторичная обмотка при таком исполнении шунтируется низкоомным сопротивлением. При этом величина напряжения на этой обмотке не должна быть большого значения, так как во время прохождения наибольших токов сердечник будет находиться в режиме насыщения.

В некоторых случаях измерения проводятся на нескольких проводниках которые пропущены через тор. Тогда величина тока будет пропорциональна силе суммы токов.

Создать аккаунт

Зарегистрируйтесь для получения аккаунта. Это просто!

Тороидальный трансформатор, как сделать своими руками?

Первое, что приходит в голову – взять готовый тор от сломанной бытовой техники, и попробовать изменить параметры вторичной обмотки под ваши расчеты. Как перемотать трансформатор своими руками, знают все радиолюбители.

Важно! Намоточная медная проволока имеет защитное лаковое покрытие. Иногда тряпичное, для мощных обмоток. Дополнительная изоляция увеличивает сечение, соответственно объем обмотки вырастает втрое. Поэтому при наматывании, витки укладываются без продольного перемещения (протяжки), чтобы не повреждать изоляцию.

Если ваш электроприбор компактный, ищите тороидальный преобразователь. Кстати, в микроволновых печах применяются бронированные трансформаторы, достаточно крупного размера.

То есть, если прозвонка показала гарантировано обособленную обмотку, это первичка. По результатам замеров рисуем схему, и приступаем к определению коэффициентов понижения напряжения.

Важно! Вы должны точно быть уверенными в том, что перед вами именно трансформатор напряжения на 220 вольт, а не дроссель или прибор, рассчитанный на иное входное напряжение.

После этого можно приступать к составлению диаграммы напряжения на вторичных обмотках. Произведите замеры на контактах во всех возможных комбинациях. Результаты отобразите на схеме. Получив полную картину, подайте на обмотки нагрузку, соответствующую напряжению. Лучший способ – та же лампа накаливания.

Внимание! Проверка вторичных обмоток под нагрузкой – косвенный способ, как узнать мощность трансформатора.

Оценить возможности прибора можно по степени нагрева под нагрузкой. Нормальная температура – не более 45°С. То есть, сразу после отключения от сети, трансформатор можно трогать рукой без температурного дискомфорта.

Подбор и изготовление тороидального сердечника

Наилучшим материалом для изготовления тороидального магнитопровода является ленточная трансформаторная сталь. Для изготовления сердечника эта лента сворачивается в рулон, имеющий форму тора прямоугольного сечения. Если имеется такая лента или сердечник из нее, то особых проблем при изготовлении магнитопровода для тороидального трансформатора не будет.

Характеристики сварочных трансформаторов.

При малом значении внутреннего диаметра d можно часть ленты с внутренней стороны тора отмотать, а затем намотать ее на наружную поверхность сердечника. В результате возрастут оба диаметра, а площадь внутренней части магнитопровода увеличится. Правда, несколько уменьшится площадь поперечного сечения сердечника S0. При необходимости можно добавить ленту с другого магнитопровода.

Хороший готовый тороидальный сердечник можно взять от рассчитанного на ток 9 А лабораторного автотрансформатора ЛАТР 1М. Нужно только перемотать его обмотки. Бывает, что для изготовления тороидального сердечника для трансформатора используется магнитопровод статора подходящего электродвигателя.

Еще один способ изготовления тороидального сердечника — использование в качестве материала пластин от неисправного мощного промышленного или силового трансформатора, питавшего в свое время ламповый цветной телевизор. Сначала из этих пластин с помощью заклепок изготовляется обруч, имеющий диаметр около 26 см. Затем внутрь этого обруча начинают вставлять одну за другой пластины встык, придерживая их рукой от разматывания.

После набора нужного сечения S0 магнитопровод готов. Для увеличения S0 можно изготовить два тороида одинаковых размеров, а затем соединить их вместе. Края тороидов следует слегка закруглить с помощью напильника. Из электроизоляционного картона следует изготовить два кольца, имеющих внутренний диаметр d и внешний D, а также две полоски на внутреннюю и наружную сторону тора. После наложения их на тороид, сердечник обматывается поверх картонных прокладок киперной или тканой изоляционной лентой. Магнитопровод готов, и можно начинать наматывать обмотки.

Намотка тороидального трансформатора

Намотка тороидального трансформатора – это достаточно сложный процесс, который занимает много времени. Тороидальный трансформатор имеет одну из наиболее сложных намоток. Наиболее простым способом считается использование специального челнока. На него следует намотать провод нужной длины и затем его через отверстия. Он имеет сложную конструкцию, но это не влияет на принцип работы трансформатора тороидального. После пропуска через челнок у вас начнет формироваться соответствующая обмотка.

Надеемся, что благодаря этой статье вы самостоятельно сможете изготовить тороидальный трансформатор своими руками.

как сделать трансформатор Тесла своими руками?

Как ускорить рабочий процесс

Процесс намотки трансформатора

У многих радиолюбителей в арсенале имеются простые специальные агрегаты, с помощью которых делается обмотка. Во многих случаях речь идет о несложных конструкциях в виде небольшого столика либо подставки на стол, на которых установлено несколько брусков с вращающейся продольной осью. Длина самой оси должна превышать длину каркаса намотки в 2 раза. На одном из выходов из брусков крепится ручка, позволяющая вращать устройство.

На оси надеваются катушечные каркасы, которые стопорятся с двух сторон шпильками-ограничителями (они препятствуют перемещениям каркаса вдоль оси).

Тороидальный трансформатор своими руками

Тороидальный трансформатор, или просто тор, чаще всего изготавливают в домашних условиях в качестве главной детали для домашнего сварочного аппарата и не только. По сути, это самый распространённый вариант трансформатора, впервые изготовленный ещё Фарадеем в 1831 году.

Преимущества и недостатки тора

Тор обладает несомненными достоинствами по сравнению с другими видами:

Применение трансформаторов

  • Относительно небольшие размеры.
  • Очень сильный выходной сигнал.
  • Обмотки имеют маленькую длину, и, как следствие, эти устройства характеризуются небольшим сопротивлением и очень высоким КПД.
  • Благодаря своей форме легко устанавливаются и также легко демонтируются в случае необходимости.

Простейший тор состоит из двух обмоток на своём кольцевидном сердечнике. Первичная обмотка соединяется с источником электрического тока, вторичная идёт к потребителю электроэнергии. Посредством магнитопровода происходит объединение обмоток и усиление их индукции. Когда включается питание, в обмотке первичной возникает переменный магнитный поток. Соединяясь со вторичной обмоткой, этот поток порождает в ней электромагнитную силу. Величина этой силы зависит от количества намотанных витков. Изменяя число витков, можно преобразовывать любое напряжение.

Расчет мощности тороидального трансформатора

Изготовление сварочного тороидального трансформатора в домашних условиях начинается с расчёта его мощности. Основным параметром будущего тора является ток, который будет подаваться на сварочные электроды. Чаще всего для бытовых нужд вполне достаточно электродов диаметром 2−5 мм. Соответственно, для таких электродов мощность тока должна быть в пределах 110−140 А.

Мощность будущего трансформатора рассчитывается по следующей формуле:

U — напряжение холостого хода

cos f — коэффициент мощности, равный 0.8

n — коэффициент полезного действия, равный 0.7

Далее расчётная величина мощности с помощью соответствующей таблицы сверяется с размером площади сечения сердечника. Для домашних сварочных трансформаторов это значение, как правило, равно 20−70 кв. см в зависимости от конкретной модели.

После этого с помощью следующей таблицы подбирается количество витков провода по отношению к площади сечения сердечника. Закономерность простая: чем больше площадь сечения магнитопровода, тем меньшее количество витков наматывается на катушку. Непосредственное количество витков вычисляется по следующей формуле:

U — напряжение тока на первичной обмотке.

I — ток вторичной обмотки, или сварочный ток.

S — площадь сечения магнитопровода.

Количество витков на вторичной обмотке вычисляется по следующей формуле:

Тороидальный сердечник

Тороидальные трансформаторы имеют достаточно сложный сердечник. Лучше всего его изготавливать из специальной трансформаторной стали (сплав железа с кремнием) в виде стальной ленты. Лента предварительно свёртывается в габаритный рулон. Такой рулон, по сути, уже имеет форму тора.

Где взять готовый сердечник? Неплохой тороидальный сердечник можно обнаружить на старом лабораторном автотрансформаторе. В этом случае будет необходимо размотать старые обмотки и намотать новые на уже готовый сердечник. Перемотка трансформатора своими руками ничем не отличается от намотки нового трансформатора.

Обзор цен

Купить тороидальный трансформатор HBL-200 можно в любом городе Российской Федерации и стран СНГ. Он используется для различной аудиоаппаратуры. Рассмотрим, сколько стоит преобразователь.

Город Стоимость, у. е.
Днепропетровск 12
Екатеринбург 11
Краснодар 11
Минск 13
Москва 13
Новосибирск 12
Челябинск 11

Кол-во блоков: 15 | Общее кол-во символов: 19990
Количество использованных доноров: 8
Информация по каждому донору:

Читайте также: