Модуль сенсорной кнопки своими руками

Добавил пользователь Евгений Кузнецов
Обновлено: 19.09.2024

Микросхема TTP223-6L чрезвычайно дешёвая, маленькая (корпус SOT23-6L) и обладает очень низким энергопотреблением (микроамперы). Она позволяет практически без всякой обвязки построить модуль емкостной сенсорной кнопки. Фактически, минимально необходимая обвязка составляет всего один конденсатор (настройка чувствительности) и две перемычки (выбор режима), однако обычно к этому добавляют ещё конденсатор по питанию. Один из таких модулей я сегодня и буду исследовать. Цель эксперимента — выяснить, будет ли модуль TTP223 срабатывать через различной толщины прослойки из разных материалов.

Ниже представлены фото и схема имеющегося у меня в наличии модуля.

Конденсатор настройки чувствительности можно выбирать в диапазоне от 0 до 50 пФ. Принцип здесь такой, — чем больше ёмкость этого конденсатора — тем меньше чувствительность. На моём модуле конденсатор не впаян (ёмкость равна нулю), то есть чувствительность максимальна. Кроме подстроечного конденсатора на чувствительность влияет размер чувствительной площадки (чем она больше, тем чувствительность выше). При желании можно подпаять внешнюю контактную площадку увеличенной площади (место для пайки отмечено на фотографии).

Я буду тестировать модуль в исполнении по умолчанию (без настроечного конденсатора и дополнительной внешней площадки). На выход моего модуля подпаян светодиод с токоограничивающим резистором, по которому можно судить о срабатывании модуля. Режимы тоже оставлю по-умолчанию — прямой, active high (обе перемычки не впаяны).

В зависимости от состояния перемычек модуль может работать в следующих режимах:

Перемычка A Перемычка B Сигнал AHLB Сигнал TOG Режим работы выхода
разомкнута разомкнута 0 0 прямой режим, active high (при касании на выходе 1, при отпускании 0)
замкнута разомкнута 1 0 прямой режим, active low (при касании на выходе 0, при отпускании 1)
разомкнута замкнута 0 1 режим триггера, power-on state = 0 (при включении 0, далее переключается при каждом касании)
замкнута замкнута 1 1 режим триггера, power-on state = 1 (при включении 1, далее переключается при каждом касании)

Стенд для тестирования собран на макетке. Питание берётся от телефонной зарядки через собранный ранее модуль питания для беспаечных макетных плат.

Сенсорная кнопка, она же сенсорная панель или просто сенсорный модуль – довольно интересная замена обычной кнопке. Плата основана на микросхеме TTP223, снабжена светодиодом-индикатором нажатия, антенной (площадка с надписью TOUCH), двумя перемычками для настройки и пинами для подключения. Основные характеристики:

  • Напряжение питания: 2.5-5.5V
  • Потребляемый ток при 5V (без светодиода): 11 мкА “холостой”, 15 мкА “нажат”
  • Потребляемый ток при 3.3V (без светодиода): 7 мкА “холостой”, 9 мкА “нажат”
  • Заявленный ток в режиме сна: 1.5-3 мкА
  • Расстояние срабатывания: около 5 мм на воздухе, также работает через неметаллы (пластик, дерево, картон и т.д.)
  • Максимальный ток цифрового выхода: 8 мА
  • Режим работы по умолчанию: кнопка без фиксации, сигнал при нажатии 0 (HIGH)

Настройки на плате:

  • Чувствительность можно настраивать (понижать) конденсатором 0-50 пФ (корпус 0805), место для него в правом верхнем углу платы (на верхнем фото справа)
  • Запаять перемычку А: сигнал при нажатии 0, при отпускании – 1
  • Запаять перемычку B: режим переключателя (кнопка с фиксацией)
  • Автоматическая калибровка: если удерживать кнопку “нажатой” в одном положении, через несколько секунд она перестанет быть нажатой (откалибруется на это значение)
  • Через 12 секунд неактивности включается режим сна (пониженного потребления), но не на всех моделях чипов

Подключение

Подключается к питанию и любому цифровому пину. Для Wemos питание подключаем к 3.3V


Использование

Сенсорная кнопка является полным аналогом обычной кнопки, см. документацию на кнопку на сайте набора.

Во многих современных устройствах в качестве органов управления используются сенсорные кнопки. Например, у меня на кухне с помощью сенсорных кнопок включается и выключается варочная поверхность.
Сенсорные кнопки хороши тем, что для них не нужны отверстия в корпусе, и у них отсутствует механический износ, присущий традиционным кнопками. Кроме того конструкция сенсорной кнопки, если не считать электронную начинку, намного проще механической, ведь это обычная проводящая поверхность изолированная слоем диэлектрика, и ей можно придать практически любую конфигурацию.
В этой статье я расскажу о простой реализации сенсорной кнопки на микроконтроллере.

По сути, сенсорная кнопка - это сенсор, то есть какая-то проводящая поверхность, и контроллер, измеряющий его емкость (способность накапливать электрический заряд). При неизменных условиях внешней среды емкость сенсора не меняется. Но когда к нему подносится палец, его емкость увеличивается. По этому изменению контроллер "делает вывод", что пользователь нажал на кнопку.
Емкость измеряется путем подсчета времени, которое требуется для ее заряда до определенного уровня напряжения. Это время зависит как от значения емкости, так и от величины зарядного тока, которая задается какой-то внешней цепью. В простейшем случае эту роль может выполнять резистор, подключенный одним концом к источнику питания, а другим к сенсору.



где Cs - емкость сенсора, Cf - емкости вносимые прикосновением пальца.

Поскольку емкость сенсора и ее изменения очень маленькие (единицы, десятки пикофарад), то время заряда тоже будет небольшим. Чтобы упростить измерение времени заряда, нужно увеличить его значение, а для этого необходимо заряжать емкость сенсора очень маленьким током (микроамперами).

От конфигурации (от его формы и размера) сенсора зависит его емкость. У меня в проекте использовался сенсор в виде вытравленной круглой контактной площадки диаметром 1 см. Также я пробовал использовать прямоугольные кусочки фольгированного текстолита разного размера. Чем больше площадь сенсора, тем больше его емкость и тем более чувствительную сенсорную кнопку можно сделать.
Чувствительную в том плане, что она будет в состоянии срабатывать через толстый слой диэлектрика. Вообще на эту тему лучше почитать атмеловские материалы, поскольку сейчас я об этом мало что могу сказать.


Схема, которую использовал я, представлена на рисунке выше.
Сенсор через резистор подключен к выводу микроконтроллера, который подтянут высокоомным резистором к плюсу питания. Первый резистор служит простейшей защитой от электростатики (ESD), а второй ограничивает зарядный ток.
В начальный момент вывод микроконтроллера работает в режиме выхода и на нем установлен уровень логического нуля. Емкость сенсора, если она имеет какой-то заряд, быстро разряжается на внутренние цепи микроконтроллера. Когда она разрядится вывод микроконтроллера переключится в режим входа с отключенным подтягивающим резистором и емкость сенсора начинает заряжаться через внешний высокоомный резистор. В это время программа опрашивает состояние вывода микроконтроллера и подсчитывает количество циклов опроса. Когда емкость зарядится до напряжения логической единицы, микроконтроллер зафиксирует это и сравнит состояние счетчика с каким-то пороговым значением. По результату этого сравнения микроконтроллер определяет поднесен ли к сенсору палец или нет.

Сам принцип думаю понятен, теперь можно посмотреть как это может выглядеть в Си коде. Для реализации одиночных сенсорных кнопок, я написал небольшой программный модуль - драйвер.

Чтобы добавить его в свой проект, нужно переписать заголовочный и сишный файл драйвера (sensor.c и sensor.h) в папку проекта, добавить сишный файл sensor.c к проекту внутри среды разработки и включить заголовочный файл драйвера sensor.h (с помощью директивы include) в свой файл, где будут использоваться функции драйвера.

Разберем как им пользоваться. Для хранения настроек сенсора используется структура данных sensor_t. В настройки сенсорной кнопки входит адрес порта, номер вывода в порте, пороговое значение и текущее состояние. Чтобы добавить к проекту сенсорную кнопку, нужно для начала создать переменную типа sensor_t.

Для инициализации используется функция SENS_Init(. ) которой нужно передать адрес переменной, хранящей настройки, номер вывода микроконтроллера, адрес используемого порта и пороговое значение срабатывания. Пороговое значение зависит от емкости сенсора (от его геометрии) и от зарядного тока. Сейчас значение можно определить только экспериментально, потом я хочу добавить функцию калибровки.

Опрос одной сенсорной кнопки выполняет функция SENS_Poll(. ), которой нужно передать адрес переменной типа sensor_t. Эта функция возвращает состояние сенсорной кнопки. Для всех возможных состояний сенсорной кнопки объявлен специальный тип данных sensor_state_t. Но функция опроса возвращает только два состояния SENS_PRESSED и SENS_NOT_PRESSED. Остальные состояния сделаны на будущее.

Функция SENS_Poll(. ) выполняет один цикл разряда- заряда сенсора.

Для достоверного определения состояния сенсора, эту функцию лучше вызывать несколько раз. Так же как делается при опросе механических кнопок. Работу функции нежелательно прерывать прерываниями, иначе подсчет времени заряда будет некорректным. Частоту вызова функции опроса можно сделать такой же, как при работе с механическими кнопками. Функция не оптимальная, из-за того, что доступ к порту осуществляется через указатель. Но это позволяет упростить процедуру настройки сенсора, используя только адрес регистра PORTX, а адреса регистров DDRX и PINX вычисляются из него.
И последняя функция драйвера - это SENS_GetState(. ). Она просто возвращает текущее значение сенсорной кнопки.

Код самого тестового проекта очень простой. Инициализация выхода для светодиода, инициализация сенсорной кнопки и бесконечный опрос кнопки в цикле while(1). Никаких прерываний не используется. Частота работы микроконтроллера 9.6 МГц.

Радиосталкер

Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.

Последние посетители 0 пользователей онлайн

Объявления

Black-мур

А я ещё и не начинал. Андрей, но ты же, как никто другой, знаешь, кем были наши матери. Поэтому у меня лучше не выпрашивать и не нарываться с издрысками своего серого залобья.

Артем1987

Ты один из всех пока что умного и полезного ничего не сказал. кудахдаешь не по делу.Чё тебе старую плазму жалко?дак давай я тебе отправлю почтой.будет тебе подарок на день варенья. Украенец хренов.нытик.

Dr. West

Схема садового фонарика (в поиске) + мигающие светодиоды или мультивибратор (там же). Солнечные панельки в верхние плоскости крыльев хорошо впишутся.

r9o-11

Похоже, что это сборки из четырёх конденсаторов ёмкостью по 330 пикофарад. Там рядом такие же целые стоят, только сломанные были из четырёх элементов (один из сломанных точно), а целые из восьми. Маркировка по схеме - СА3, СА4, модель EXF-P4331MDV. Цифра "4" означает количество элементов в сборке, 331 - это номинальное значение (33х10=330). Скорее всего, при ремонте можно заменить дискретными элементами. Посмотреть, какой вывод общий (левый по фото, вроде) и впаять подходящих по размеру конденсаторов ёмкостью 330 рF.

Andrey 69

Andrey 69

Да ладно Я потерял веру в человечество На время конечно @Радиосталкер ,с годами выпуска есть момент. В перестройку (чтоб ее ) брак был. Попадались годков 1985. 91-х

При эксплуатации бытовых выключателей света в жилых квартирах и офисах они довольно часто выходят из строя из-за наличия подвижных трущихся частей. В последнее время их всё чаще меняют на более надежные и долговечные сенсорные выключатели. Конструкция и принцип работы этих устройств очень просты, что позволяет изготовить сенсорный выключатель своими руками. На размещённом ниже рисунке приводится прибор, оснащённый встроенным сенсором.



Внешний вид выключателя

Для того чтобы перевести электронный выключатель в активное состояние, достаточно слегка прикоснуться к чувствительному элементу, что исключает необходимость в механическом контакте с исполнительным модулем. Эти приборы чаще всего используются при необходимости управлять включением света, шторами с электрическим приводом и другими механизмами с не очень большой потребляемой мощностью.

Преимущества

К числу достоинств сенсорных переключающих приборов следует отнести:

  • Удобство управления схемой переключения (в сравнении с часто заедающим клавишным выключателем);
  • Абсолютная бесшумность работы исполнительного модуля, который встроен в переключатель;
  • Безопасность эксплуатации размещённого в корпусе изделия, питание на которое подаётся через гальваническую развязку;
  • И, наконец, современный эстетичный вид, украшающий интерьеры любых помещений.

Обратите внимание! К герметичной сенсорной поверхности при необходимости можно прикасаться мокрыми руками, что не совсем безопасно для обычных приборов с клавишей.

К тому же такие устройства легко совместимы с системами ДУ, допускающими возможность обустройства нескольких каналов управления. Хороши эти изделия ещё и тем, что их без труда можно изготовить своими руками.

Некоторые возможности брендовых выключателей


Устройство и принцип действия

Любой простой сенсорный выключатель содержит в своём составе следующие три компоненты:

  • Особый чувствительный элемент, срабатывающий от прикосновения пальца или от его приближения к поверхности;
  • Схема сенсорного выключателя света на полупроводниковых элементах, обеспечивающих усиление поступающих с датчика слабых сигналов;
  • Исполнительный или коммутационный узел, выполненный на транзисторах и реле (с его помощью осуществляется управление нагрузкой).

Принцип работы рассмотрим на примере простейшего электронного устройства, работающего от питающего напряжения 16 Вольт. На размещённом ниже рисунке изображена схема сенсорного выключателя этого типа.



Схема простейшего сенсора

Из рисунка видно, что электронная часть выполнена в виде каскадного усилителя, обрабатывающего поступающий с сенсора слабый сигнал и повышающего его амплитуду до требуемого уровня. Этот вариант исполнения выключателя может быть использован для коммутации небольших токовых нагрузок.

Первый каскад усилителя настроен таким образом, что имеющегося на теле человека статического электричества вполне хватает для того, чтобы открыть входной транзистор VT1 при прикосновении пальцем к его базе. Общее количество каскадов в этой схеме – три, что позволяет достичь требуемого коэффициента усиления на выходе.

Для доработки этой схемы в цепь коллектора выходного транзистора нужно будет включить нагрузочное реле (вместо резистора 220 Ом). При срабатывании релейного элемента его контакты подают напряжение от бытовой сети в цепь лампочки освещения, после чего она загорается.

При повторном прикосновении тот же потенциал тела человека приводит к закрытию транзистора и пропаданию напряжения на релейной обмотке. Его исполнительные контакты отключают цепочку, питающую линию освещения.

Важно! Тип э/м реле подбирается таким образом, чтобы с помощью его контактов можно было коммутировать значительные по величине токи.












Сенсорные кнопки в Ардуино

В этой статье мы поговорим о сенсорных кнопках в ардуино. С помощью этого несложного и недорогого компонента можно создавать простые и очень эффектные проекты.

Чаще всего такие кнопки используются для создания всевозможных удобных сенсорных интерфейсов, например в системах умного дома.

Давайте узнаем, как можно подключать сенсорные кнопки к ардуино, напишем простой скетч и обязательно рассмотрим принцип их работы.

Сенсорная кнопка

Принцип работы сенсорных кнопок


Сенсорные или механические кнопки

+ Из предыдущего пункта вытекает и этот – возможность использовать сенсорную кнопку внутри корпуса повышает привлекательность проекта, что не влияет на функционал, но достаточно важно в повседневной жизни, чтобы не обращать на это внимание.

+ Стабильное функционирование, которое выражается отсутствием подвижных частей и частой калибровкой (о чём будет сказано ниже). Вам не придется беспокоиться о дребезге кнопок, возникающем при использовании механического собрата, что существенно облегчит жизнь начинающему ардуинщику. Поэтому ещё один плюс, пусть и не для всех – простота при работе.

Из минусов можно отметить следущее:

  • Сенсорные кнопки плохо работают при минусовых температурах, поэтому они непригодны для использования за пределами помещений.
  • Высокое потребление электричества, вызванное необходимостью постоянно поддерживать одинаковую ёмкость.
  • Сенсорная кнопка не работает при нажатии её рукой в перчатке либо плохо проводящим электричество объектом


Обзор сенсорных кнопок

Прежде чем говорить непосредственно о работе с модулем, нужно определиться с тем, какую именно модель купить для использования. Рассмотрим несколько вариантов различных компаний:

Troyka touch sensor

  • Время отклика: 80мс (в режиме энергопотребления) и 10мс (в высокоскоростном режиме)
  • Максимальная толщина диэлектрика для нормальной работы: 4 мм
  • Размер: 25Х25 мм
  • Напряжение питания: 3–5 В
  • Цена: 390 рублей


Grove Touch Sensor

  1. Время отклика: 220 мс и 80 мс
  2. Максимальная толщина диэлектрика для нормальной работы: 2 мм
  3. Размер: 20Х20 мм
  4. Напряжение питания: 2–5 В
  5. Цена: 229 рублей


Подключение сенсорной кнопки к Ардуино

Для использования сенсорной кнопки, как, впрочем, и всех остальных модулей и датчиков, её необходимо подключить к какой-либо плате arduino.

В большинстве случаев используются стандартные модули с тремя контактами: питание, сигнал и земля.

Их расположения от модели к модели меняются, на схеме они отображены согласно недавнему перечислению (сенсорная кнопка заменена переключателем по причине её отсутствии в Tincercad):


Важный момент: нужно помнить, сенсорной кнопке требуется в среднем полусекундная калибровка во время каждого запуска, что позволяет не беспокоиться о лишних шумах, которые, несомненно, возникали бы из-за различного положения кнопки в проектах. Поэтому не стоит сразу после запуска нажимать на кнопку, т.к. после этого наиболее вероятна некорректная работа устройства.

Сенсорный модуль, по своей сути аналогичен цифровой кнопке. Пока кнопка нажата, датчик отдаёт логическую единицу, а если нет, то логический ноль.

Практические схемы

Регулируемый выключатель

Бензогенератор своими руками

Помимо уже рассмотренного ранее простейшего коммутирующего устройства, встречаются сенсоры в несколько ином исполнении.

Отдельные образцы таких электронных приборов могут изготавливаться в виде включателя с функцией управления освещением, например. Схема такого устройства содержит ещё один дополнительный узел, ответственный за управление силой тока в исполнительной цепи (он выполняется обычно на тиристорах).

При легком прикосновении к сенсору управляемая им осветительная лампа сначала сразу же загорается, а затем гаснет. Но если удерживать палец на площадке с чувствительным элементом чуть дольше, яркость свечения сначала возрастает, а спустя некоторое время начинает уменьшаться.

Такие выключатели очень удобны, если использовать их для настольной лампы, например. С их помощью удаётся выставлять заданную яркость, убрав палец с клавиши в нужный момент (схема прибора с регулятором света изображена ниже).



Схема выключателя с регулировкой

Работает электроника прибора таким образом:

  • Сначала сформированный на чувствительном элементе слабый сигнал поступает на вход микросхемы К145АП2, которая усиливает его до нужной величины, а затем через транзистор VT1 подаётся на управляющий электрод симистора VS1;
  • В зависимости от длительности включённого состояния транзистора, будет меняться время открытия выходного элемента управления;
  • При длительном удерживании пальца на сенсоре сила тока в питающей цепи будет возрастать, а вместе с ней начнёт увеличиваться и освещённость в помещении;
  • Для её понижения до нулевого значения (выключения света) палец следует держать на чувствительной поверхности и после достижения максимума освещённости.

Дополнительное пояснение. Симисторный элемент работает следующим образом: при его открытии включателем среднее значение тока через переход возрастает, а при закрытии наоборот – снижается.

Питающее напряжение подается на эту схему от бытовой сети 220 Вольт. Выведенный на лицевую часть клавиши светодиод HL1 сигнализирует о наличии питания и одновременно подсвечивает прибор ночью. Установленный в выходных цепях стабилитрон подбирается с таким расчётом, чтобы напряжение на емкости С5 установилось в границах от 14-ти до 15-ти Вольт. При меньших величинах контрольного параметра лампа может начать мерцать.

В качестве сенсорной площадки при самостоятельном изготовлении чувствительного элемента выключателя может использоваться обычная медная фольга.

Простая 2-хтранзисторная схема

Самым простейшим вариантом рассматриваемых устройств является схема на двух транзисторах (рисунок ниже), которая работает следующим образом.



Схема на двух транзисторах

В случае касания чувствительного элемента Е1 потенциал от человеческого тела через разделительный конденсатор С1 поступает на усилитель. В качестве его нагрузочного элемента используется катушка электромагнитного реле К1, срабатывающего после очередного прикосновения сенсора.

При этом исполнительные контакты подают питание на осветительную цепь, благодаря чему лампочка включается. При вторичном прикосновении к площадке с сенсором управляющая схема отключает реле, а лампочка тут же отключается.

В заключение отметим, что сделать такой переключатель своими руками совсем несложно. Для этого достаточно ознакомиться с приведённым здесь материалом и постараться выполнять все имеющиеся в нём рекомендации.

Достоинства емкостных коммутаторов

Говоря о преимуществах данного вида включателей, следует отметить их следующие качества:

Теперь кратко о недостатках. В первую очередь необходимо отметить, разницу в стоимости с обычными механическими выключателями, но она стала значительно меньше, чем 10-20 лет назад. Цена недорогих китайских сенсорных моделей сегодня значительно дешевле, чем на механические выключатели известных брендов, например GTS или Electronics.

Иногда наблюдается мерцание светодиодных ламп, подключенных к сенсорным включателям. Это может быть связано как с низким качеством самих источников освещения, так и бюджетными моделями коммутаторов. Проблему можно устранить двумя способами:

  1. Использовать продукцию известных брендов (Jazzway, Panasonic, Сапфир, Funry, LightaLight, Tronic , Sesso и т.д.).
  2. Подключить параллельно светодиодной лампе конденсатор на 0,1 мкф 630 В.








Причины выключения

Сенсорный ввод на Windows 10 не работает по следующим причинам:

Также для устранения рассматриваемой неисправности нередко достаточно скачать новые драйверы с официального сайта производителя компьютера. Но если эта процедура не восстанавливает сенсорный ввод, то необходимо откатить Windows 10 до последней точки сохранения.

Видео по теме

Резистивный

Резистивная технология построения сенсорных экранов – самая простая и дешевая. По принципу работы такие тачскрины родственны компьютерным клавиатурам. На двух слоях прозрачной подложки нанесены дорожки из почти прозрачного токопроводящего материала. Эти два слоя расположены друг на друге с зазором в несколько микрометров. Верхний обязательно гибкий и при касании пальца прогибается, замыкая дорожки. Чем дальше находится место замыкания – тем больший путь проходит ток и тем выше сопротивление. По его величине (с точностью до ома) контроллер сенсора вычисляет, в каком месте произошло нажатие.

Резистивные сенсорные экраны дешевы, просты, реагируют на любой предмет, но недостаточно надежны (вывести тачскрин из строя может небольшой порез) и имеют ограниченную прозрачность (под определенным углом даже становятся видны дорожки проводников).

Как отключить сенсорный экран на ноутбуке — все способы

Как сделать сенсорный экран на ноутбуке Windows 7?

В век высоких технологий никого не удивишь ноутбуком с сенсорным экраном. Практически каждый может приобрести себе подобное устройство в офис или домой.

Ноутбук с сенсорным экраном

Часто сенсорный экран вовсе не нужен. Поэтому возникает необходимость его отключения. И, как ни странно, не все знают, как правильно отключить сенсорный экран на ноутбуке. На практике же это оказывается не сложнее, чем, например, разблокировка смартфона.

Отключение через Bios

В Bios можно отключить любое аппаратное устройство, подключенное к ноутбуку. В том числе и дисплей. Важным моментом является то, что неопытным пользователям лучше не использовать Bios для настройки, ибо неправильный запрос может повредить информацию на ноутбуке или вовсе удалить операционную систему.

Ёмкостный тачскрин: принцип работы

В тачскринах конструкции такого рода стеклянную основу покрывают слоем, который выполняет роль вместилища-накопителя заряда. Пользователь своим касанием высвобождает в определённой точке часть электрического заряда. Данное уменьшение определяется микросхемами, которые расположены в каждом углу экрана. Компьютером вычисляется разница электрических потенциалов, существующих между разными частями экрана, при этом, информация о касании в подробностях передаётся немедленно в программу-драйвер тачскрина.

Довольно важное преимущество ёмкостных тачскринов — это способность данного типа экранов сохранять практически 90 % от изначальной яркости дисплея. Из-за этого изображения на ёмкостном экране смотрятся более чёткими, чем на тачскринах, имеющих резистивную конструкцию.

Читайте также: