Многоискровое зажигание своими руками для карбюратора

Добавил пользователь Владимир З.
Обновлено: 04.10.2024

Самым ответственным моментом при эксплуатации автомобиля является пуск двигателя. Особенно актуален этот вопрос в зимнее время года, когда на улице стоят большие морозы. Все смазочные материалы, в том числе и масло в картере двигателя внутреннего сгорания, теряют вязкость, и создают чрезмерную дополнительную механическую нагрузку на стартер.

Рекомендаций по решению этой проблемы в Интернете представлено великое множество, от подогрева масла в картере двигателя дополнительным нагревателем, до впрыскивания в цилиндры двигателя перед пуском легко воспламеняющихся веществ. Совершенствуются коммутаторы системы зажигания, делают многоискровой режим зажигания, оптимизируют взаимное расположение и форму электродов свечей.

Но все это не дает максимального эффекта по одной простой причине, во время пуска двигателя напряжение бортовой сети автомобиля падает до 9,5 V и соответственно значительно падает величина высокого напряжения на выходе катушки зажигания. Предложенная доработка системы зажигания позволяет устранить этот недостаток.

Принцип работы системы зажигания автомобиля

Рассмотрим часть схемы электрооборудования автомобиля, составляющую систему зажигания. От аккумулятора напряжение положительной полярности, через предохранитель поступает на контакты замка зажигания и реле зажигания.

Когда ключ из замка зажигания автомобиля вынут, все контакты в замке зажигания разомкнуты, и напряжение на систему зажигания не подается. Если ключ вставить в замок зажигания и повернуть его по часовой стрелке на один сектор, контакты в замке зажигания замкнутся и напряжение поступит на обмотку реле зажигания, по обмотке потечет ток, создаст магнитное поле, которое притянет якорь реле.

Контакты реле замкнутся, напряжение питания поступит на низковольтную обмотку катушки зажигания и через нее на коллектор транзистора VT коммутатора. Пока вал двигателя не вращается, на базу транзистора не поступают открывающие импульсы управления, и он закрыт, ток дальше не течет. В применяемых в настоящее время схемах зажигания автомобилей, элементов начерченных синим цветом (диод VD1 и конденсатор С1) нет.

Электрическая схема доработанной системы зажигания

Для пуска двигателя необходимо повернуть ключ в замке зажигания по часовой стрелке еще на один сектор. Стартер начнет вращаться и на коммутатор с датчика вращения поступят управляющие импульсы. Транзистор VT на время 1-2,5 мс откроется и через низковольтную обмотку катушки зажигания пойдет ток. Сердечник катушки начнет намагничиваться, и создаст в высоковольтной обмотке катушки зажигания высокое напряжение. Величина напряжения будет зависеть от соотношения количества витков в катушках.

Для надежной работы двигателя система зажигания должна создавать высокое напряжение с запасом, величиной не менее 25 кВ. Напряжение, при котором происходит пробой (образуется искра) между электродами в свече составляет 14-17 кВ. Таким образом, должен обеспечивается запас по высокому напряжению около 7 кВ, что гарантирует стабильную искру в свечах при любых условиях запуска двигателя.

Величина высокого напряжения
в момент запуска двигателя автомобиля

При работе двигателя, за счет работы генератора, напряжение в бортовой сети автомобиля обычно составляет 14,1±0,2 В. На первичную обмотку катушки зажигания, за вычетом падения напряжения (1,2 В) на транзисторе VT, поступают импульсы величиной 14,1 В-1,2 В=12,9 В. В этом режиме величина импульсов на вторичной обмотке катушки зажигания для образования искры в свечах составляет 27 кВ.

В момент пуска двигателя напряжение на выводах заряженного аккумулятора может снижаться до 9,5 В, если аккумулятор заряжен не полностью, то напряжение может быть и меньше. Тогда с учетом падения напряжения на транзисторе VT, величина напряжения на первичной обмотке катушки составит 9,5 В-1,2 В=8,3 В, это на 35% меньше, чем напряжение при работающем двигателе. При этом величина высокого напряжения тоже уменьшится на 35% и составит 17 кВ. Новая свеча создает искру при напряжении 12-17 кВ. Если установлены свечи с напряжением пробоя 17 кВ, то в таком случае искрообразование может быть нестабильным. Расчеты показали, что даже для нового автомобиля с узлами и деталями системы зажигания, находящимися в исправном состоянии, запаса по высокому напряжению может и не быть.

Что же тогда говорить о системе зажигания автомобиля, находящегося в эксплуатации не один год. Происходит старение изоляции свечей и выгорание ее электродов. В высоковольтных проводах и катушке зажигания тоже происходит старение изоляции, что приводит к дополнительным потерям. Несколько лет эксплуатируемый аккумулятор тоже вносит свою лепту. Путь тока от аккумулятора к катушке зажигания проходит по проводам через контакты предохранителя, реле зажигания, соединительные колодки и клеммы. На них тоже происходит падение напряжения.

В дополнение для устойчивого возникновения искры в зазоре свечи при сильно охлажденной воздушно бензиновой смеси требуется подавать на нее более высокое напряжение. Таким образом, запуск двигателя старого автомобиля с первой попытки при больших морозах существующая схема зажигания обеспечить с гарантией не может. Последующие попытки запуска двигателя могут полностью разрядить аккумулятор, с чем большинству автолюбителей доводилось сталкиваться.

Доработка схемы зажигания

Работает схема следующим образом. Когда вставляется ключ зажигания и поворачивается до первого фиксированного положения, конденсатор С1 через диод VD быстро зарядится от аккумуляторной батареи с учетом падения напряжения на диоде около 1,2 В, до напряжения 11,5 В. При пуске двигателя, на катушку зажигания будет подано не напряжение с аккумулятора величиной 9,5 В, а напряжение с заряженного конденсатора 11,5 В. Таким образом высокое напряжение упадет не на 35%, а всего на 20% и высокое напряжение составит не менее 23 кВ, что вполне достаточно для уверенного возникновения в свечах искры.

Эффективность работы схемы можно еще улучшить, если поставить дополнительно автомобильное реле, подключить его обмотку параллельно реле пуска стартера, а пару нормально замкнутых контактов параллельно диоду. Тогда, когда стартер будет выключен, напряжение с аккумулятора на катушку зажигания будет подаваться, минуя диод. Если в реле стартера есть свободная пара нормально замкнутых контактов, то можно использовать их и не устанавливать дополнительное реле. Замыкание с помощью реле выводов диода еще повысит высокое напряжение на выходе катушки зажигания на несколько киловольт.

Конструкция и детали

Диод VD1 подойдет любого типа, рассчитанный на ток не менее 8 А и обратное напряжение не менее 25 В. Еще лучше применить диод Шоттки, например 90SQ045 (45 В, 9 А). Тогда необходимость в установке дополнительного реле отпадает, так как падение на диоде Шоттки составит всего 0,2 В, что и без установки дополнительного реле увеличит высокое напряжение на несколько киловольт. Такие диоды используют в низковольтном выпрямителе блоков питания компьютеров.

Диод Шоттки в блоке питания

Электролитический конденсатор подойдет любого типа, рассчитанный на напряжение не менее 25 В и емкостью не менее 20000 мкф. Конденсатор должен быть рассчитан на работу в широком диапазоне температур, минус 30-65 градусов Цельсия. Лучше всего подходит конструкция конденсатора с выводами, рассчитанными на винтовое подключение. Я устанавливал конденсатор как на фото.

Электролитический конденсатор

Если нет подходящего по емкости конденсатора, то можно подключить параллельно, соблюдая полярность, несколько конденсаторов меньшей емкости. При параллельном соединении плюсовые выводы конденсаторов соединяются с плюсовыми, а минусовые с минусовыми. Общая емкость тогда составит сумму всех соединенных параллельно конденсаторов.

Например, есть 4 конденсатора емкостью 4700 мкФ, соединив их параллельно, получим конденсатор емкостью 18800 мкФ.

Что касается реле, то можно применить любое автомобильное реле, имеющее нормально замкнутые контакты.

Конденсатор желательно установить в непосредственной близости с катушкой зажигания, но, для предотвращения его перегрева, на максимально возможном удалении от двигателя. Место установки должно не допускать попадания влаги на выводы конденсатора во время движения автомобиля. Предложить готовое решение по размещению диода и конденсатора сложно, так как каждая марка автомобиля имеет оригинальную конструкцию, и место установки деталей приходится выбирать индивидуально.

Аккумулятор UPS

Вместо конденсатора можно применить кислотный аккумулятор небольшой емкости, например от UPS компьютера. Это еще более лучший вариант, чем установка конденсатора. Дополнительный аккумулятор будет при работе двигателя постоянно подзаряжаться и благодаря тому, что система зажигания будет питаться от двух аккумуляторов, дополнительный аккумулятор всегда будет полностью заряжен. При пуске двигателя на систему зажигания будет всегда подаваться напряжение питания более 12 В.

Порядок запуска двигателя автомобиля при морозе

Для безотказного запуска двигателя автомобиль перед наступлением холодов должен быть подготовлен к зимней эксплуатации. Необходимо залить масло в двигатель и коробку передач, предназначенное для работы при низких температурах. Необходимо в обязательном порядке заменить свечи и фильтры, масляный, воздушный и бензиновый. И конечно самое главное это техническое состояние аккумулятора. Даже если аккумулятор новый, его обязательно нужно зарядить от внешнего зарядного устройства. Если все эти требования заблаговременно выполнены, то с пуском двигателя в холодное время года проблем не будет.

Двигатель автомобиля рекомендуется запускать в следующем порядке: ☞ Необходимо вставить ключ в замок зажигания, повернуть по часовой стрелке на один сектор и убедиться, что все электроприборы отключены. Хотя они при работе стартера должны отключаться автоматически, но, тем не менее, лучше их отключить, чтобы не создавать дополнительную нагрузку на двигатель в первый момент после его пуска. ☞ Для приведения холодного аккумулятора в боевое состояние, его нужно прогреть, включив на 20-30 секунд фары или габаритные огни. ☞ Если коробка не автоматическая, то обязательно выжать педаль сцепления до упора. При этом будет отключена от двигателя коробка передач, что существенно снизит нагрузку на стартер. Включить зажигание на полсекунды, чтобы вал двигателя сдвинулся с мертвой точки, и масло смазало трущиеся поверхности двигателя. ☞ Повторно включаем зажигание на время не более 3 секунд. Если двигатель не запустился, необходимо выждать до повторного запуска не менее 15 секунд. За это время подогретый еще за счет неудачного пуска двигателя аккумулятор наберется силы. Если за 5-6 попыток с паузами двигатель запустить не удалось и при этом аккумулятор не сел, значит, либо попавшая в механизмы вода замерзла и необходимо отогреть автомобиль, поместив его в теплый гараж. Или возникла неисправность и необходимо обращаться в сервис. ☞ Если двигатель автомобиля запустился, то необходимо плавно отпустить педаль сцепления. После прогрева машина готова к поездке.

Задать вопрос автору статьи, оставить комментарий

Здравствуйте.
Прочитал ваш материал по доработке схемы зажигания автомобиля для лучшего пуска двигателя. Для меня это актуально. Т.к. стартер крутит, а двигатель не заводится. Но когда бросаешь ключ, и стартер отключается от АКБ, а коленчатый вал двигателя продолжает вращаться по инерции, то ДВС заводится. Давно задумываюсь об установке доп. АКБ от ИБП через диод на катушку зажигания.
Вы предлагаете использовать конденсатор. Это мне кажется сделать проще. Посоветуйте, какой вариант выбрать?
Заранее благодарен.

Уважаемый Юрий!
Дополнительный аккумулятор я ставить не пробовал, теоретически он даст при запуске двигателя такой же эффект, как и конденсатор. Но, стоит дороже, срок службы его ограничен, емкость его сильно уменьшается при отрицательных температурах.
Электролитический конденсатор в данном случае будет работать надежнее. Один раз установил и забыл до конца эксплуатации автомобиля.
Так что выбор однозначен, проверенный мною на практике, ставить конденсатор.

Если вспомнить , что задачей системы зажигания является надежный поджиг смеси ,условия горения и поджига которой зависят от десятков параметров ,как-то
температура окружающей среды
температура двигателя
тепература смеси
частота вращения
нагрузка на двигатель
качество топлива
давление наддува
давление атмосферы
влажность воздуха
итд.

То становится очевидным, что учесть все это может только правильно запрограммированный надежный компьютер. Переться от схемы на двух диодах и трех германиевых транзисторах - все равно , что восхищаться паровозом братьев Черепановых . Пришло время высоких технологий и искуственного интеллекта.

kvadratov

Я люблю строить самолеты!

По мануалу у Ротакса 793 пишу 2.35мм до ВМТ при 3200 об.ми как это понимать не понятно. Я пробовал по разному, но оптимально получилось 2.1 мм для крейсерской скорости. Просто всегда хочется лучше.
Конечно, из-за работы выхлопных клапанов кривая угла сильно меняется. Можно купит систему зажигания MSD. Я такой пользовался на машинах она полностью программируется с нуля как хочешь и сила искры 50 000 в, Это всё на машинах и мудрить сильно не хочется.
Да, Вы правы, мощи много и не оптимальность не заметна. Ещё один момент это резонанс до 4500 не тянет, а потом такой подхват, что голова отрывается. Тут тоже у них с углами накручено.
Ладно, спасибо за то, что есть инфа, летом буду пробовать.

Когда указывают опережение в мм до ВМТ - это часто ведёт к непоняткам.

Правильнее писать - допустим - так:

Для двигателя Rotax 582

Опережение постоянное 18 градусов до ВМТ.

Для контроля - 18 градусов = 1,96 мм при замере по оси цилиндра. Ось свечного отверстия имеет наклон 11 градусов. Поэтому при замере опережения по оси свечного отверстия - контрольный размер 2. 00 мм.

Собственно всё это следует из выше приведенной таблицы с сайта Авиагаммы. В вот по многим другим двигателям - в инструкциях - одна цифра и всё.
Обычно это замер по вертикали. Хотя бес их поймет, что они подразумевают.

Для того чтобы сравнивать опережение у разных моторов с разной длинной хода поршня - говорить про мм до ВМТ - вообще бессмысленно. Нужно переводить опережение в градусы до ВМТ. Это можно сделать механически - закрепив на роторе транспортир, а на картере проволочную стрелку и поставив мотор в ВМТ и на момент зажигания - по меткам на генераторе или путём замера опережения в мм по часовому индикатору. Чаще всего я пользовался этим способом.

Конечно - зная ход поршня - длинну шатуна - и радиус, на котором расположен палец кривошипа - задачку можно решить графически на бумаге или путём математических вычислений. Ну и составить таблицу перевода мм в градусы для данного двигателя. Такая таблица - очень удобна и практически необходима для настройки мотора - особенно - если с зажиганием начинается какая-то самодеятельность.

Для примера табличка такого рода - которую составляли для себя мопедисты :
( Для двигателей Д 6 - Д 8. Опережение по инструкции там рекомендовано 3,2 - 3,5 мм до ВМТ )


Получается что опережение у мопеда - вобще больше 30 градусов до ВМТ - согласно инструкции.

Для мотоцикла Ява - в сети тоже выложили таблицу.


Для облегчения подсчётов и составления таблиц - неплохо былобы иметь калькулятор . Кстати слышал что такая штука существует в сети. Если кто встретит - буду признателен за ссылочку. Считать каждую точку последовательно пользуясь калькулятором из папки * стандартные программы * крайне скучно.

Вобще с системой зажигания есть 2 проблемы - первая ка добыть искру. А вторая - типа - сколько вешать в граммах . В смысле - а Вам сколько градусов ?

Многие люди покупают готовые программируемые блоки зажигания - и начинают задаваться вопросом - какие цифири в блок следует заложить. Анегдот да и только. Можно заложить 18 градусов для любого 2 Т мотора и он заведётся и будет работать. Причём на средних оборотах - даже неплохо работать.

Я не издеваюсь - я просто говорю о том что если Вы не знаете что заложить в мозг электронного процессора - то на что он Вам нужен ?

Это в первую очередь не к 600mm обращение а к остальным любителям прцессоров. 600mm - вполне прагматично поставил зажигалку без интеллектуальных свойств и ищет компромисную для его случая величину опережения.

Програмированное зажигание хорошо - если оно снабжено фирменной прошивкой под Ваш двигатель.
В противном случае - всю исследовательскую работу - придётся сделать своими силами. Все готовы к стендовым испытаниям на оптимизацию момента зажигания ?

Вобще про момент это отдельная большая тема. Нужно будет её создать отдельно. Найду сейчас пару затерявшихся ссылок и тему про опережение создам.

Вобще - пока писал - разыгралась у меня ностальгия. Вспомнил как на мотоцикле М 72 катался в старое - доброе время. Там опережение регулировалось при помощи манетки на руле. В зависимости от скорости - температуры воздуха - качества бензина и иных трудно учитываемых аналитически критериев - легко можно было отрегулировать угол зажигания на слух и по ощущениям. Лёгким движением руки.

Последний вздох: как и зачем устанавливали электронное управление на карбюраторы


Засоряющиеся жиклеры, плавающие холостые обороты, бесконечные провалы при разгоне… То ли дело инжектор! Но машину с инжекторным мотором позволить себе в конце прошлого века могли не все. Впрочем, вдохнуть новую жизнь в старенький мотор позволяла микропроцессорная система зажигания – забытый, недооцененный, но интересный и важный этап развития моторостроения.

Почему инжектор сменил карбюратор?

М ногие считают, что в эволюции систем питания автомобильных бензиновых моторов карбюраторы последовательно сменил моновпрыск, затем впрыск распределенный, а потом и непосредственный. Однако не все знают, что был короткий период развития карбюраторных двигателей, когда у них получилось почти вплотную подобраться по характеристикам к инжекторным! Произошло это благодаря МПСЗ – микропроцессорным системам зажигания.

Несовершенство классической системы питания и зажигания не было секретом для автоинженеров со времен появления первых автомобилей. Карбюраторный принцип смесеобразования и центробежно-вакуумный принцип поддержания оптимального угла зажигания всегда считались компромиссом – у двигателя слишком много переходных режимов, в которых карбюратор и трамблер не способны обеспечить оптимальную работу мотора, сочетающую максимальную экономичность, приемистость, эластичность, мощность и полное отсутствие детонации. А вот ЭБУ, электронный вычислительный блок, управляющий топливными форсунками и свечами инжекторной системы — может.



Карбюратор уходит, но не сдается

Когда-то первые карбюраторы представляли собой примитивную трубку с одним жиклером и дроссельной заслонкой. Однако за десятилетия эволюции их конструкция усложнилась неимоверно. Идеальными устройствами для приготовления топливовоздушной смеси они так и не стали, но заметно к ним приблизились. Поэтому, несмотря на то, что переход на распределенный электронно-управляемый впрыск был предрешен и очевиден даже инженерам советских автозаводов, мысль о том, что миллионы карбюраторных машин еще не исчерпали свой потенциал, не давала покоя многим.

Дело в том, что современный карбюратор не зря имеет сложную конструкцию: благодаря этому он, будучи исправным и идеально отрегулированным, достаточно неплохо справляется с задачей подготовки правильной бензовоздушной смеси в различных режимах работы двигателя и с учетом самых разных внешних условий. А значит, карбюратор можно попытаться оставить в покое и переключить внимание на второе из двух важнейших для работы мотора условий – правильное зажигание. Трамблер с его убогими вакуумным и центробежным регуляторами угла опережения – узкое место в моторе, он во многом губит все то, что дает карбюратор. Поэтому можно попытаться дополнить карбюратор умной электронной системой зажигания, и он приблизится по эффективности к инжектору. Так и родились микропроцессорные системы зажигания.

Для понимания идеологии этих систем нужно отметить один важный момент. Многие помнят, как едва ли не каждый советский владелец вазовской классики, Москвича или Волги стремился заменить нестабильное и примитивное штатное контактное зажигание на бесконтактное электронное. В последнем контактную группу из трамблера выбрасывали и заменяли датчиком Холла, индуктивным датчиком или даже инфракрасным. Так вот, электронные системы бесконтактного зажигания и МПСЗ – это совершенно разные вещи.

Электронное бесконтактное зажигание позволяло лишь избавиться от контактной пары и уменьшить зависимости мощности искры от просадки напряжения бортсети стартером. Ну и иногда брало на себя функцию ручного октан-корректора. А МПСЗ делала не только всё то же самое, но и — что гораздо важнее — автоматически регулировала параметры опережения зажигания, исходя из положения коленвала, оборотов и давления на впуске. С развитием микропроцессорных систем стало возможным при желании добавить датчик детонации, лямбда-зонд, датчики температуры антифриза и воздуха на впуске. Причем эта регулировка шла непрерывно, практически как у инжектора. Контроллер быстро реагировал на изменение условий работы мотора и корректировал угол опережения зажигания, учитывая в том числе и качество топлива.


Сфера автоэнтузиастов


Под капотом Lada 111 ‘1997–2009


Инжектор как донор для карбюратора


Впрочем, повторимся — сегодня история с МПСЗ постепенно сходит на нет. Микропроцессорное зажигание было бы чертовски актуально в виде заводской системы на автомобилях “доинжекторной” эпохи, но отечественным автозаводам эта промежуточная инновация оказалась не по силам. Сейчас же карбюраторных машин становится все меньше, а многие из тех, кто готов своими руками сделать что-то основательное с любимой, но немолодой машинкой, предпочитают собрать полный инжекторный комплект впрыска и зажигания, который с применением подержанных компонентов с разборки порой оказывается сопоставимым по цене с комплектом МПСЗ для карбюратора…

Что из себя представляют провалы?

Решение:

Провал при нажатии на педаль газа заключается в ненадлежащей реакции на это мотора. Таким образом при попытке ускорится мотор не набирает необходимые обороты.

Это приводит к падению скорости. Проявляется она при постепенном, так и внезапном ускорении. Проявляются провалы при нажатии на педаль газа по-разному:




Ремонт и тюнинг ВАЗ

Сегодня вернулся от друга. Изначально у него был карбюратор, потом он решил сделать капиталку + немного затюнить машину. С моей подачи он решился строить инжектор. К счастью подвернулись все необходимые для этого зап. части. Сегодня я рассказывал ему как это все подключать. Ну естественно он мало что понял и я решил написать достаточно подробное руководство про подключение. На самом деле в последнее время очень много людей спрашивают про это. Надеюсь это будет полезным. Есть разные модификации инжекторов, с датчиком кислорода и без датчика, с абсорбером и без , фазированный, попарно-паралельный и одновременный впрыск. Так же есть разные монтажные блоки. Для примера я взял СУД Январь 5.1 (Bosch 1.5.4) , т.е. без абсорбера и ДК. Со стороны электрооборудования — высокую панель с монтажным блоком 2112-3722010-60.

Вначале схема СУД целиком


Теперь посмотрим что нужно изменить в моторном отсеке.

Начнем с вентилятора. В данной косе есть одиночный контакт, если немного раскрыть изоляцию, то можно увидеть, что он идет черно-белым проводом.



Это контакт для подключения вентилятора.

На разных блоках вентилятор работал по разному, но основная особенность в том, что его включал датчик на радиаторе. Теперь же он будет включаться блоком инжектора. И взамен старой схемы



Т.е. нужно просто взять и присоединить один контакт на корпус, а второй подключить к черно-белому проводу из косы. с вентилятором все!

Теперь про другие контакты… Вот общая картина



Не буду рассматривать все штекеры датчиков, а расмотрю лишь те моменты, которые ставят в тупик начинающего электрика В моторном отсеке появились два коричневых провода

Так же появился один черный провод

Ну вот вроде бы и все. больше в моторном отсеке ничего незвестного не осталось. Теперь посмотрим что твориться в салоне автомобиля

Рассмотрим подключения бензонасоса.

В карбовой версии к баку подходило два провода



Дело в том, что в карбюраторной схеме бензонасос внешний стоит в моторном отсеке, а эти провода идут просто на датчик уровня бензина. Один синий с красным подает напряжение, второй — розовой передает информацию о наличии бензина. В данном случае(инжекторе) у нас бензонасос стоит в баке. и подключается он при помощи колодки



Чтобы не тянуть лишних проводов стоит сделать вот как — подсоединить старые провода к колодке как показано ниже



Теперь у нас подключено питание бензонасоса и контакт показывающий уровень топлива. Черно-белый провод кидаем на минус. т.е. корпус. Сине-красный провод не нужен. Все в районе бензобака все подключено.

Теперь разберемся с подключением в районе панели приборов. Раньше старые контакты(питания датчика уровня и сигнальный ) были подключены через монтажный блок к панели приборов



т.е. 11 контакт белой колодки мы не трогаем. Это контакт который показывает уровень топлива. А вот 11 контакт красной колодки отсоединяем от панели приборов. Его нужно подсоединить к контакту который идет от жгута СУД


Далее думаем как подключать проводку СУД к косе салонной проводки.Колодка подключения выглядит так



Среди этих контактов есть : 1) красно-синий (1 контакт по схеме) провод это «+12″ который цепляются в районе замка зажигания. Он подает +12 и включает мозги, когда вы поворачиваете ключ зажигания


2) серый(2 контакт по схеме) это сигнал скорости автомобиля.

3) белый-пурпурный (6 контакт по схеме) это сигнал лампочки Check

4) красно-пурпурный (8 контакт по схеме) это сигнал тахометра. Низко-вольтный.

5) желто-черный (3 контакт по схеме) это расход топлива.

Насколько я понимаю сигнал расхода топлива и сигнал скорости подключается к БК.

Check, тахометр нужно искать по схеме … К сожалению я не знаю где они подключаются на стандартной панели. Но можно попробовать методом перебора, исключая известные контакты. Т.е. неизвесные лишь — в белой — 1,2,3,6,7,10 в красной — 1,5,6,9,11 в желтой — 1,4,5,6,8 известные контакты можно посмотреть тут

Вообще в интернете я встречал обозначение всех контактов панели… надо искать.

Что еще интересного есть в моторном отсеке…



контакты для таблетки иммо и сигнальной лампочки иммо.(если не планируется установка иммобилайзера, то их не надо подвключать)


Еще есть неизвестные провода … хз для чего.. может кондиционера, может БК, может еще чего-то. Т.е. в теории может они и правильно задуманы, но в практики они не нужны, так как цеплять их не к чему


Сама планка с реле(реле на фото отсутствуют) и предохранителями выглядит так —

Ну вот в принципе и все. думаю основные моменты будут ясны … А тонкости додумаете сами

Хочу ответить, что в практики я лично это не проверял, поэтому могу ошибаться. Свою систему , которая работает на Январь 7.2. я реализовал.

Что касается этой системы Январь 5.1. думаю скоро проверим… пока что это лишь мое теоретическое обоснование. Если у кого-то есть дополнения или кто-то может указать на ошибки — оставляйте коментарии.

Другие статьи

В современных транспортных средствах предусмотрена вспомогательная система, обеспечивающая комфортное движение при осадках — стеклоочиститель. Привод данной системы осуществляется мотором-редуктором. Все об этом агрегате, его конструктивных особенностях, выборе, ремонте и замене — читайте в статье.

Современные транспортные средства оснащаются светосигнальными приборами, установленными в передней и задней части. Формирование светового пучка и его окрашивание в фонарях обеспечивается рассеивателями — все об этих деталях, их типах, конструкции, выборе и правильной замене читайте в данной статье.

Многие современные автомобили, особенно грузовые, оснащаются гидравлическим приводом выключения сцепления. Достаточный запас жидкости для работы главного цилиндра сцепления хранится в специальном бачке. Все о бачках ГЦС, их типах и конструкции, а также о выборе и замене этих деталей читайте в статье.

Этот блок зажигания отличается надежной работой при низкой температуре окружающей среды и частично разряженной аккумуляторной батарее, что очень важно для пуска холодного двигателя в зимнее время, особенно в северных районах России. Кроме того, блок более помехоустойчив, прост в налаживании и позволяет регулировать основные параметры.
Во-первых, незначительные коррективы внесены в преобразователь напряжения: добавлен делитель напряжения R3R4 (см. схему на рис. 1), конденсатор С1 плюсовым выводом подключен к средней точке делителя и стабилитрон Д817Б (VD4) заменен на Д817А с напряжением стабилизации 56 В. Это позволило устанавливать выходное напряжение преобразователя подборкой резистора R3, а не стабилитрона VD4 или числа витков вторичной обмотки трансформатора Т1.




Теперь при использовании трансформатора Т1 конструкции, сопротивления резистора R3 от нуля до 30 Ом можно установить на выходе преобразователя любое напряжение в пределах 330. 400 В. Чтобы после добавления делителя напряжения режим работы транзистора VT1 по постоянному току остался прежним, сопротивление резистора R1 увеличено до 560 Ом. Полной переделке подвергся узел формирования импульсов, управляющих открыванием тринистора VS1. Хотя конструкция узла усложнилась и возросли затраты на его изготовление, удалось улучшить характеристики блока зажигания.
Узел состоит из зарядно-разрядной цепи (резисторы R8, R9, стабилитрон VD9, конденсатор С6), коммутатора тока на транзисторе VT2 и делителя напряжения преобразователя R12R13 с накопительным конденсатором С7. Диод VD8 препятствует зарядке конденсатора С6 через резистор R8. Токоограничительный резистор R11 может также быть использован для измерения тока коллектора транзистора VT2.
При замыкании контактов прерывателя SF1 конденсатор С6 заряжается от бортовой сети через резистор R9 до напряжения стабилизации стабилитрона VD9. С момента размыкания контактов прерывателя конденсатор С6 начинает разряжаться через эмиттерный переход транзистора VT2, диод VD8, управляющий переход тринистора VS1 и резистор R10. Транзистор VT2 открывается, и разрядный импульс конденсатора С7, заряженного примерно до 18 В, поступает на управляющий электрод тринистора.
Такое схемное решение узла формирования управляющих импульсов выбрано не случайно. Дело в том, что с понижением температуры окружающей среды или, точнее, температуры корпуса тринистора ток открывания тринистора увеличивается. Например, ток открывания тринисторов серии КУ202 при изменении температуры от +20 до -40 о С увеличивается в 1,5 раза. Нередко в этом причина того, что блок, работавший бесперебойно летом, совсем отказывается работать зимой.
Эксперименты показывают , что импульс током 160 мА и длительностью 10 мкс достаточен для открывания любого тринистора серии КУ202 при температуре его корпуса -40°С. Именно такие импульсы вырабатывает описываемый узел формирования. Это позволяет отказаться от кропотливой и дорогостоящей подборки экземпляра тринистора при минимальной температуре. Разумеется, если есть возможность выбирать тринисторы, то ею следует воспользоваться, так как "чувствительный" тринистор позволяет применить стабилитрон VD3 на меньшее напряжение стабилизации - об этом будет сказано ниже.
Применение стабилитрона VD9 для ограничения напряжения зарядки конденсатора С6 и питание коллекторной цепи транзистора VT2 от стабилизированного преобразователя напряжения позволили стабилизировать уровень импульса управления тринистором во время пуска двигателя при колебаниях напряжения аккумуляторной батареи от 7,5 до 14,2 В.
Снижение напряжения на конденсаторе С6 повысило помехоустойчивость узла формирования импульсов и блока зажигания в целом. Эту проблему обычно считают третьестепенной, и напрасно. Если влиянием помех при разомкнутых контактах прерывателя можно пренебречь, так как искровой разряд, вызванный помехой, будет происходить в том цилиндре, где идет рабочий такт, то при замкнутых контактах могут быть сбои в работе двигателя.
Но снижение напряжения на конденсаторе С6 привело к тому, что транзистор VT2 при замкнутых контактах оказывается закрытым напряжением, равным разности между напряжением бортовой сети и напряжением на конденсаторе. Говоря иначе, чтобы транзистор VT2 открылся и возникло искрообразование, уровень помехи должен быть больше этой разности, без стабилитрона же напряжение на конденсаторе С6 равно напряжению бортовой сети. Отсюда следует: чем меньше напряжение стабилизации стабилитрона VD9, тем выше помехоустойчивость блока зажигания.
Конденсаторы С4 и С5 предназначены для дополнительной защиты блока от помех в бортовой сети.
Резистор R10 определяет ток через контакты прерывателя. Этот ток для самоочищения контактов не должен быть слишком малым. Его выбирают обычно в пределах 0,1. 0,2 А.
Цепь формирования импульсов для многоискрового режима работы (диоды VD6, VD7, резисторы R5, R6, конденсатор С3) осталась без изменений, за исключением увеличения сопротивления резистора R6 до 51 Ом. Это сделано с целью выравнивания напряжения первого импульса "многоискровой" цепи с импульсами узла формирования
Здесь уместно остановиться на бытующем сейчас мнении о бесполезности и даже вредности многоискрового режима зажигания. На мой взгляд, это мнение ошибочно, так как в течение многолетней эксплуатации блока многоискрового зажигания ничего, кроме легкого пуска двигателя, увеличения мощности и экономичности двигателя, снижения содержания окиси углерода в выхлопных газах, не замечено". Что касается повышенной эрозии свечей, то, учитывая преимущества многоискрового зажигания, с ней следует смириться.
Многоискровое зажигание может принести вред лишь в том случае, если искрообразование продолжается в течение всего времени разомкнутого состояния контактов прерывателя . Тогда, действительно, существует опасность возникновения искрового разряда в том цилиндре двигателя, где протекает такт сжатия. Такая возможность может возникнуть, когда ротор распределителя после размыкания контактов повернется на угол, больший чем 45 град.
В описываемом блоке зажигания искрообразование длится около 0,9 мс и даже на максимальной частоте вращения коленчатого вала двигателя прекращается задолго до наступления опасного момента.
Тем не менее те, кто не разделяет моей точки зрения, могут в разрыв цепи диода VD7 блока ввести выключатель. Тогда после запуска двигателя и его прогрева, разомкнув цепь выключателем, всегда можно будет перейти на одноискровой режим работы.
В блоке зажигания использованы резисторы МЛТ-0,125 (R1, R3-R9, R11, R13), МЛТ-2 (R10), МЛТ-1 (R12); резистор R2 составлен из двух по 18 Ом 0,5 Вт. Конденсаторы - МБМ (С3), КМ или КЛС (С5-С7), К50-6 (С4). Диоды КД102А могут быть заменены на КД102Б, КД103А, КД103Б. Вместо КТ603Б подойдут транзисторы КТ603А, КТ608А или любой из серии КТ630.
Трансформатор Т1 собран на магнитопроводе ШЛ8х16 с немагнитным зазором 0,25 мм в каждом из трех стыков. Обмотка I содержит 50 витков провода ПЭВ-2 0,7, II - 450 витков, а III - 70 витков провода ПЭЛШО 0,17.
Все детали блока зажигания размещены в прочной металлической коробке размерами 130x100x50 мм. Монтажную плату и трансформатор крепят к основанию коробки, а транзистор VT1 и стабилитрон VD4 - к ее стенке, которая служит для них теплоотводом. Предохранитель FU1 размещают либо на блоке, либо в ином месте.
Остальные детали монтируют на печатной плате, изготовленной из фольгированного стеклотекстолита толщиной 1,5 мм. Чертеж платы представлен на рис. 2. Нелишне напомнить здесь, что конструкция и монтаж блока должны соответствовать тяжелым условиям его эксплуатации - вибрация, удары, повышенная влажность, брызги воды, топлива и масел, пыль, широкие температурные пределы.


Рис.2
Налаживают блок с помощью осциллографа при подключенных катушке зажигания и запальной свече. Питать блок можно от любого источника постоянного тока напряжением 8. 15 В, способного обеспечить нагрузочный ток до 2 А.
Прерыватель удобно заменить самодельной приставкой, схема которой показана на рис. 3. На вход приставки подают сигнал с выхода любого генератора звуковой частоты, а коллектор транзистора VT1 соединяют с конденсатором С6 узла формирования управляющих импульсов блока зажигания.
При напряжении питания 14,2 В и частоте искрообразования 20 Гц подбирают резистр R3 в пределах от нуля до 30 Ом (удобно на время заменить резистор R3 переменным) так, чтобы амплитуда напряжения на первичной обмотке катушки зажигания находилась в пределах 360. 380 В. Затем проверяют амплитуду пилообразного напряжения на конденсаторе С7. Если она выходит за пределы 18. 20 В, надо уточнить сопротивление резистора R13.
Устанавливают напряжение питания 8 В, измеряют падение напряжения Uу на управляющем переходе тринистора VS1 и падение напряжения UR11 на резисторе R11. Ток открывающего тринистор импульса вычисляют по формуле
Iу.имп=UR11/R11-Uу/R7.



Если измеренные параметры импульса не соответствуют норме - ток 160 мА, длительность не менее 10 мкс на уровне 0,7, подбирают стабилитрон VD9 так, чтобы его напряжение стабилизации было в пределах 5,6. 8 В, и конденсатор С7 до получения необходимой длительности.
Затем снова устанавливают напряжение питания блока 14,2 В и проверяют его работоспособность во всем рабочем интервале частоты искрообразования, т. е. от 20 до 200 Гц. Ток импульса открывания с увеличением частоты уменьшается, причем уменьшение становится заметным лишь после 100 Гц. Это происходит из-за того, что конденсаторы С6 и С7 не успевают зарядиться до установленного уровня.
Далее увеличивают частоту искрообразования до максимально возможной Fmax, при которой блок зажигания перестает работать. Время защиты от импульсов дребезга замыкающихся контактов оценивают по формуле tз.др>1/2Fmax. Согласно [4] это время должно быть не менее 0,2 мс. Регулируют время защиты подборкой резистора R9.
При номиналах деталей, указанных на схеме, параметры блока зажигания при частоте искрообразования 20 Гц и изменении напряжения питания от 8 до 14,2 В должны быть следующими: амплитуда напряжения на выходе преобразователя - 360. 380 В; ток импульса открывания тринистора - не менее 160 мА при длительности импульса не менее 10 мкс на уровне 0,7; время защиты от импульсов "дребезга" контактов - не менее 1 мс. При напряжении питания 14,2 В и частоте искрообразования 200 Гц ток импульса открывания тринистора уменьшался до 55 мА.
Полностью смонтированный блок зажигания устанавливают под капотом автомобиля вблизи катушки зажигания. С системой электрооборудования блок соединяют четырьмя проводами минимальной длины: два - к катушке зажигания, третий - к корпусу, четвертый - к прерывателю.
Конденсатор прерывателя необходимо отключить. Для быстрого возвращения к старому варианту зажигания в случае отказа электронного блока желательно предусмотреть специальный переключатель,

Читайте также: