Ламинатор для печатных плат своими руками

Добавил пользователь Morpheus
Обновлено: 18.09.2024

Войти

Авторизуясь в LiveJournal с помощью стороннего сервиса вы принимаете условия Пользовательского соглашения LiveJournal

Ламинатор для ЛУТ

Ссылка на оригинал статьи - Techno Mind. Комментировать можно здесь.

Всем радиолюбителям известен метод изготовления печатных плат в домашних условиях при помощи лазерного принтера и утюга, именуемый ЛУТ (лазерно-утюжная технология). Для тех кто не знаком с данной методикой, предлагаю тотчас хорошенько загуглить, ознакомиться с ней и взять на вооружение, ибо уже при небольшой сноровке можно добиться впечатляющих результатов, подобных рисунку справа.

В данной статье я хочу предложить метод усовершенствования процесса, позволяющий на порядок улучшить качество получаемых печатных плат, и дорожки шириной 0.2-0.3мм перестанут быть проблемой.

При изготовлении плат методом ЛУТ основная загвоздка заключается в трудности точного переноса рисунка, распечатанного на бумаге, на медную поверхность заготовки. То утюг перегрет, то даванешь чуть сильнее — в итоге расплавленный тонер начинает плыть, соседние дорожки сливаются в одну сплошную, дырочки на пятачках исчезают и т.п. Если же паяльник недогрет, или давление на утюг недостаточно, то рисунок плохо пристает к заготовке, что тоже абсолютно неприемлемо. Конечно через какое-то время придрачиваешься, начинаешь попадать в эту золотую середину, но все равно нутром чуешь, что каждый раз есть небольшая погрешность, не позволяющая выжать максимум. Да и стоит не заниматься изготовлением плат с месяцок, вся приобретенная сноровка куда-то пропадает. Да и вообще, все что делается руками больше 2 раз, должно быть автоматизировано.

В поисках способа избавиться от всех описанных выше трудностей, был найден сайт немецкого радиолюбителя, который придумал и реализовал относительно простой агрегат — решение всех проблем. Идея заключается в использовании ламинатора вместо утюга: равномерное давление валков ламинатора на будущую плату и стабильная идеальная их температура исключают сливание дорожек или их неприлипание. Благодаря своим прорезиненным валкам, он легко справляется с платами самой разной толщины.

Проблема заключается в том, что температура плавления тонеров большинства принтеров не менее 200 градусов Цельсия, что много выше рабочей температуры ламинатора. Кроме того, система контроля температуры ламинатора часто реализована на биметаллических датчиках, что подразумевает довольно большие осцилляции температуры валков ламинатора в процессе работы.

Таким образом задача состоит в том, чтобы взять любой доступный ламинатор, поднять рабочую температуру до стабильных 200 градусов (или около того – зависит от конкретного тонера и определяется экспериментально).

К сожалению, датчики температуры работающие в подобном диапазоне – редкость, и цены на них не радуют. Решение, найденное немцом оказалось очень оригинальным: он предложил использовать в качестве датчика температуры обычный стеклянный диод 1N4148. Падение напряжения на нем, в зависимости от температуры, носит линейный характер. Причем температура в 200 градусов не является запредельной. У немца на сайте есть график вычисленной им зависимости. Вот такой:

Эта зависимость – основа всего проекта!

Простой микроконтроллер Atmel AtMega8 с АЦП на борту решает все проблемы. На основании падения напряжения на диоде, меняющегося в зависимости от температуры валков ламинатора, строится управляющий сигнал ШИМ. Сигнал этот подается на симистор, управляющий, в свою очередь, нагревателями ламинатора.

Схема немца практически не претерпела изменений, так как она близка к идеалу:

Диод-сенсор подключается КАТОДОМ к ЗЕМЛЕ. В гнездо Heater подключается разрыв высоковольтной цепи нагревателей. Соотвественно симистор будет то замыкать, то размыкать цепь.
Мне пришлось только переразвести плату под DIP версию корпуса микроконтроллера AtMega8 и другой корпус симистора, так как тот, что использовал немец я приобрести не смог. Работа была проделана в замечательной программе моделирования и дизайна электронных схем Proteus.
Вот такой родился проект:

Как я уже упоминал, я использовал экзотический симистор. Его можно заменить на любой другой, предназначенный для коммутации нагрузки переменного тока 220В и тока, достаточного для питания конкретного ламинатора. Например мой ламинатор, точно такой как на картинке выше, имеет мощность всего 80Вт и ему достаточно тока менее 0.5А для функционирования. Так что придется вам тоже немного подредактировать разводку платы, или подвесить свой симистор на проводках, короче покреативить.

Не забудьте прошить фьюзы на 8МГц внутренний резонатор чипа (CKSEL0=0; CKSEL1=0; CKSEL2=1; CKSEL3=0).

Теперь наступает самое интересное и важное – доводка схемы (важно дочитать до конца, прежде чем делать поспешные выводы) :

Из-за погрешностей в диоде, возникающих в процессе его производства, падение напряжения на нем, в зависимости от температуры будет разным, для каждого конкретного диода. Поэтому необходимо подкорректировать данные в программе, на основании которых будут производиться дальнейшие вычисления.

Доводка схемы состоит из двух этапов. Для начала необходимо подключить наш новоиспеченный контроллер к RS232 порту компа (через преобразователь уровней, естественно) и запустить терминал (например Putty – прога с недавних пор поддерживает работу с RS232) в режиме Baud Rate 9600, 8 Data bits, 1 Stop bit, No Parity check. При включении контроллера, в терминал начнут посылаться данные в следующем формате:

  • PWM и PWM counter — показывают нам что происходит с ШИМ в данный момент
  • ADC value – показывает нам текущее считанное значение АЦП
  • Current temp measure – текущая температура датчика

Выглядит это вот так:

Для этого сначала посмотр им значение ADC value при комнатной температуре и запишем его на бумажку, вместе с температурой в комнате. Это координаты первый точки на графике.

Затем, присобачим диод-датчик к источнику контролируемой температуры (например, жало паяльной станции), подождем пока он нагреется и запишем новое значение ADC value при значительно более высокой температуре (градусов 200 или 250 например). Это и будет второй точкой искомой прямой.

Внесем обе точки в прогу. В верхней части кода есть такое место:

t1 и v1 это температура и значение ADC value при комнатной температуре, а t2 и v2 при большей.

Теперь прогу надо перекомпилировать и перезашить в микроконтроллер заново.

На этом первая и основная часть доводки завершена.

В верхней части проги есть такая строка:

В ней задается значение желаемой температуры ламинатора. При приближении к данной температуре, вы увидите, как диод на плате контроллера перестанет гореть постоянно и начнет мигать, сигнализируя о том, что теперь питание на нагреватели подается не постоянно, а импульсно. Это и поддерживает температуру на желаемом уровне.

Вам остается лишь пробовать на практике перенести рисунок с бумаги на плату с помощью ламинатора, и найти идеальную температуру работы экспериментальным путем. (Придется каждый раз перешивать контроллер с новой REQUIRED_TEMP. У меня это 195.)

ВАЖНО:

Я выяснил, что в принципе, на первый этап можно забить, поскольку разброс характеристик диодов, даже из разных партий, не столь велик, и можно не нивелировать прямую зависимости, а сразу перейти к подбору подходящего значения REQUIRED_TEMP. У меня это получалось уже после 3-4 перепрошивок микроконтроллера. Вся процедура занимает около 10-15 минут. Радует, что она нужна только 1 раз.

БЕЗОПАСНОСТЬ:

Программа защищена от обрыва в цепи диода и от его короткого замыкания. В обоих случаях нагреватель отключится.

Полезно вставить предохранитель в цепь питания нагревателя.

НЕМНОГО О ЛАМИНАТОРЕ:

Был куплен самый дешевый ламинатор формата А4. Корпус и вся родная электроника и электрика были немедленно демонтированы, а механика привинчена к первой попавшейся доске. На ней же разместилась и плата контроллера.

Родная рабочая температура ламинатора составляла около 130 градусов, тем не менее он уверенно работает при повышении температуры даже до 230 градусов — ничего не дымит и не взрывается. Температура выдерживается очень точно.

Диод-датчик я вымазал в термопасте и металлическим ушком легонько прижал его к кожуху нагревателя на ламинаторе. Важно не сломать корпус диода и не замкнуть его выводы.

Вот как выглядит конечный девайс:

Платы стали выходить идеальными, все как одна. Вот первая, что я сделал на пробу на ламинаторе:

Кстати, симистор был приобретен вот такой (ZG3M-308B Solid State Relay 8A Output 90-480VAC):

Размеры, блин, 46×22х13мм. Монстрик!

Забавно, что в него уже встроен LED, так что он мигает вместе с его коллегой на плате.

Творческих успехов!
Если появятся вопросы — задавайте в комментах. Буду рад ответить! В инете я часто

Многие радиолюбители давно уже применяют технологию термопереноса рисунка печатных проводников, напечатанного на бумаге лазерным принтером, на фольгу заготовки будущей платы с помощью обычного утюга. К сожалению, пользуясь таким инструментом, очень сложно достичь оптимального прижатия бумаги к заготовке платы и идеально выдержать температуру, необходимую для переноса расплавленного тонера на фольгу. Процесс приходится, как правило, много раз повторять, опытным путём добиваясь приемлемого качества рисунка на фольге.

Сегодня у многих радиолюбителей имеются не вполне исправные или морально устаревшие и давно не используемые по назначению лазерные принтеры. Такой аппарат с успехом может послужить основой для изготовления ламинатора, обеспечивающего надёжный и высококачественный перенос рисунка.

Идея изготовить самодельный ламинатор для термопереноса рисунка с бумаги на плату из фольгированного диэлектрика возникла у автора при ремонте очередного лазерного принтера, у которого "печка" для фиксирования тонера на бумаге оказалась очень похожей на ту, что требуется для такого устройства. Оставалось её немного доработать механически, разработать и изготовить электронную часть ламинатора.

Прототипом узла управления ламинатором послужил универсальный микроконтроллерный модуль [1], но использован микроконтроллер с меньшим числом выводов, а графический ЖКИ заменён символьным. Блок сопряжения узла управления с шаговым двигателем, перемещающим пакет из заготовки платы и наложенного на неё листа бумаги с рисунком печатных проводников, выполнен на паре специализированных микросхем L297 и L298N. Изготовлен также симисторный коммутатор нагревателя "печки".

Схема узла управления показана на рис. 1. В нём применён микроконтроллер PIC16F876A-I/SP (DD1), работающий с тактовой частотой 20 МГц, стабилизированной кварцевым резонатором ZQ1. К разъёму X5 при необходимости подключают ЖКИ WM-C0801M (одна строка из восьми символов). Номера контактов этого разъёма совпадают с номерами выводов указанного индикатора. В ламинаторе ЖКИ используется только как технологический. В процессе подборки оптимального режима ламинирования он показывает температуру "печки" и число проходов платы через неё. Для обычной работы прибора ЖКИ не требуется, и его можно не подключать.

Сдвиговый регистр DD2 преобразует сформированный микроконтроллером последовательный код управления ЖКИ в необходимый для работы последнего параллельный. Оптимальную контрастность изображения на экране ЖКИ устанавливают подстроечным резистором R17. Транзистор VT1 посигна-лам микроконтроллера включает и выключает подсветку экрана индикатора.

В процессе работы ламинатора микроконтроллер получает сигналы от двух датчиков. Один из них - оптрон U1 с открытым оптическим каналом - сигнализирует о наличии платы в "печке". Показания другого - датчика температуры DS18B20 (BK1) - нужны для контроля за процессами нагревания и остывания "печки". Кнопки SB1 - SB5 предназначены для управления ламинатором.

Транзистор VT2 по сигналам микроконтроллера включает и выключает соединённый с разъёмом X7 вентилятор (компьютерный габаритами 80x80x20 мм).

Двухцветный светодиод HL1 зелёным свечением показывает, что ламинатор включён и находится в режиме ожидания. Его цвет становится красным во время прогревания "печки", а также, когда пакет из листа бумаги с рисунком печатных проводников и заготовки платы находится в чувствительной зоне оптрона U1.

Для загрузки программы в уже установленный на плате микроконтроллер DD1 к разъёму X4 подключают программатор согласно схеме, изображённой на рис. 2, при этом от разъёма X5 следует
отключить ЖКИ. По завершении программирования для нормальной работы узла управления программатор отключают, а контакты 1, 2 и 8, 9 разъ-ёмаX4 соединяют перемычками S1 и S2 (см. рис. 1).

Чертёж печатной платы узла управления показан на рис. 3, её размеры - 90x79 мм. Оптрон U1 и датчик температуры ВК1 размещены на отдельной плате размерами 80x20 мм (рис. 4) таким образом, что входят в отверстия, имеющиеся в верхней части корпуса "печки". Предназначенный для работы на прерывание светового потока оптрон с открытым оптическим каналом KTIR0621DS (рис. 5) переделан для работы "на отражение". Для этого он разрезан на две части (с излучающим диодом и с фототранзистором), которые смонтированы на плате так, что их излучающее и чувствительное к излучению отверстия направлены в сторону проходящего рядом с датчиком пакета. Для наилучшей чувствительности к отражённым от него лучам угол между излучателем и фотоприёмником нужно подобрать. Поскольку максимальная температура, которую может измерить датчик DS18B20, не превышает 127 °C, а "печка" разогревается значительно сильнее, он должен располагаться на некотором удалении от нагревающихся частей.

Узел управления формирует на разъёме X6 сигнал включения и выключения нагревателя "печки" ламинатора. Однако этот сигнал маломощный, поэтому служащую нагревательным элементом "печки" мощную галогенную лампу соединяют с разъёмом X6 через симисторный коммутатор. Он собран по обычной схеме (рис. 6) на оптроне MOC3063 (U1), обеспечивающем гальваническую развязку цепи управления и включение нагрузки при нулевом мгновенном значении напряжения в сети, и мощном симисторе BT139-800 (VS1).

Печатная плата коммутатора показана на рис. 7.

Разъём X3 узла управления соединяют плоским кабелем с разъёмом X1 блока сопряжения с шаговым двигателем. Схема этого блока изображена на рис. 8.

Подключённый к его разъёмуX2 шаговый двигатель M1 - двухфазный биполярный от лазерного принтера XEROX PHASER 3121. Для преобразования логических сигналов управления в импульсы тока в обмотках двигателя применён распространённый комплект специализированных микросхем L297 (DD1) и L298N (DA2). Это упростило конструкцию блока и уменьшило число компонентов в нём.

От узла управления на разъём X1 поступают сигналы Reset (установка в исходное состояние) и Enable (разрешение работы двигателя), а по каждому импульсу Step двигатель выполняет один шаг в направлении, указанном сигналом Dir. Микросхема dD1 формирует сигналы включения и выключения тока в обмотках двигателя в необходимом порядке. Их доводит до нужного для его работы уровня микросхема DA2.

Диоды VD1-VD8 устраняют выбросы напряжения самоиндукции на обмотках двигателя при их коммутации.

Подключённые к выводам 1 и 15 микросхемы DA2 мощные резисторы R10 и R11 - датчики тока в обмотках. Они дают возможность микросхеме DD1 измерять ток, текущий по этим обмоткам, и с помощью ШИМ управлять его значением. Подстроечным резистором R2 регулируют подаваемое на микросхему dD1 образцовое напряжение Uref, задающее уровень, на котором происходит отсечка тока в обмотках двигателя. Резистор R5 и конденсатор С2 - частотозадающие элементы внутреннего тактового генератора микросхемы DD1.

Съёмными перемычками S1-S3за-дают режимы работы блока. Перемычку S1 устанавливают в положение 1-2, если шаговый двигатель M1 - биполярный, или в положение 2-3, если он униполярный. При перемычке S2 в положении 1-2 двигатель работает в режиме полных шагов, а в положении 2-3 - половинных. Перемычка S3 необходима, если выход подаваемого на блок сигнала Enable выполнен по схеме с общим коллектором (стоком). Подробное описание работы комплекта микросхем L297, L298 можно найти в [2].

В блоке сопряжения находятся также интегральные стабилизаторы DA1 и DA3, обеспечивающие стабилизированным напряжением 5 В и 12 В не только этот блок и шаговый двигатель M1, но и узел управления, а также вентилятор, установленный в корпусе ламинатора. Источником напряжения 15 В для питания ламинатора служит импульсный блок питания от ноутбука, рассчитанный на ток нагрузки 4 А.

Чертёж печатной платы блока сопряжения изображён на рис. 9.

Во всех узлах устройства применены постоянные резисторы МЛТ, С2-33, оксидные конденсаторы К50-35 или импортные, остальные конденсаторы - К73-17. Микросхема DA2 блока сопряжения снабжена теплоотводом из отрезка алюминиевого уголка 20x25 мм с толщиной полок3 мм и длиной 55 мм. В полке уголка, не прилегающей к микросхеме, просверлено для улучшения циркуляции воздуха 12 отверстий диаметром 4 мм. Интегральные стабилизаторы DA1 и DA3 закреплены на таком же, но без дополнительных отверстий, теплоотводе.

Привод шагового двигателя, изъятый из лазерного принтера XEROX PHASER 3121, переделан. Его основание обрезано до размеров 120x70 мм, оси некоторых шестерён аккуратно выпрессованы, в них просверлены отверстия диаметром 2,5 мм и глубиной 10 мм, в которых нарезана резьба М3 для крепления на основании в новых заранее рассчитанных точках. Чтобы уменьшить скорость вращения "печки", добавлены ещё две шестерни. Получившийся привод показан на рис. 10. Его конструкция может быть и другой, всё зависит от наличия деталей для доработки имеющегося привода.

Для ламинатора использован корпус от струйного принтера HP photosmart 7260. Из его нижней половины удалены все ненужные перегородки и установлено основание размерами 300x130 мм из дюралюминиевого листа толщиной 3 мм. На основании закреплены "печка", извлечённая из лазерного принтера XEROX PHASER 3121, и её привод с блоком сопряжения с двигателем, а также блок питания от ноутбука. С "печки" сняты все лишние детали: пластмассовый флажок, перекрывавший оптрон (датчик наличия бумаги), и некоторые другие. Плата датчиков закреплена винтом в верхней части "печки", причём датчики входят в имеющиеся там отверстия.

В левой части корпуса находится плата узла управления. Расположена она так, чтобы установленными на ней кнопками можно было управлять с помощью старых предусмотренных в использованном корпусе клавиш. Собранный ламинатор без верхней откидывающейся крышки показан на рис. 11. На этой крышке закреплён вентилятор. Для забора наружного воздуха в ней сделано круглое отверстие.

При первом включении узла управления происходит проверка EEPROM микроконтроллера DD1 на отсутствие информации. Если энергонезависимая память чиста (заполнена кодами 0FFH), то в неё переписываются из программ

ной памяти значения необходимых параметров, принимаемые по умолчанию. Если информация в EEPROM уже имеется, то на этапе инициализации она не изменяется и используется программой в дальнейшей работе. В процессе работы значения хранящихся в EEPROM параметров можно корректировать, подбирая нужный режим ламинирования. Откорректированные значения сохраняют в EEPROM нажатием на кнопку SB4.

Во время инициализации микроконтроллера включён красный кристалл светодиода HL1. По её окончании он выключается, а зелёный кристалл включается - ламинатор готов к работе. Процесс ламинирования запускают нажатием на кнопку SB5. При этом "печка" начинает вращаться назад и включается её нагреватель. О процессе разогрева сигнализирует красное свечение светодиода.

Достаточно прогревшись, "печка" начинает вращаться вперёд, вновь включается зелёный кристалл светодиода. Теперь в неё можно подать пакет из фольгированного стеклотекстолита и наложенного на него листа бумаги с рисунком будущих печатных проводников. Я печатаю этот рисунок на бумаге плотностью 230, предназначенной для фотопечати на струйном принтере.

Когда пакет входит в чувствительную зону оптрона-датчика его наличия в "печке", включается красный кристалл светодиода, а программа микроконтроллера ждёт выхода пакета из чувствительной зоны, после чего цвет свечения светодиода становится зелёным. Поскольку оптический датчик расположен на некотором расстоянии от середины "печки", для завершения прохода через неё пакета шаговый двигатель делает заданное число дополнительных шагов. По умолчанию - 1100, но при повторении конструкции "печка" и её привод могут быть другими, так что это число придётся подобрать экспериментально.

Затем направление движения пакета изменяется на противоположное, и он проходит "печку" в обратном направлении до входа, а затем выхода из зоны действия датчика. По умолчанию задано пять проходов пакета через "печку", в моём варианте это обеспечивает очень хорошую адгезию тонера к фольге.

Число проходов можно увеличить нажатиями на кнопку SB2 или уменьшить, нажимая на кнопку SB3. Если же нажать и удерживать одну из этих кнопок более 3 с, она станет изменять число дополнительных шагов. Возврат в режим изменения числа проходов произойдёт при нажатии на любую другую кнопку. Когда завершится последний проход, "печка" будет выключена, пакет выведен из неё, включён вентилятор для охлаждения "печки". Пакет можно оставить в ламинаторе, чтобы он тоже остыл. Определив по показаниям датчика температуры BK1, что "печка" достаточно остыла, программа микроконтроллера выключит вентилятор, привод вращения "печки" и включит зелёный кристалл светодиода.

Как правило, бумага легко отделяется от остывшей заготовки платы без отмачивания, после чего можно сразу переходить к травлению фольги. Проводники шириной 0,3 мм и более (меньше не пробовал) получаются очень хорошо.

Чтобы прервать начатый процесс ламинирования до его автоматического завершения, следует нажать на кнопку SB1. При этом будет выключен нагреватель, включён вентилятор, а "печка" станет вращаться назад, выводя пакет наружу. Этот режим выключается автоматически по показаниям датчика температуры BK1 или вручную нажатием на кнопку SB1.

Налаживание устройства начинают с регулировки контрастности ЖКИ резистором R17 на плате управления и установки номинального тока шагового двигателя подстроечным резистором R2 на плате блока сопряжения с шаговым двигателем. В моём варианте напряжение, поступающее с движка этого резистора на вывод 15 микросхемы L298N, равно 1 В.

Угол между оптическими осями излучающего диода и фотодиода оптрона с открытым каналом U1 (см. рис. 1 и рис. 4) подбирают по минимуму показаний вольтметра, подключённого между выводами 2 и 3 разъёма X1 узла управления при соединённых с этим узлом датчиках и вставленном в "печку" листе белой бумаги.

После того как ламинатор собран и заработал, устанавливают методом проб и ошибок число дополнительных шагов двигателя, необходимых, чтобы изготавливаемая плата проходила всю "печку", но не выпадала их неё, и число проходов платы через "печку", обеспечивающее наилучшую адгезию тонера к фольге.

Файлы печатных плат в формате Sprint Layout и программу микроконтроллера ламинатора можно скачать здесь.

2. ВильямсДж. Программируемые роботы. Создаём робота для своей домашней мастерской - М.: НТ Пресс, 2006.

ламинатор своими руками

В повседневной жизни периодически возникает необходимость в ламинировании бумажных носителей. Очень часто это могут быть документы, детские развивающие задания, настольные игры, визитки и т. д. В процессе частого использования листы бумаги с важной информацией приходят в негодность. Попробуем разобраться, как заламинировать тот или иной бумажный носитель в домашних условиях, что для этого потребуется и насколько процесс окажется трудоемким.

Материалы и инструменты для изготовления ламинатора

Изготовление планшетного либо рулонного ламинатора своими руками — процесс трудоемкий и довольно длительный. Чтобы его начать, необходимо приобрести все необходимые инструменты и материалы. Для работы понадобится следующее.

  • Профильные направляющие: рельсы, строительный профиль либо квадратная металлотруба.
  • Система пневматики — верхняя.
  • Вал диаметром 80 мм.
  • Регулятор давления.
  • Стекло толщиной 12 мм.
  • Статический ионизатор воздуха (для того чтобы пыль к пленке не притягивалась).

Совет! Неисправный принтер может стать хорошей основой для изготовления ламинатора.

Как сделать планшетный ламинатор

из принтера

Приступаем.

  • Разрезаем 40 м трубы, скручиваем посредством мебельных уголков, меряем, проводим ревизию. Существенная нагрузка происходит в промежутке вала, привода и столешницы.
  • В качестве направляющей привариваем к столу квадратную трубу, а каретка должна ездить на подшипниках. Давление регулируется редуктором.
  • Столешницу выбираем из ЛДСП либо из стекла, что гораздо надежнее.

Совет! Из-за своего тяжелого веса и высокой плотности стекло можно не прикручивая положить на станину, при этом изолируя металл.

  • Станину собираем из трубы 3000х1300. Скручиваем на уголки, в качестве подставки можно взять старый стол. Для большей надежности лучше всего проварить все трубы аргоном.
  • Портал варим из швеллера 80 мм, таким образом крепить цилиндры проще.
  • Под станиной прикручиваем рельсы, на концах следует расположить стопора.
  • Фиксируем вал. В случае если вал у вас ровный и гладкий (как полированный), можно давить 3–5 кг/см². А когда есть небольшие неровности на материале или на валу, можно придавить до 8 кг/см2.
  • Приобретем пленку для ламинирования, более всего подойдут наборы формата А4. Вполне подойдет пленка толщиной 75–80 микрон.
  • Нагреваем утюг до средней температуры, не выше. Так как есть риск, что вся пленка пойдет пузырями.
  • Лист бумаги вкладываем в кармашек.
  • Медленно, начиная с места соединения пленки, проглаживаем, при этом выгоняя воздух.
  • Движения повторяем с одной стороны, затем с другой.

Советы по ламинированию утюгом

Остывшая пленка становится прозрачной и дарит документам дополнительную прочность. Дабы обезопасить себя и изделие, можно между утюгом и пленкой вложить лист белой бумаги. Вырезаем изделие на специально предназначенной канцелярской подкладке. Для этого нам понадобится канцелярский нож и металлическая линейка. Закругленные уголки можно обрезать ножницами для маникюра.

Появился воздушный пузырь? Если пленка еще горячая, можно попробовать аккуратно провести по ней мягким куском материи, и она приклеится. Если такой способ не помогает, остается проколоть пузырь иголкой и снова провести по этому месту утюгом.

В данной статье я хочу изложить порядок действий, которые позволят быстро изготавливать ПП под компоненты в корпусах подобных TQFP-100, то есть с ногами 0,2мм и таким же зазором, и при этом сводить брак к минимуму.

Конечно это способ изготовления плат только для прототипов, но он снижает риски ошибиться при создании конечного устройства.

В сети много статей и роликов с подобными советами, но как правило там не охвачены все нюансы тех или иных действий. Здесь же хочу показать весь процесс, который в домашних условиях позволит за час-полтора изготовить приемлемый экземпляр ПП.

Под катом подробности и трафик.

Минимальный набор материалов:

image

Весть процесс покажу на изготовлении ПП под оценочную плату микросхемы ATxmega128A1U-AU (оценка заявленного аппаратного крипто модуля, EBI и вообще), и платы для подключения 7 дюймового дисплея к STM32F407VE

Для оценочных плат стараюсь делать разводку только на одной стороне, там где пересечений не избежать, ставлю резистор с сопротивлением=0 и корпусе 0805, пропуская дорогу под ним. Если пересечений много и точно нужно два слоя, то травлю каждый слой на отдельном текстолите (соединяю потом по VIA).

Первый этап

Односторонний текстолит с толщиной меди 17-35мкм отмывается от грязи средством для посуды под теплой водой, потом капля моечного средства наносится на шкурку с зерном P800 или меньше и будущая плата шлифуется до образования шероховатостей по всей площади. Момент со шкуркой обязателен! Таким способом медь до дыр не затрем, но обеспечим хорошее прилипание тонера. После шлифовки поверхность промывается чистой водой, вытирается насухо и откладывается досыхать.

К моменту переноса макета, текстолит должен быть сухой, без окислов, жирных пятен и заметными шероховатостями.

В одной из статей видел рекомендацию, что медный слой надо подержать на солнце, до появления сизой оксидной пленки, в нашем случае это не нужно.

Второй этап

Для ATxmega128 сделал такую вот разводку:

image

Все дороги на верхнем слое (TOP), поэтому печатаем макет в отзеркаленном виде.

Никаких глянцевых журналов и подложек от самоклейки!

И даже от китайской бумаги для ЛУТа я тоже отказался (слишком тонкая и мнется при печати)
Бумага должна быть плотной — минимум 150гр на квадратный сантиметр, должна быстро прилипать при нагревании и не ёрзать под утюгом, хорошо набухать в воде.

Итак пора печатать. Печатаем макет, потом, не касаясь лицевой стороны пальцами, обрезаем края. и готовим утюг.

Третий этап

Необходимо сначала подготовить емкость с водой, в которой будет замачиваться плата. У меня роль этой емкость выполняет обычный тазик. Наливается горячая вода ( градусов 50, то есть чтобы рука уже не терпела), литров пять, и в ней растворяется немного моющего средства (немного, это столовая ложка).

Подготовленный текстолит кладем на ровную поверхность и накрываем распечатанным макетом, утюгом прогретым до максимальной температуры проглаживаем по центральной линии, а потом от центра к бокам. При первом проглаживании распечатку лучше придерживать, чтобы не сдвинулась. После первого проглаживания лист фотобумаги прилипает к меди и сдвинуть его утюгом уже можно не бояться. Теперь можно носиком утюга пройтись по всем краям и местам, где на вид бумага отходит. Потом секунд тридцать просто прогреваем по всему объему.

Не смог удержаться чтобы в статье про ЛУТ не показать главное действующее лицо:

image

После проглаживания, не остужая кидаем плату воду. То есть не удаляя бумагу, подхватываем горячую пинцетом и кладем в подготовленную емкость с водой. 10 минут перерыв на отмачивание.

Четвертый этап

Очистка от бумаги.

По истечении 10 минут достаем плату из воды и удаляем бумагу. Как бы долго плата не лежала в воде, вся бумага не отстанет. Точнее сама то бумага без проблем, а вот глянцевый слой, который нам обеспечивал хорошее прилипание останется в узких местах.

image

Вообще тонер держится очень надежно, тереть можно пальцами, ластиком или губкой для мытья посуды, но между дорожками вытащить глянец сложно, достаточно дать плате высохнуть, как такие места будут видны.

Пример из практики:

image

image

Почти специально оставил несколько мест, где глянец не удален (потом увидим, что не так все страшно).

Пятый этап

Травлю персульфатом аммония, не скажу, что он лучше хлорного железа, просто от железа больше грязи (ну да, персульфат аммония это же отбеливатель, какая тут грязь) и хлорное железо труднее хранить — гигроскопичен и как следствие сплавляется в большие куски, которые надо дробить.

Травлю при температуре 40 градусов. На плату с медью 35мкм — 15 минут, С медью 17мкм — 5 тире 7 минут. Можно и при комнатной температуре 17мкм травится порядка 20 минут, 35мкм в теории 40 минут, но это уже и не помню.

В домашних условиях можно травить в любой емкости, для этой статьи специально травил в обычной пластиковой емкости, что накладывает определенные дополнительные действия от исполнителя. Но если ПП делаются часто, то можно заделать себе ванночку для травления:

image

Внутри емкости перегородки, для размещения нескольких ПП.

image

На фото травятся две стороны платы под STM32F407VE подключаемую к семи дюймовому дисплею.
Под xmega вытравлю в открытой пластиковой.

Делаем раствор — пол литра воды плюс 100-150г персульфата аммония. Вообще рекомендуется 250 грамм на пол литра, но в кустарных условиях при остывании раствора и испарении воды, выпадают кристаллы и намертво прилепляются на медь, как итог непротравленные точки.
Как писал выше — температура 40 градусов.

Кидаем в раствор плату и начинаем кисточкой перемешивать раствор, чтобы травление шло равномерно. Также кисточкой можно удалять с платы хлопья глянцевого покрытия, если при подготовке не все удалились.

У меня плата с медью 35мкм, через 10 минут уже видно текстолит:

image

Жду еще 5 минут и все готово.

Надо сказать, что в процессе травления лучше передержать плату, чем недодержать. И дополнительное время может быть довольно большим. Один раз я увидев недотравленный полигон закинул платку обратно и забыл про нее часа на три, когда вспомнил, думал что ее разъело насквозь. Однако ни одного подтравливания не заметил:

вот этот передержанец (уже облуженный):

image

Итак, вытащили нашу плату, помыли и посмотрели на свет:

image

Если нашли лишнюю медь, то можно кинуть обратно в раствор.

Если все хорошо, то ЛУТ окончен!

Смываем ацетоном тонер и облуживаем, если в ближайшее время облуживание не предусмотрено, то хранить плату можно не смывая тонер, он будет защитной оболочкой.

image

Выше я помечал места на плате, где глянцевое покрытие осталось. Те места, которые глянец закрывал герметично (уголок на плате), там не протравилось, там где небольшие перекрытия между дорожками — все нормально, раствор туда пробрался. Если использовать емкость с насосом, то глянцевое покрытие можно вообще до конца не оттирать, просто время травления увеличивается в два раза.

Пара фраз о лужении. Поскольку ЛУТом делаются платы временные или для себя, то особо возиться с облуживанием не стоит (ИМХО), можно просто пройтись паяльником по тем местам где будет пайка, а потом все покрыть лаком.

Но если компоненты на плате будут перепаиваться или плата будет долгое время эксплуатироваться, то лучше залудить. Либо паяльником пройти по всей меди, либо если есть фен, то паяльной пастой.

Я мешаю пасту с флюсом примерно 1 часть пасты и 5 частей флюса, покрываю всю плату и прогреваю феном:

image

image

Главная проблема при использовании паяльной пасты, это лишние шарики, присохшие к плате. Вот на фото их хорошо видно:

image

Поэтому после лужения, плату надо хорошенько промыть и оттереть тряпочкой, смоченной в ацетоне.

Плату облудили, теперь точно все. Монтаж. Проверка:

image

Задача выполнена. На данную плату ушло не больше часа (с учетом фотографирования этапов).

Параллельно у меня травилась вторая плата, точнее две стороны одной платы. И если первая платка была скорее для демонстрации (можно было и на DIP переходнике выполнить, а не подобие ардуины делать), то вторая нужна была для конкретной цели и плести косы проводов на переходнике не вариант (да еще не факт, что помех не нахватает при подключении через fsmc)

image

Как видно, я не стал травить двухсторонний текстолит, проходя убийственную процедуру совмещения двух шаблонов на этапе работы утюгом. Лучше это сделать сейчас.

Сверлим отверстия на VIA у всех плат, берем ножки от резисторов и штук 5 припаиваем к одной стороне, потом нанизываем на них вторую сторону, пропаиваем с двух сторон. Все платы совмещены! Теперь можно пропаять все отверстия.

image

Вы, должно быть заметили сильный брак на одной из сторон:

image

Бумага после принтера наэлектролизована и собирает на себя все подряд. Особенно волосы, особенно кошачьи! Так что я не досмотрел.

А вот и виновник:

image

Контролирует все выполняемые процессы.

После восстановления дорожки, ПП готова и устройство собралось:

image

Правда, это была плата как раз временная — проверить правильность подключений, чтобы потом развести по-человечески и заказать.

Читайте также: