Кроссовер для сабвуфера своими руками

Добавил пользователь Владимир З.
Обновлено: 18.09.2024

Сегодня сабвуфер — неотъемлемая часть любого домашнего кинотеатра. Впрочем, не только домашнего. В публичных кинотеатрах тоже стоят сабвуферы. Их задача с максимальной реалистичностью воспроизводить звуки выстрелов, взрывов, грохота проползающего по экрану танка или проплывающего в экранном холодном космическом пространстве межзвездного галактического имперского крейсера. Да, да, я знаю, что крейсеры в космическом пространстве проплывают бесшумно, но у Джорджа Лукаса, который снял потрясающую киноэпопею "Звездные войны" на этот счет совершенно другое мнение. И это правильное мнение, поскольку одно дело смотреть на безмолвный имперский крейсер, а другое — слышать и даже ощущать проход мощной машины. Да, про ощущать я не оговорился, ибо низкочастотные вибрации, создаваемые мощным сабвуфером ощущаются буквально всем телом.

Собственно, сам сабвуфер является мощным низкочаcтотным динамиком, подключенным к специальному сабвуферному каналу многоканальной системы усилителей. Сабвуферный канал при записи звуковой дорожки к фильму пишется отдельно, так что вся информация в нем содержащаяся — это исключительно о том, где и когда надо бахнуть и с какой силой. Но это в случае цифровой записи сигнала. При аналоговой записи-воспроизведении сигнал сабвуферного канала может выделяться из общего сигнала фонограммы при помощи специального Фильтра Низких Частот — ФНЧ.

В общем случае именно ФНЧ формирует сигнал сабвуферного канала и именно от его параметров зависит насколько мощно, сочно, четко будет бабахать сабвуфер. Разумеется, не только от ФНЧ, но и от акустического оформления самого сабвуфера зависит насколько высоко вы будете подпрыгивать в кресле от очередного киношного выстрела или взрыва, но сейчас мы рассмотрим именно ФНЧ.

Два самых главных параметра ФНЧ называются: частота среза и крутизна спада.

Начнем с первой.

Дело в том, что динамик сабвуфера большой, тяжелый, неповоротливый, чаще всего с огромным диффузором, который призван создавать большое звуковое давление, вдавливающее зрителя в кресло. Амплитуда колебаний этого диффузора должна быть достаточно велика, поэтому на сабвуфер подается очень приличная мощность от выходного усилителя. Если мы не отфильтруем ВЧ составляющие сигнала, подаваемого на динамик, то просто спалим его, ибо он физически не сможет так быстро двигаться, в результате чего катушка динамика перегреется и разрушится.

Таким образом, наш ФНЧ занимается тем, что просто отрезает от входного сигнала ненужные для сабвуфера куски частотного диапазона и на выходе оставляет только те, которые не угробят сабвуфер и будут эффективно им воспроизводиться.

Посмотрим на амплитудно-частотную характеристику ФНЧ (ура, первая картинка!):

Итак, частота среза, выражаясь человеческим языком — это та частота, за которой амплитуда выходного сигнала резко падает. Посмотрите на левую картинку — так должен выглядеть идеальный ФНЧ — до определенной частоты сигнал есть, после нее — сигнала нет. Но реальность, как обычно, несколько хуже. На правой картинке показана работа реального ФНЧ. Частота, на которой уровень выходного сигнала ослабляется на 3дБ называется частотой среза ФНЧ — Fср. на картинке. Как видно по правой картинке, реальный ФНЧ ослабляет сигнал за частотой среза не сразу, а постепенно и тут у нас есть возможность перейти ко второй основной характеристике ФНЧ — крутизне спада.

Общеизвестно, что погоня за идеальным — самая большая ошибка человечества. Тем не менее, человечество не перестает за ним гнаться, набивая по пути знатные шишки.

С ФНЧ такая же история. Как вы видите на картинке выше, у идеального ФНЧ АЧХ поворачивает на 90 градусов на частоте среза, то есть, ни одна капелька сигнала за частотой среза не появится на выходе ФНЧ. Это — идеальная крутизна спада ФНЧ.

У любого реального ФНЧ данная характеристика более пологая и никогда не станет идеальной, но может максимально к ней приблизиться.

Посмотрим на второй рисунок — на нем отображены крутизна спада ФНЧ в зависимости от так называемого порядка ФНЧ — числа звеньев, из которых состоит фильтр.

Чем больше звеньев в ФНЧ, чем ближе его АЧХ к идеальной. Но тут надо заметить, что увеличение числа звеньев фильтра приводит к его схемотехническому усложнению и как следствие, увеличению количества электронных компонентов, из которых сделан фильтр, а следом и цены этого устройства. Помимо этого, разумеется, растут шум, искажения, уменьшается амплитуда выходного сигнала.

Простейшее звено ФНЧ выглядит следующим образом:

Это пассивный ФНЧ первого порядка. Включая такие звенья последовательно можно добиться весьма существенной крутизны спада. Но при этом, как уже отмечалось выше, существенно растут шумы и искажения в звуковом тракте. Более того, для согласования входного и выходного сопротивления такого фильтра необходимо на входе и выходе ФНЧ устанавливать буферные усилители. В противном случае сопротивление источника сигнала и сопротивление нагрузки фильтра будет существенно влиять на частоту среза.

Поэтому, чаще всего для построения ФНЧ используют схемы активного фильтра на операционных усилителях.

Вот, например, активный ФНЧ второго порядка:

Не смотря на простоту самого фильтра необходимо помнить о буферных усилителях, которые нужны и для этого типа ФНЧ. Да и к тому же, 2 порядок — это как-то маловато, а значит, нужно последовательное включение двух таких фильтров.

В общем, схема разрастется прилично.

Более того. Если вы только начинаете заниматься сабвуферами и всем, что с ними связано, непременно начнете читать профильные сайты и форумы, где обсуждаются те или иные способы построения ФНЧ. И тут выяснится, что помимо всего прочего есть фильтр Чебышева, фильтр Баттерворта, эллиптический фильтр, фильтр Саллена-Ки. И у каждого схемного решения есть свои плюсы и минусы. Честно говоря, закопаться можно запросто.

Видимо, поглядев на все это в древнерусской тоске, тайваньская компания PTC почесала в затылке и выпустила отличную микросхему — PT2351 – фильтр НЧ Саллена-Ки третьего порядка.

Активный кроссовер для биампинга содержит два фильтра — фильтр нижних частот (ФНЧ — Low Pass) и фильтр верхних частот (ФВЧ — High Pass). Он разделяет входной сигнал на две полосы частот. Каждая полоса усиливается своим усилителем и подается на свой динамик. В результате получается биампинг, который создает очень хороший правильный звук.

Схема практически не изменилась (это один канал стерео варианта), в кроссовере используются фильтры Баттерворта 3-го порядка ВЧ и НЧ:

Кроссовер для биампинга схема

Схема кроссовера

Использование именно активного кроссовера для биампинга очень выгодно, а применение фильтров Баттерворта позволяет получить такие преимущества:

С0 [мкФ] = (4…5) / Fmin [Гц]

Это для значения 47 кОм, если R0 имеет другое значение, то во сколько раз R0 больше, чем 47 кОм, во столько же раз С0 должен быть меньше, чем по формуле, и наоборот. Частоту среза лучше выбирать раза в 2…3 ниже, чем самая низкая рабочая частота вам требуется. Исключение составляют случаи, когда ну очень нужно обрезать низкие частоты, то в формулу подставляем нижнюю рабочую частоту.

Номиналы некоторых деталей не указаны — они зависят от частоты среза фильтров. Сами фильтры можно рассчитать по этой программе расчета кроссовера. Только нужно, чтобы сопротивления резисторов лежали в пределах 10 кОм…1МОм (тогда будет меньше помех и влияния кроссовера на другие блоки).

Для себя я сделал фильтр с частотой раздела около 2,5 кГц. Вот его АЧХ — идеал! Я использовал это кроссовер для биампинга в своем ресивере, при помощи которого я смотрю кино и слушаю музыку. Про это можно почитать и посмотреть фотографии на странице Биампинг фронтальных каналов ресивера.

Я измерял АЧХ по старинке, при помощи генератора (с низкими искажениями), частотомера и электронного вольтметра. Точки, в который производились измерения показаны на линиях (черным и голубым цветом). Суммарная электрическая АЧХ — практически идеальная прямая с неравномерностью не более +-0,05 дБ.

Конденсаторы желательно по возможности подобрать по емкости, но я, например, сильно не усердствовал, более-менее близкие, и все тут. Резисторы я вообще не подбирал, и вот что получилось при рассматривании через микроскоп:

Очень хорошо. Неравномерность АЧХ фильтра НЧ в диапазоне от 20 Гц не более 0,3 дБ! Ниже частоты 50 Гц влияет входной конденсатор С0, а выше частоты 1000 Гц — это уже начинается нормальный спад фильтра НЧ.

Кроссовер для биампинга печатная плата

Микросхемы и конденсаторы находятся с верхней стороны платы, резисторы (кроме R7) — с нижней.

Очень важный момент: плата двухсторонняя и отверстия имеют сквозную металлизацию. В любительских условиях ее сделать практически невозможно, а без металлизации может быть непропай и неконтакт.

Вот АЧХ динамиков в ближнем поле, каждый из которых подключен к своему собственному усилителю, а усилители включены через этот кроссовер. При измерении работали оба динамика, поэтому сигнал ВЧ присутствовал при снятии НЧ характеристики и наоборот, создавая некоторые помехи. Но эти помехи весьма малы. Суммарная АЧХ (вычисленная) — очень ровная. Видно, что у НЧ динамика на частоте 5…7 кГц резкий выброс, связанный с переходом диффузора в зонный режим работы. Фильтра 3-го порядка этот выброс успешно подавляет (на самом деле выброс еще меньше, это еще из ВЧ динамика сигнал попадает). Попробуйте так настроить пассивный фильтр! И учитывайте, что настолько сильно подавить выброс фильтром 2-го, а тем более 1-го порядка не получится!

Тестовые прослушивания были очень успешными: заслушивался! Вот сравнение АЧХ одной и той же колонки (колонка на своем штатном месте, микрофон в точке прослушивания) со встроенным пассивным кроссовером, и при биампинге с активным кроссовером (это другая колонка с другими динамиками). Волнистость АЧХ — влияние помещения (надо сказать вполне неплохое), а спад ниже 800 Гц — особенности измерения.

Активный кроссовер для биампинга

У пассивного кроссовера (красная линия) есть провал на границе стыковки полос 2…4 кГц. А у активного кроссовера такого провала нет!

Конечно, мне могут сказать, что кривоватая АЧХ с пассивным кроссовером (провал в области 2…6 кГц) — следствие недостаточно тщательной настройки пассивных фильтров. Я не отказываюсь! Еще пара недель настройки и возможно было бы лучше. На самом деле, настройке пассивного кроссовера сильно мешала зависимость сопротивления и индуктивности динамиков от частоты (а они еще и от амплитуды зависят!). Активный кроссовер параметры динамика вообще не чувствует, поэтому АЧХ получается наилучшей. Кроме того, если вспомнить, сколько для пассивного фильтра пришлось доматывать и отматывать катушки и параллелить конденсаторы! Жуть! А тут сразу раз, и заработало! Нужно было только выбрать частоту раздела, и подкрутить подстроечник, чтобы установить уровень на ВЧ.

PS. У меня есть платы промышленного изготовления, как заказать, см. Купить печатную плату.


Когда мы говорим “Фильтр для сабвуфера” – имеется в виду активный фильтр нижних частот. Он особенно полезен при расширении стереофонической звуковой системы на дополнительный динамик воспроизводящий только самые низкие частоты. Данный проект состоит из активного фильтра второго порядка с регулируемой граничной частотой 50 – 250 Гц, входного усилителя с регулировкой усиления (0.5 – 1.5) и выходных каскадов.

Конструкция обеспечивает прямое подключение к усилителю с мостовой схемой, так как сигналы сдвинуты относительно друг друга по фазе на 180 градусов. Благодаря встроенному источнику питания, стабилизатору на плате, можно обеспечить питание фильтра симметричным напряжением от усилители мощности – как правило это двухполярка 20 – 70 В. Фильтр НЧ идеально подходит для совместной работы с промышленными и самодельными усилителями и предусилителями.

Принципиальная схема ФНЧ

Схема фильтра для сабвуфера показана на рисунке. Работает он на основе двух операционных усилителей U1-U2 (NE5532). Первый из них отвечает за суммирование и фильтрацию сигнала, в то время как второй обеспечивает его кэширование.

Фильтр НЧ для сабвуфера своими руками

Принципиальная схема ФНЧ к сабу

Стереофонический входной сигнал подается на разъем GP1, а дальше через конденсаторы C1 (470nF) и C2 (470nF), резистора R3 (100k) и R4 (100k) попадает на инвертирующий вход усилителя U1A. На этом элементе реализован сумматор сигнала с регулируемым коэффициентом усиления, собранный по классической схеме. Резистор R6 (27k) вместе с P1 (50k) позволяют провести регулировку усиления в диапазоне от 0.5 до 1.5, что позволит подобрать усиления сабвуфера в целом.

Резистор R9 (100k) улучшает стабильность работы усилителя U1A и обеспечивает его хорошую поляризацию в случае отсутствия входного сигнала.

Сигнал с выхода усилителя попадает на активный фильтр нижних частот второго порядка, построенный U1B. Это типичная архитектура Sallen-Key, которая позволяет получить фильтры с разной крутизной и амплитудной. На форму этой характеристики напрямую влияют конденсаторы C8 (22nF), C9 (22nF) и резисторы R10 (22k), R13 (22k) и потенциометр P2 (100k). Логарифмическая шкала потенциометра позволяет добиться линейного изменения граничной частоты во время вращения ручки. Широкий диапазон частот (до 260 Гц) достигается при крайнем левом положении потенциометра P2, поворачивая вправо вызываем сужения полосы частот до 50 Гц. На рисунке далее показана измеренная амплитудная характеристика всей схемы для двух крайних и среднего положения потенциометра P2. В каждом из случаев потенциометр P1 был установлен в среднем положении, обеспечивающим усиление 1 (0 дб).

Фильтр НЧ для сабвуфера своими руками

Фильтр НЧ для сабвуфера своими руками

В фильтре используется простой блок питания с двухполярным напряжением, основанный на стабилитронах D1 (BZX55-C16V), D2 (BZX55-C16V) и двух транзисторах T1 (BD140) и T2 (BD139). Резисторы R2 (4,7k) и R8 (4,7k) представляют собой ограничители тока стабилитронов, и были подобраны таким образом, чтобы при минимальном напряжении питания ток составлял около 1 мА, а при максимальном был безопасен для D1 и D2.

Элементы R5 (510 Ом), C4 (47uF/25V), R7 (510 Ом), C6 (47uF/25V) представляют собой простые фильтры сглаживания напряжения на базах T1 и T2. Резисторы R1 (10 Ом), R11 (10 Ом) и конденсаторы C3 (100uF/25V), C7 (100uF/25V) представляют собой также фильтр напряжения питания. Разъем питания – GP2.

Подключение сабвуферного фильтра

Фильтр НЧ для сабвуфера своими руками

Стоит отметить, что модуль фильтра для сабвуфера должен быть присоединен к выходу предварительного усилителя после регулятора громкости, что позволит улучшить регулировку громкости всей системы. Потенциометром усиления можно отрегулировать соотношение громкости сабвуфера к громкости всего сигнального тракта. К выходу модуля необходимо подключить любой усилитель мощности, работающий в классической конфигурации, например такой. При необходимости используйте только один из выходных сигналов, сдвинутых по фазе на 180 градусов относительно друг друга. Оба выходные сигнала можно использовать, если нужно построить усилитель в мостовой конфигурации.

Кроссовер для акустики

Как сделать кроссовер для акустики

Собрать подобную конструкцию достаточно просто, главное знать секреты сборки. Подобный кроссовер имеет два основных преимущества:

  • Экономия средств. Качественное устройства стоит достаточно дорого, чего не скажешь о самодельном варианте.
  • Увлекательный процесс сборки. Поэтапно собирая детали, можно разобраться в работе прибора. Это облегчит ремонт деталей при последующей поломке.

Схема кроссовера

Схема кроссовера

В первую очередь проверяются параметры динамиков, их частота и уровень чувствительности. После чего, подбирается электрическая схема для подключения механизма. Предпочтительнее выбрать фильтры второго порядка, так, как параметры частоты увеличиваются в небольших салонах автомобилей.

Если использовать фильтр первого порядка при подключении динамиков для воспроизведения высоких частот, возникает шипение, а низко частотные усиливают яркость звука. В совокупности получается неразборчивое и непонятное звучание. Хотя в больших салонах это менее заметно.

Катушка индуктивности

Необходима для подавления помех. Для ее изготовления понадобится изолированный проводник, который следует намотать. В случае с низко частотными динамиками используется медная проволока толщиной 1мм, покрытая специальным изоляционным слоем. Наматываемые спирали закрепляются клеем

Применение ферритовых сердечников уменьшает массу и габариты устройства. Сокращаются расходы проволоки, цена которой достаточно высока. Также увеличивается открытое сопротивление катушки. Полученную индуктивность легко регулировать специальным измерительным устройством.

Как сделать печатную плату

Пластина из пары проводящих рисунков, которые расположены на плоскости диэлектрического основания. Сделать плату самостоятельно можно в несколько этапов. Сначала нанести изображение платы на бумаге. При чертеже важно отталкиваться от размеров готового резистора и намотанных катушек. Перенести плату на специальный материал (стеклотекстолит, покрытый слоем медной фольги). Затем подготовить отверстия для подсоединения проводов к деталям. Удалить поверхностный слой панели протравливанием. Для этого в макет устройства добавляется раствор с хлорным железом.

Сборка и подключение кроссовера: пошаговая инструкция

Сборка и подключение кроссовера: пошаговая инструкция

Процесс сбора и подключения кроссовера проводится в следующем порядке:

  1. Приклеиваются подушки индуктивности с помощью хорошего клея. Не стоит забывать о конденсаторе, для того, чтобы при тряске и сильных вибрациях детали не отпадали.
  2. При соединении акустических проводов стандартным паяльником соблюдать полярность. Не перепутать входы низко и высоко частотных динамиков, так, как чувствительность последних выше, чем у низко частотных.
  3. Провода дополнительно проклеиваются для защиты от повреждений при тряске.
  4. Устройство готово к подключению. Для того, чтобы убедится в правильной передаче сигнала делается пробное подключение.
  5. Можно включить резистор при необходимости.
  6. Прибор готов к использованию.

Представленная выше инструкция позволяет собрать конструкцию быстро и без лишних затрат. При работе необходимо соблюдать точную последовательность, а детали должны быть правильно подобраны. Это важно для длительной и качественной работы кроссовера.

Читайте также: