Коагулянт для аквариума своими руками

Обновлено: 02.07.2024


Способов очищения сточных вод существует немало. При обустройстве автономных канализационных сетей помимо установки привычных фильтров, способных отсеивать вредные вещества и делать при этом воду чище, все чаще применяют осадительный метод очистки – коагуляцию.

Мы расскажем, по какому принципу работает коагулянт для очистки воды. В предложенной к ознакомлению статье подробно описаны все применяемые на практике разновидности. Вы узнаете, что надо учитывать при выборе средства и как правильно его использовать.

Применение реагентов: за и против

Эффективность современного оборудования по нейтрализации примесей в сточных водах не способна достигнуть максимального уровня без задействования реагентов.

Современные коагулянты позволяют существенно повысить интенсивность и качество процесса очистки сточных вод. Высокая стоимость реагентов окупается рядом преимуществ, которыми они обладают.

Среди неоспоримых достоинств применения синтетических коагулянтов стоит выделить:

  • эффективность;
  • доступная стоимость;
  • высокое качество очистки;
  • универсальность применения.

Сточные воды представляют собой устойчивую агрессивную систему. И разрушить ее, сформировав крупные частицы с тем, чтобы в последующем вывести их путем фильтрации, помогает коагуляция.

Применение реагентов дает хорошие результаты по выведению из стоков взвешенных и коллоидных частиц.

Утяжеленные примесями хлопья


По сути частицы коагулирующей фазы, сформированной под действием коагулянтов, являются одновременно и центром хлопьеобразования и утяжелителем

Но осадительный метод с применением реагентов не лишен недостатков. К числу таковых стоит отнести:

  • необходимость строгого соблюдения дозировки;
  • образование большого объема вторичных отходов, которые нуждаются в дополнительной фильтрации;
  • трудоемкость налаживания процесса собственными силами.

В промышленных масштабах процессы коагуляции задействуются повсеместно, они поставлены на поток. Для налаживания системы в домашних условиях придется приобретать специальные установки, стоимость которых довольно высока.

Большинство хозяев решают этот вопрос путем применения отдельных коагулянтов бытового типа, которые продаются в небольших по объему емкостях.

Действующие вещества просто добавляют в жидкость, а затем отфильтровывают выпавший на дне осадок; но этот процесс довольно трудоемок и потому на его реализацию затрачивается много времени

Чистка бассейна после коагуляции

Спустя 10-12 часов после начала коагуляции необходимо очистить дно и поверхность от выпавшего осадка. Для этого применяется водяной пылесос. Это устройство имеет два шланга, один из которых присоединяется к трубке.

Поверхность воды во временной конструкции, сооружаемой на летний сезон, очищается либо пылесосом, либо навесными водозаборниками, выполненными в виде скиммеров. Это специальная чаша, которая подключается к фильтрующей системе и собирает с поверхности мусор.

В стационарных бассейнах это встроенный в систему механизм, применяемый для сбора воды с поверхности для последующей очистки.

В чаше скиммера есть сетка, которая препятствует прохождению крупного мусора, способного вывести из строя фильтрующую систему. По мере наполнения чаши необходимо ее очищать вручную. Такая система способна полностью очистить гладь в течение часа активной работы.

Если при применении препарата не был достигнут нужный результат, то необходимо увеличить дозу. Если это не помогло, лучше слить воду из бассейна, так как неизвестный состав может оказаться вредным.

Основные виды коагулянтов

Существует много разновидностей коагулянтов. Подробно перечислять их формулы в статье мы не станем. Рассмотрим лишь две основные группы, которые в зависимости от исходного сырья делятся на органические и неорганические.

Одна категория коагулянтов способна обезжелезивать воду и выводить из нее соли алюминия, другая – повышать либо понижать кислотный показатель pH, некоторые реагенты – оказывать комплексный эффект

Сегодня производством коагулянтов занимаются многие отечественные и зарубежные компании. Выпускаемые ими реагенты нового поколения отличаются от коагулянтов, выпускаемых еще при Советском Союзе, улучшенными техническими характеристиками.

Поставка в виде растворов

Концентрированный формат поставки

Таблетированные средства для очистки

Органические природные вещества

Они представляют собой специально созданные реагенты, которые путем ускорения слипания присутствующих в воде агрессивно неустойчивых частиц способствуют облегчению процессов, связанных с их отделением и осаждением. Органика помогает стимулировать объединение загрязнителей в плотные суспензии и эмульсии, облегчающие процесс их вывода из воды.

При взаимодействии с молекулами загрязнений органические коагулянты значительно уменьшаются в своих размерах. По завершении реакции они выпадают в виде небольшого количества осадка.

Благодаря минимизации объема скапливаемого на дне емкости осадка намного проще и быстрее отфильтровать. При этом уменьшенное количество осадка никоим образом не сказывается на качестве очистки.

Из-за ограниченности сырьевой базы природные реагенты не нашли широкого применения при очистке сточных вод в промышленных масштабах. Но для бытовых целей их используют часто.

Синтетические коагулирующие соединения

Эти типы реагентов создаются на основе минеральных и синтетических элементов. Полимеры способствуют образованию высокого катиодного заряда, стимулируя тем самым быстрое появление хлопьев. Они отлично взаимодействуют с водой, оказывая на нее комплексный эффект: умягчая ее структуру, а также избавляя от грубых примесей и солей

Наибольшее распространение получили соли поливалентных металлов, созданные на основе железа или алюминия. Железо применяют для грубой очистки.

Флокулянты – вторичные коагулянты, превращающие суспензии и эмульсии в хлопья, используются в паре с первичными коагулянтами. Тандем способен очищать как малые порции бытовых отходов, так и большие объемы, создаваемые промышленными предприятиями

Среди железных составов самыми популярными считаются:

  • хлорное железо – гигроскопичные кристаллы, имеющие темный металлический блеск, отлично устраняют крупные частицы загрязнений и легко выводят запах сероводорода;
  • сульфат железа – кристаллический гигроскопичный продукт хорошо растворяется в воде и эффективен при очистке канализационных стоков.

За счет низкого уровня вязкости при малой молекулярной массе такие реагенты отлично растворяются в любом типе обрабатываемой жидкости.

Из коагулянтов, созданных на основе алюминия, наибольшее распространение получили:

  • оксохлорид алюминия (ОХА) – применяют для обработки воды с повышенным содержанием органических природных веществ;
  • гидроксохлорсульфат алюминия (ГСХА) – отлично справляется с природными отложениями сточных вод;
  • сульфат алюминия – неочищенный технический продукт в виде кусков серо-зеленого цвета применяют для очистки питьевой воды.

В прежние годы полимеры применяли лишь в качестве добавки к неорганическим коагулянтам, используя их в качестве стимуляторов, способствующих ускорению образованию хлопьев. Сегодня эти реагенты все чаще применяют как основные, заменяя ими неорганические.

Если сравнивать органические и синтетические вещества, то первые выигрывают в том, что действуют намного быстрее. К тому же они способны функционировать практически в любой щелочной среде и не вступают во взаимодействие с хлором.

Для адсорбции растворенных в воде солей, ионов тяжелых металлов и других взвесей порция органического реагента потребуется в разы меньше, чем синтетического аналога (+)

Органические действующие соединения выигрывают и в том, что не изменяют показатель pH в воде. Это позволяет их использовать для очистки воды, где присутствуют колонии планктона, растут водоросли и крупные микроорганизмы.

ДЕХЛОРИРОВАНИЕ ВОДЫ

Рекомендации по выбору средств

К выбору коагулянта для очистки стоков необходимо подходить очень внимательно. Ведь, хоть вещество и не несет опасности здоровью человека, но по своему действию имеет довольно узкую специализацию.

Подбирая коагулянт для очистки стоков, можно воспользоваться и справочными пособиями, но перед приобретением расходного материала все же стоит проконсультироваться с профессионалами, специализирующимися в сфере водоочистки.

Чтобы уберечь себя от разочарований в случае низкой эффективности применения коагулянта, рекомендуем предварительно сдать воду на анализ. Лабораторные исследования дадут представления о составе и помогут определиться с наиболее подходящим видом обработки.

Зная состав загрязненной воды, намного проще будет подобрать оптимальный вариант коагулянта, который поможет быстро решить проблему

Коагулянты – довольно специфические субстанции. В одних случаях они способны отторгать элементы воде, в других, напротив, усиливать свое действие. К примеру, применение действующего вещества, созданного на основе сульфата алюминия и железа, способно казать тройной эффект: очистить содержимое, а также обезжелезить его и существенно умягчить.

При использовании любого вида коагулянта главное – придерживаться рекомендованной производителем дозировки. Слишком малая порция действующего вещества спровоцирует реакцию, но она будет протекать не так интенсивно, как необходимо для должной очистки. Осадок будет выпадать медленно, а жидкость не очистится от вредных примесей.

Кроме того при нарушении дозировки хлопья начинают осаждаться неравномерно. В связи с этим в воде образуется много микрохлопьев, которые за счет малых размеров не улавливаются фильтрами.

Действующие реагенты на рынке представлены в виде гранул, фракций и кусков, а также небольших бесформенных пластинок

Чтобы упростить задачу расчета необходимого объема действующего вещества производители выпускают коагулянты в упаковках, оборудованных дозаторами, не забывая приложить к ним подробную инструкцию по применению.

Лучшие производители в России

Разновидность вещества необходимо выбирать исходя из назначения воды.

Также стоит учесть степень загрязнения, температурный показатель и методику коагуляции.

Оксихлориду алюминия отдают предпочтение при необходимости очистки холодной воды, содержащей большое количество природных органических примесей.

Также это вещество обеспечивает эффективный уход за водой в бассейне, отлично ликвидирует органические примеси. Главное преимущество препарата – это, то, что он хорошо справляется со своими задачами даже при низкой температуре жидкости.

На примере таблицы рассмотрим топ-3 производителей коагулянтов в России:

Условия для протекания процесса

Максимальная эффективность очистки сточных вод достигается путем комплексного подхода решения проблемы. Поэтому при обустройстве автономных очистных сооружений коагуляцию применяют в комплексе с механической и биологической очисткой.

Для этого возводят конструкции, состоящие из вертикальных отстойников, разделенных перегородками. Благодаря этому стоки проходят многоступенчатую очистку. Сначала они отстаиваются, затем очищаются путем переработки бактериями, после чего поступают в камеру, где вступают в процесс коагуляции и на завершающем этапе фильтруются.

Коагулянт может располагаться в отдельном пластиковом контейнере, подвешенном в чаше унитаза, благодаря чему при каждом смыве частички реагента попадают вместе со стоками в систему

Установку специализированного оборудования, расчет примерной дозы расходных материалов и первоначальный контроль на всех этапах за процессом очистки стоков лучше поручить профессионалам.

Схема коагуляции включает три основных этапа:

  1. Внесение коагулянта в загрязненную жидкость.
  2. Создание условий для максимального взаимодействия действующего реагента с примесями.
  3. Отстаивание с последующей фильтрацией осевших частиц.

Необходимым условием протекания коагуляции является равенство частиц с противоположным зарядом. Поэтому, чтобы обеспечить достижение желаемого результата, получив наибольшее снижение мутности стоков, так важно соблюдать концентрацию используемого реагента.

При использовании коагулянтов для очистки сточных вод следует учитывать, что эти вещества работают только при плюсовой температуре.

Рабочий диапазон реагентов варьируется в пределах от 10 до 40°С, и в случае превышения температуры выше этого показателя реакция начинает протекать намного медленнее

Поэтому так важно обеспечивать стабильность прогрева обрабатываемой воды.

Для ускорения процесса коагулирования в состав воды можно добавлять вещества, способные образовывать коллоидные дисперсионные системы – флокулянты. Для этой цели чаще всего используют: крахмал, полиакриламид, активированный силикат. Они будут адсорбироваться на хлопьях коагулянта, превращая их в более прочные и крупные агрегаты.

Флокулянт вводят в зону контактной среды спустя 1-3 минуты с момента ввода коагулянта. К этому времени процессы образования микрохлопьев и следующая за ними сорбция осаждающих веществ завершаются.

Количество осадка, выпадающего в контактных резервуарах, зависит от типа используемого реагента и степени предварительной очистки подлежащих обработке стоков.

В среднем после механической очистки объем осадка из расчета на одного человека в сутки составляет порядка 0,08 литра, после прохождения биофильтров – 0,05 л, а после обработки в аэротенке – 0,03 литра. Его необходимо лишь вовремя удалять по мере наполняемости резервуара.

PSH

Создайте аккаунт или войдите в него для комментирования

Вы должны быть пользователем, чтобы оставить комментарий

Создать аккаунт

Зарегистрируйтесь для получения аккаунта. Это просто!

Войти

Похожие публикации

Как часто можно пользоваться данным продуктом. Раз в неделю после подмены или можно применять ежедневно / через день.

Рыбки и другие существа, живущие в аквариумах, способны питаться не только тем кормом, который покупает и высыпает в воду владелец, но и флорой, произрастающей в аквариуме. Чтобы такие растения не увядали, им тоже нужно чем-то питаться. Оптимальным для этого является углекислый газ, который растворён в воде. Но в условиях замкнутого пространства вода быстро его теряет. Поэтому имеет смысл сделать генератор СО2 для аквариума своими руками.

Подача СО2 в аквариум: как сделать простой генератор своими руками и правильно воспользоваться реактивами

Необходимость выработки углекислоты

Достаточно часто собираются такие системы, которые способны доставлять углекислый газ в аквариумную воду. Часто они имеют множество применений, которые не ограничиваются этим. Они участвуют во многих процессах, например:

  • Выработка кислорода. Кроме питательных веществ, растения в процессе фотосинтеза могут снабжать воду этим веществом. Таким образом, рыбки, которые живут в аквариуме, будут нормально дышать и не умрут от нехватки кислорода.
  • Контроль уровня pH. Кислотность немного повышается, снижая тем самым его показатель. Это создаёт гораздо более приемлемые условия для нормального функционирования всех живых существ внутри.

Стоит отметить, что полностью перекладывать на растения работу по насыщению воды кислородом нельзя. Ночью, при отсутствии солнечного света, который нужен для образования глюкозы из углекислоты, процесс не запустится. Поэтому обязательно нужен аэратор — механизм, который сможет автоматически подавать воздух в воду, после чего какое-то количество кислорода будет в ней растворяться и не давать погибнуть живности внутри.

Кроме того, в темноте растения вместо выработки O2 его поглощают, вызывая в своих клетках обратную реакцию. При ней выделяется углекислый газ и вода, а значит, потребность в доставке дыхательной смеси возрастает ещё сильнее.

Допустимые уровни концентрации

Чтобы все процессы происходили правильно, нужно некоторое минимальное количество молекул углекислоты в воде. Несмотря на то, что жители аквариума в процессе жизнедеятельности тоже выделяют этот газ, его количества абсолютно недостаточно для протекания фотосинтеза.

Поэтому стоит знать, насколько большой должна быть концентрация газа, чтобы при этом не перенасытить воду им. Это не приведёт ни к чему хорошему, так как в ночное время может происходить кислородное голодание у живых существ.

Показатель зависит от объёма аквариума, но при этом подчиняется закону, при котором можно вывести его среднее значение. Оно равняется 2—10 миллиграммам на литр. Для стоячих водоёмов могут быть нормальными показатели и в 30, но всё слишком индивидуально.

В первую очередь нужно знать, в каких условиях жили те растения, которые были высажены. Если привычное для них состояние — лёгкое или почти отсутствующее течение, то можно добавлять больше углекислоты и не бояться перерасхода. Если же они появляются только в акваториях с ощутимым течением, то можно снизить дозу и от этого ничего страшного не случится.

Минимально допустимое значение находится на уровне 3—5 миллиграмм, поэтому нормальное для домашних условий содержание в 1 мг — недопустимо.

Подача СО2 в аквариум: как сделать простой генератор своими руками и правильно воспользоваться реактивами

Способы доставки CO2

Для того чтобы выбрать оптимальный вариант, следует знать обо всех имеющихся. Каждый из них различается как своей сложностью, так и ценой за применение и последующую эксплуатацию установки. Если задача стоит сделать генератор CO2 для аквариума своими руками, не стоит надеяться на сильное удешевление процесса. Особенно если используется более надёжный, долговечный и автоматизированный способ.

Итак, подачу углекислого газа в аквариум можно проводить такими способами:

  • С помощью системы брожения. От владельца в этом случае понадобится только снабжать самодельную установку реагентами для беспрерывного выделения углекислоты.
  • Регулярным введением содержащих CO2 препаратов. Способ действенный, но требует построения графика и точного его соблюдения.
  • Подведение баллона с газом, находящимся под большим давлением. Если такое устройство будет снабжено автоматическим клапаном, участие человека сведётся к минимуму.
  • Использование газированной воды. Обычная бутылка, купленная в магазине, способна обеспечить надолго весь резервуар питательным веществом.

Последний способ, естественно, не претендует на большую эффективность, но несмотря на это, обычная бутылка воды — это довольно серьёзный источник углекислоты.

Подача СО2 в аквариум: как сделать простой генератор своими руками и правильно воспользоваться реактивами

Использование брожения

Подача CO2 в аквариум с помощью этой реакции может помочь аквариумистам с ограниченным бюджетом, так как здесь не используются ни дорогие компоненты, ни сложные реагенты. Всё, что нужно — это собрать несколько составных частей:

  • Сахар — примерно 300 грамм.
  • Дрожжи — меньше грамма, лучше придерживаться соотношения 1:1000 и брать количество исходя из массы сахара. В этом случае их должно быть 0,3 грамма.
  • Вода — 1 литр, взбалтывать смесь не разрешается.
  • Бутылка пластиковая, объёмом от полутора литров.
  • Трубка достаточной длины.

Конструкция предельно проста — в крышечке от бутылки проделывается отверстие, в него вставляется трубка, другой конец которой опускается в воду. Через неё выделяющийся в результате реакции газ будет поступать в аквариум и насыщать его.

Если при этом бутылка со смесью будет нависать вертикально над аквариумом, то лучше приделать в систему дополнительный резервуар. Со временем в основной ёмкости образуется брага, которая может быть подхвачена углекислотой и отправлена в воду. Это недопустимо, так как растворение сахара только повредит обитателям. Лучше приделать в систему ещё одну ёмкость, в которую сначала будет попадать газ и возможные комки.

Однако нельзя абсолютно точно сказать, какое количество углекислоты попадает в аквариум: реакция просто протекает без малейшего контроля и может быть очень неравномерной из-за того, что сама смесь выделяет газ неоднородно. Кроме того, каждые две недели ёмкость придётся менять, так как именно через это время реакция полностью прекращается.

Подача СО2 в аквариум: как сделать простой генератор своими руками и правильно воспользоваться реактивами

Применение препаратов

Одним из самых эффективных реактивов можно назвать Tetra CO2 Plus, который легко растворяется в воде и распространяется в виде сильно насыщенного газом раствора. Одной упаковки при обычном использовании должно хватить на 100 применений в 20-литровом аквариуме, а это несколько лет непрерывного снабжения углекислым газом.

Подавать СО2 в аквариум с его помощью легко — достаточно вливать 2,5 миллилитра в воду раз в неделю. Постепенное высвобождение газа будет долго питать растения и поддерживать процесс фотосинтеза.

Преимущества:

  • Не нужно сооружать громоздких конструкций для функционирования.
  • Простота в эксплуатации.
  • Относительно длительный период работы средства.
  • Препятствие излишнему росту водорослей.

При этом растения насыщаются чистым углекислым газом, что положительно влияет на их динамику развития и роста. Они остаются здоровыми и активно синтезируют кислород в воде.

Баллон со сдавленным газом

Называются такие приборы по-разному, но суть их всегда одна — обеспечить как можно более плавное введение газа в толщу воды так, чтобы он не оказался сразу на поверхности. Для этого в них, как правило, установлены специальные ограничители потока, запускающиеся в момент включения. Несколько вариантов наименований:

  • флиппер;
  • диффузор:
  • реактор;
  • генератор.

Они зависят, в первую очередь, от производителя, который пытается привлечь внимание к своему продукту. Принцип действия же везде более или менее похож.

К баллону прикрепляются специальные датчики, которые измеряют различные показатели состава воды и на их основании отмеряют выпуск газа. Есть модели с автоматическими определителями уровня pH с помощью электрода, выведенного в воду. Если у выбранной модели отсутствуют такие модули, придётся постоянно самостоятельно следить за уровнем кислотности.

Кроме того, если слежка за pH не осуществляется, то эти баллоны контролируют подачу с помощью специального магнитного клапана, который по таймеру выпускает строго отмеренное количество CO2.

Если система только что была установлена, не стоит сразу открывать вентиль на полную. Это нужно делать плавно, чтобы не допустить повреждения тонкой мембраны, которая находится в редукторе.

Подача СО2 в аквариум: как сделать простой генератор своими руками и правильно воспользоваться реактивами

Газированная вода

При использовании сверхмалых объёмов, такой способ является одним из самых эффективных и быстрых. Это так из-за того, что сама газировка уже является раствором в воде углекислоты. Сладкая вода по объективным причинам не подходит. В ней много ненужных веществ, которые могут попасть в воду и навредить. Поэтому лучше использовать марки без содержания сахаров, но и не имеющих в составе минералов.

Концентрация в закрытой бутылке стремится к 10 тысячам миллиграммов на литр. После открытия газ высвобождается и число стремительно уменьшается до показателя в 1500 мг/л, но даже этого более чем достаточно. На каждые 10 литров воды нужно будет добавлять всего 20 мл газировки.

Однако не стоит слишком сильно обнадёживаться. Главным недостатком, как и в случае с брагой из сахара и дрожжей, будет именно незнание точной концентрации газа. А это усложняет расчёт оптимальной дозировки.

Кроме того, как ни странно, именно это метод — самый дорогой из всех представленных. Цена в пересчёте на один грамм углекислоты выше в три раза по сравнению с ближайшим конкурентом. Поэтому стоит рассматривать газировку, как способ экстренно поднять концентрацию нужного показателя до приемлемого значения, когда другие по каким-то причинам недоступны.

Средства контроля и измерения

Чтобы эффективно насыщать воду углекислотой, нужно обязательно знать её текущий уровень. Имея эти данные, очень просто отрегулировать уровень газа и привести его в норму. Среди таких приборов есть:

  • Дропчекер. Это ёмкость, одна часть которой заполнена эталонным раствором для измерения карбонатной жёсткости, а вторая — таким же веществом, но для определения pH. Между ними всегда есть прослойка воздуха, которая не даёт смешиваться.
  • Счётчик пузырьков. Представляет собой прозрачную колбу, в которой находится вода. С обеих сторон она врезана в трубку, по которой идёт углекислый газ. От того, каким будет интервал вхождения в счётчик соседних пузырьков в воде, фактически зависит скорость подачи. Это самый наглядный пример того, как можно пронаблюдать степень насыщения.

Кроме этого, можно отдельно замерить все показатели, которые показывает дропчекер и воспользоваться таблицей, приводящей соотношение двух величин с концентрацией CO2. Есть и онлайн-калькуляторы, которые делают все расчёты автоматически. Единственное, что нужно учитывать — временной период, на который производится вычисление.

Тогда по одному наблюдению за тем, как быстро выделяются пузырьки, специалист может сказать насколько сильно будет меняться содержание углекислоты за любой временной период. Опасность такого расчёта состоит в том, что знать какой объём биомассы в резервуаре невозможно, так как в нём постоянно идёт размножение. В результате можно сильно просчитаться, особенно если не знать примерное выделение газа каждым из видов флоры.

Аквариум Как смягчить воду: разные способы убрать жёсткость водопроводной жидкости в домашних условиях

Аквариум Правила ухода за аквариумом: как следить за чистотой каждый день, правильное проведение еженедельной уборки

Для предупреждения болезней и гибели растений в аквариуме необходимы своевременная смена воды, достаточное количество углекислого газа и минеральная подкормка. Одним из обязательных компонентов минеральной добавки является железо, которое участвует в процессах дыхания и роста водной флоры.

При наличии реактивов можно приготовить источники железа для аквариумных растений и своими руками.

РОЛЬ ЖЕЛЕЗА В АКВАРИУМЕ С РАСТЕНИЯМИ

Железо (Fe) участвует в производстве хлорофилла, который обеспечивает процесс дыхания в зеленых растениях. Структура этого белка сходна со строением гема, который обеспечивает перенос и превращение кислорода в человеческой крови (гемоглобине). Для гема железо является определяющим центральным атомом, а для хлорофилла – катализатором синтеза. Его место в структуре дыхательного белка занимает другой макроэлемент – магний.

Железосодержащие ферменты регулируют окислительно-восстановительные процессы при синтезе хлорофилла. Они ускоряют реакции окислительного фосфорилирования и обеспечивают перенос электронов за счет произвольной валентности железа.

Недостаток соединений железа тормозит и производство естественных стимуляторов роста растения – ауксинов. При дефиците хлорофилла, который поглощает зеленый свет и имеет соответствующую окраску, происходит пожелтение или обесцвечивание листьев. Питательные прожилки растения при этом остаются ярко-зелеными. Этот процесс называется хлорозом (по наименованию хлоринового кольца, которое удерживает атом магния в структуре белка).

При хлорозе листья желтеют, сморщиваются и становятся более прозрачными. Первыми болезнь поражает самые молодые листья. Обесцвечивание растений может развиться и при недостатке магния, который формирует дыхательный белок. В этом случае первыми желтеют старые листья, причем процесс начинается с краев и постепенно распространяется по всей площади листа.

Если побледнению или пожелтению подвергаются жилки листьев, то причиной хлороза является нехватка серы или азота, а не железа.

Последствия дефицита Fe развиваются в следующей последовательности:

  1. Пожелтение молодых листков.
  2. Замедление роста аквариумных растений.
  3. Появление желтизны на всех листьях, постепенное обесцвечивание флоры.
  4. Гибель растений.

Комплексные удобрения и водопроводная вода содержат железо в недостаточном количестве, поэтому предупреждать хлороз рекомендуется с помощью целевых удобрений. Наиболее часто целевые составы содержат связанную биодоступную форму Fe – хелаты.

Избыток железа также может сказаться на состоянии флоры и фауны. Большое количество металла стимулирует рост активных его потребителей – водорослей. Вода в аквариуме приобретает неприятный желтый оттенок, а не стенках, оборудовании и в жабрах рыб оседает бурый железистый налет. Забитые жабры мешают рыбам дышать, что приводит к замедленному росту, ранней гибели, отсутствию или слабости потомства.

ТЕСТЫ НА ЖЕЛЕЗО В АКВАРИУМЕ

ТЕСТЫ НА ЖЕЛЕЗО В АКВАРИУМЕ

Тесты на содержание минерала при регулярной подкормке и смене воды позволяют отследить его оседание и потребление в различных формах.

Наиболее распространенными являются следующие тест-наборы:

  • UHE тест Fe;
  • Tetra Fe;
  • Sera;
  • НИЛПА Fe Тест;
  • Птеро Тест Fe;
  • VladOx Fe и др.

Некоторые из них (Птеро, НИЛПА) определяют только свободные формы металла, не окисленные и не связанные в комплексы. Вследствие этого при использовании хелатов железа тесты имеют ограниченную применимость.

Даже высокоточные тесты, показывающие суммарную концентрацию всех форм микроэлемента (например, UHE), могут сбоить при использовании сильных связывающих веществ (хелаторов).

Чтобы найти баланс содержания железа, нужно ориентироваться сразу на несколько факторов:

  1. Уровень Fe по тесту. Нормальный диапазон его концентрации указывается в инструкции к тест-набору. Если смена воды и внесение минеральной добавки произошли более 1-2 суток назад, то обнаружить достаточный уровень железа не получится. Большая часть внесенного минерала будет окислена или потреблена растениями.
  2. Внешний вид растений. Выраженный хлороз проявится лишь при сильном дефиците железа, но небольшое пожелтение листков и стеблей будет видно уже на начальных стадиях. При увеличении дозы удобрения эти листья быстро позеленеют.
    Делать фото и видео растений для сравнения не потребуется, т.к. разница будет видна уже на следующий день. Если изменения через сутки отсутствуют, то причиной пожелтения и обесцвечивания является недостаток магния, марганца и других микро- и макроэлементов.
  3. Нормы внесения железа. Вносить удобрения можно в соответствии с универсальной нормой или индивидуальным показателем потребления. Чтобы определить этот показатель, нужно в течение 2-3 недель добавлять железо по средней норме и наблюдать за цветом растений. Сразу после внесения и в конце недели следует измерять уровень железа высокоточным тестом. За показатель потребления можно принять средний или максимальный результат за несколько недель.

При нормальных внешних показателях и соблюдении рекомендуемых дозировок не следует бояться небольшого несоответствия числовых значений. При наличии признаков передозировки Fe (рост водорослей, бурые жабры рыб) следует сменить воду, снизить норму внесения удобрения и добавить в аквариум состав с марганцем. Последний позволит быстро освободить дыхательные пути рыб и компенсировать избыток железа.

КАКОЕ БЫВАЕТ ЖЕЛЕЗО И КАКОЕ МОЖНО ИСПОЛЬЗОВАТЬ В АКВАРИУМЕ

Железо является поливалентным элементом. Это означает, что в разных соединениях оно может проявлять различную степень окисления. В отличие от кальция или магния, которые образуют по одному гидроксиду, Fe может создавать один из двух: Fe(ОН)3 (для трехвалентного) или Fe(ОН)2 (для двухвалентного).

Среди аквариумистов распространено ошибочное мнение, что водные растения усваивают только двухвалентное железо. На практике трехвалентный Fe уступает двухвалентному в усвояемости, но незначительно.

Более важным условием для усвоения железа является его свободная форма. При попадании в воду и почву аквариума микроэлемент быстро окисляется, образуя оксиды, которые оседают на стенках емкости. Растения не могут разлагать и перерабатывать оксиды и гидроксиды, поэтому усваивают только то железо, которое успели получить до завершения процесса окисления.

Учитывая интенсивность реакции, свободное железо должно полностью исчезать из воды в течение нескольких часов после внесения. Однако анаэробные микроорганизмы грунта возвращают часть микроэлемента в свободную форму, восстанавливая оксиды и гидроксиды.

Бактерии-анаэробы не обеспечивают достаточной концентрации железа, поэтому свободный Fe обрабатывают хелаторами, чтобы предупредить окисление изначально. Хелаторы связывают металлическое вещество, но сохраняют биодоступность и позволяют растениям усваивать его по мере потребности.

Тесты на концентрацию Fe основаны на принципе окисления, поэтому они хорошо улавливают свободный двух- и трехвалентный металл, но не реагируют на связанное вещество. Реактивы высокоточных тестов способны окислять железо и в составе слабых хелатов, инициируя ионную реакцию за счет более высокой активности.

При использовании сильных хелаторов обмен становится невозможным, а точность результата падает.

ХЕЛАТЫ ЖЕЛЕЗА, ИХ УСТОЙЧИВОСТЬ И ПРИГОДНОСТЬ ДЛЯ ПРИМЕНЕНИЯ В АКВАРИУМЕ

В аквариумистике используется несколько хелатных соединений железа. Они различаются формулой кислотного остатка, способом получения, стойкостью и воздействием на микрофлору аквариума. Большую часть из них несложно получить в домашних условиях.

Распространенные хелатные соединения Fe для аквариумных растений:

Хелатное соединение Fe-ОЭДФ.

Выбор хелата зависит от целей выращивания растений, финансовых возможностей и частоты внесения удобрений:

  • для любительского домашнего аквариума можно использовать недорогие и безопасные хелаты – цитрат и глицинат железа;
  • Fe-EDTA легко получают в домашних условиях, но из-за побочных эффектов ограниченно применяют в аквариумистике;
  • при выращивании водных растений на продажу можно вводить часть железа в виде Fe-ОЭДФ: этот хелат ускорит их рост за счет большого количества фосфора;
  • для улучшения микрофлоры и оптимальной биодоступности железа эффективны комбинации из слабых и устойчивых хелатов (например, глюконата железа и Fe-DTPA).

При использовании устойчивых соединений необходимо менять воду не реже 1 раза в неделю.

КАК ПРИГОТОВИТЬ УДОБРЕНИЕ С ЖЕЛЕЗОМ СВОИМИ РУКАМИ

Для самостоятельного приготовления железных хелатов можно воспользоваться следующими способами:

  1. С лимонной кислотой. Для получения удобрения нужно взять 500 мл дистиллированной воды, 20 г железного купороса из садового магазина и 20 г безводной лимонной кислоты. Смешать кислоту и воду. После растворения лимонной кислоты нужно аккуратно добавить купорос и перемешать. Полученный светло-желтый раствор имеет концентрацию железа около 7,5 мг/мл. Хранить цитрат нужно в емкости с затемненными стенками. Рекомендуемый срок хранения – 2 недели. Потемнение раствора свидетельствует о снижении его эффективности.
  2. С ЭДТА. Взять 1 л дистиллированной воды, 2,5 г железного купороса и 5 г Трилона-Б (Комплексона-3). Купить Трилон-Б можно на барахолке фотореактивов, в аптеке или магазине химических реактивов для лабораторий. Смешать все компоненты и добавить 0,5 г аскорбиновой кислоты для лучшей сохранности раствора. Концентрация железа в таком растворе – 0,5 мг/мл. Получить в домашних условиях менее вредные удобрения с ДТПА и ОЭДФ не получится, т.к. эти хелаторы редко продаются в розницу.

Покупные хелаты на основе трехвалентного Fe могут плохо растворяться в воде. Для восстановления металла до двухвалентного можно применять порошковую аскорбиновую кислоту. Если полученный раствор получился слишком кислым либо вода в аквариуме изначально мягкая, то удобрение можно нейтрализовать карбонатом калия (поташом). Пропорция компонентов подбирается в соответствии с коэффициентами химической реакции.

Кислая среда повышает усвояемость железа, поэтому лимонную кислоту можно добавлять и для снижения жесткости воды.

СКОЛЬКО ДОБАВЛЯТЬ ЖЕЛЕЗА С УДОБРЕНИЯМИ

Количество удобрения рассчитывается в зависимости от объема аквариума. На каждый литр воды нужно вносить 0,5-1 мг железа в неделю. Для аквариумов без подачи углекислого газа эта норма может быть и меньше, а при повышенной жесткости воды – доходить до 1,5 мг. При подаче СО2 вносить удобрение рекомендуется ежедневно (по 1/7 недельной дозировки).

Повышенное содержание кальция и фосфора приводит к обеднению почвы и снижению концентрации железа. Оба элемента связывают его в нерастворимые соединения, делая недоступным для усвоения. При регулярном внесении фосфатов и высокой жесткости воды нужно контролировать уровень Fe и внешний вид водной флоры.

Некоторые аквариумисты настаивают на том, что 0,5-1 мг является пиковым уровнем внесения, который необходим в начале жизни аквариума и при развитии признаков хлороза. Нормальная же концентрация микроэлемента составляет 0,1-0,3 мг/л.

Передозировка выше 2 мг/л является опасной для растений и рыб. Она может возникнуть при высокой изначальной концентрации Fe в воде (например, из скважины), избыточной подкормке или сочетании этих факторов. Рост аквариумной флоры в таких условиях замедляется.

АВТОМАТИЧЕСКАЯ СИСТЕМА ПОДАЧИ ОПТИМАЛЬНОГО КОЛИЧЕСТВА ЖЕЛЕЗА В АКВАРИУМ

Усвоение железа водными растениями происходит лишь под воздействием УФ-лучей. Чтобы своевременно вносить удобрения и не ошибиться с их количеством, можно приобрести автоматический дозатор. Эти приспособления рассчитаны сразу на несколько разных добавок, что позволяет обеспечить аквариум всеми необходимыми макро- и микроэлементами.

Стоимость системы автоматического внесения составляет от 3 до 10 тыс. руб. в зависимости от производителя. При наличии дозатора, комплекта трубок и контроллера можно собрать такую систему в домашних условиях.

Другие интересные статьи

Донные фильтры – это очистительные приборы, фильтрующие воду естественным способом, пропуская сквозь грунт. Конструкция обладает…

Среди различных видов домашних животных особой популярностью пользуются аквариумные рыбки. Они сравнительно недорого стоят, не…

Стеклянные прямоугольные аквариумы с рыбками, украшающие интерьер домов, офисов и торговых центров, знакомы каждому поклоннику…

Читайте также: