Как сделать электронный счетчик

Добавил пользователь Alex
Обновлено: 19.09.2024

Итак, что нужно знать, когда вы хотите обмануть систему) В кавычках. Я ни в коем случае не призываю к этому и против этих действий.

Современные счетчики достаточно хорошо оснащены различными электронными системами.

Что они из себя представляют.

Внутри на плате стоит батарея, которая в момент отключения электричества проводит опрос датчиков и записывает их статус в память. Если же электричество присутствует, то некоторые датчики не опрашиваются.

Первый датчик – датчик магнитного поля. Реагирует на поднесение к счётчику различных магнитов. Работает только при наличии электричества, так как когда электричества нет, то и смысла подносить магнит к счетчику никакого нет.

Второй датчик – датчик тока. Его реализация может быть разной, в детали вдаваться не буду. Этот датчик, условно его так назову, регистрирует наличие и направления тока. На многих счётчиках есть лампочка “реверс”, которая показывает на ошибку. В своё время многие промышляли сматыванием счетчика, заставляя механический его крутиться в обратную сторону при помощи трансформаторов, меняющих полярность на обратную. С электронным счётчиком такое не прокатит, он обязательно зарегистрирует это событие и при случае отправит диспетчеру. По нему можно судить о неправильном ненамеренном подключении или о попытке скрутить. Опрос ведётся только при наличии электричества.

Третий датчик – контактный на крышке колодок подключения. Реагирует на вскрытие крышки нижней колодки, под которой находятся силовые контакты счётчика. Опрос датчика производится на постоянной основе, даже когда электричества нет.

Четвертый датчик – контактный на корпусе счетчика. Реагирует на вскрытие корпуса самого счётчика. Также опрос этого датчика происходит на постоянной основе.

Современные счётчики электроэнергии достаточно оснащены, чтобы противодействовать неправомерным действиям их владельцев.

И ещё, запомните, что если после современного счётчика происходит потребление электричества, то он непременно это увидит и посчитает. А скоро появятся бытовые счётчики, которые будут ещё и реактивную нагрузку считать. В западных странах это уже используется и цена за реактивную составляющую в 2-3 выше.

Во многих современных домах к каждому счётчику подключена система удаленного опроса. Она может быть как на базе технологии PLC. Передача данных по тем же силовым линиям. Зона передачи данных ограничивается вводным трансформатором, который находится у дома. Через него сигнал PLC передать очень сложно, почти невозможно. Схема опроса счётчиков через PLC

Чаще всего для передачи данных используется обычная витая пара.

Радиоканал для этих целей я не встречал, но всё возможно.

Каждый датчик опрашивается. Какие то опрашиваются процессором в то время, когда электричества нет. Если вы думаете, что отключенный счётчик не сможет вас выдать, то вы ошибаетесь. При появлении полноценного электричества, счётчик начнет передавать все накопленные события диспетчеру, если эта система полноценно функционирует.

Даже если вы не подключите счётчик к витой паре или к PLC, то диспетчер всё равно увидит отсутствующий номер счетчика и пошлет к нему электрика.

Схема подключения геркона к калькулятору

Рис.1. Схема подключения геркона к калькулятору.

Если есть неисправный китайский кварцевый будильник (обычно механизм у них очень не долговечный, а вот электронная плата весьма надежна), можно взять от него плату и по схеме показанной на рисунке 2 сделать из неё и калькулятора секундомер.

Питание на плату будильника поступает через параметрический стабилизатор на светодиоде HL1 (светодиод должен быть с прямым напряжением 1,4-1,7V, например, красный АЛ307) и резисторе R2.

Импульсы формируются из импульсов управления шаговым двигателем часового механизма (катушки должны быть отключены, плата используется самостоятельно). Эти импульсы через диоды VD1 и VD2 поступают на базу транзистора VТ1. Напряжение питания платы будильника всего 1,6V, при этом уровни импульсов на выходах для шагового двигателя еще ниже.

Чтобы схема нормально работала, необходимы диоды с низким уровнем прямого напряжения, такие как ВАТ85, или германиевые.

Чтобы остановить счет достаточно выключить питание формирователя импульсов выключателем S1.

Схема превращения китайского бодульника в секундомер

Рис.2. Схема превращения китайского бодульника в секундомер.

Схема счетчика пересечений ИК-луча с применением калькулятора

Рис.3. Схема счетчика пересечений ИК-луча с применением калькулятора.

Если использовать инфракрасный фотодатчик, работающий на пересечение луча, можно приспособить микрокалькулятор считать какие-то предметы, например, коробки, перемещающиеся по транспортерной ленте, либо, установив датчик в проходе, считать входящих в помещение людей.

Принципиальная схема ИК-датчика отражения для работы с микрокалькулятором показана на рисунке 3.

Фотоприемник выполнен на микросхеме HF1 - это стандартный интегральный фотоприемник типа TSOP4838 для систем дистанционного управления телевизоров и другой домашней техники. Когда на этот фотоприемник попадает луч от HL1, на его выходе - ноль. При отсутствии луча -единица.

Ознакомившись с рядом опубликованных в журнале конструкций счётчиков различного назначения (например, [1, 2]), я принял решение разработать свой вариант счётчика витков, в котором использована энергонезависимая память микроконтроллера. В результате удалось создать простой и удобный в работе счётчик витков для намоточного станка, не содержащий дефицитных деталей.

Он способен считать от 0 до 9999 оборотов вала, после чего показания индикатора обнуляются и счёт начинается заново. При вращении вала в обратную сторону индикатор уменьшает показания на единицу на каждый оборот.

Рис. 1

Счётчик состоит из нескольких узлов (рис. 1). Основой конструкции служит микроконтроллер DD1, к которому через токоограничительные резисторы R10—R16 подключён четырёхразрядный светодиодный индикатор HG1. Две оптопары — излучающий ИК диод— фототранзистор (VD2VT1, VD3VT2), — образующие датчик числа оборотов рабочего вала станка, формируют импульсы низкого уровня, по которым микроконтроллер определяет направление вращения и число оборотов вала. Предусмотрена кнопка SB1 для обнуления памяти, а также вспомогательные цепи: R2C2, работающая в составе встроенного тактирующего генератора микроконтроллера, VD1C1, сохраняющая напряжение питания, необходимое для перехода микроконтроллера в режим SLEEP, и R6R8, следящая за напряжением питания счётчика.

Известно, что микроконтроллеры семейства PIC довольно капризны при работе с EEPROM (особенно, когда запись в неё происходит автоматически). Уменьшение напряжения питания может исказить содержимое памяти При работе счётчика линия RB1 (вывод 7) микроконтроллера, к которой подключена цепь R6R8, опрашивается на наличие напряжения питания, и если оно пропадает, то благодаря цепи VD1C1 микроконтроллер успевает перейти в спящий режим, тем самым блокируя дальнейшее выполнение программы и защищая информацию в EEPROM. В процессе счёта микроконтроллер будет сохранять в памяти числа после каждого оборота рабочего вала станка. При каждом очередном включении питания индикатор HG1 отобразит то число, что было до отключения.
Датчик представляет собой небольшую печатную плату (22x22 мм), на которой смонтированы два излучающих диода и два фототранзистора, установленных так, что образуют два оптических канала передатчик—приемник. Оптические оси каналов параллельны, межосевое расстояние — около 10 мм.
На рабочем валу станка неподвижно закреплена шторка в виде диска из жёсткого непрозрачного для ИК лучей материала (текстолит, гетинакс, металл, пластик) толщиной 1. 2 мм. Диаметр шторки — 35. 50 мм, диаметр центрального установочного отверстия равен диаметру вала. Плату на станке фиксируют так, чтобы шторка, вращаясь вместе с валом, могла перекрывать собой оба ИК луча.
В шторке пропиливают вырез в форме неполного сектора. Угловая ширина и глубина выреза должны быть такими, чтобы при вращении вала шторка обеспечивала кратковременное прохождение ИК излучения сначала только через один канал, затем через оба и, наконец, только через другой, как это схематически проиллюстрировано на рис. 2. Цветом показаны каналы, открытые в той или иной позиции. Такой порядок следования сигналов с датчика даёт микроконтроллеру возможность определять направление вращения рабочего вала станка.

Счётчик рассчитан на питание от батареи из трёх гальванических элементов АА (R6), но можно использовать любой сетевой блок со стабилизированным выходным напряжением 5 В.
Датчик смонтирован на печатной плате из фольгированного стеклотекстолита толщиной 1 мм. Чертёж платы показан на рис. 3. Токоограничива-ющий резистор R3 припаян со стороны печатных проводников а излучающие диоды и фототранзисторы — с другой.
Остальные детали (кроме батареи GB1 и выключателя SA1) размещены на второй плате, изготовленной из такого же стеклотекстолита. Её чертёж представлен на рис. 4. Все резисторы (кроме R3) на ней размещены со стороны печати поверхностным монтажом, а микроконтроллер, цифровой индикатор, конденсаторы, диод, кнопка SB1 и проволочные перемычки — с противоположной стороны. Микроконтроллер установлен в панель, впаянную в плату.
Плата датчика скреплена с основной двумя скобами, согнутыми из медной лужёной проволоки диаметром 1,2 мм и припаянными к краевым печатным проводникам плат. Для крепления плат к корпусу станка использованы самодельные держатели с ушком для винта, изготовленные из такой же проволоки и также припаянные к основной плате.

Рис. 4

Внешний вид счетчика

Общий вид одного из конструктивных вариантов счётчика, установленного на намоточном станке, показан на фото рис. 5. Батарея гальванических элементов с выключателем прикреплены к станку сзади.
Для датчика, кроме указанных на схеме, можно использовать излучающие диоды SEP8706-003, SEP8506-003, KM-4457F3C, АЛ144А, АЛ108АМ и другие, а фототранзисторы — SDP8436-003, КТФ102А. Очень хорошо подходят также оптопары от старых шариковых компьютерных манипуляторов — мышей; у излучающих диодов короткий вывод—катод, а у фототранзисторов — эмиттер.
Следует заметить, что лучше использовать фототранзисторы в непрозрачном (чёрном) корпусе — в этом случае вероятность сбоев и ошибок в счёте из-за попадания на фотоприемники световых помех от внешних ярких источников будет минимальна. Если же фототранзисторы, имеющиеся в наличии, прозрачные, на каждый из них следует на деть отрезок чёрной ПВХ трубки с отверстием напротив линзы, а весь датчик закрыть от постороннего света накладкой из чёрной бумаги. Если шторка изготовлена из отражающего свет материала, её рекомендуется покрыть чёрной матовой краской.
Вместо "поверхностных" резисторов можно использовать МЛТ-0,125 или С2-23 мощностью 0,062 Вт. Кнопка SB1 — любая, подходящая по месту крепления на плате. Вместо E40281-L-O-0-W подойдёт цифровой индикатор FYQ-2841CLR.
Программа микроконтроллера разработана и отлажена в среде Proteus, после чего с помощью программатора ICProg загружена в микроконтроллер. После установки микроконтроллера в панель при первом и последующих включениях счётчика индикатор отобразит знак "минус" во всех знакоместах. Примерно через две секунды на табло появятся нули — это признак готовности счётчика к работе.

В программе предусмотрена функция аварийного обнуления памяти на тот случай, когда в неё попадёт ошибочная информация и микроконтроллер "зависает" (такое бывает крайне редко, но быть может). Для возвращения микроконтроллера в рабочий режим нужно выключить питание счётчика, нажать на кнопку "Обнуление" и, не отпуская её, включить питание. Как только табло отобразит нули, можно продолжать работать, но информация о прежнем числе витков будет, разумеется, утрачена.
В налаживании правильно собранное устройство не нуждается.

ЛИТЕРАТУРА
1. Долгий А. Усовершенствованный реверсивный счётчик. — Радио, 2005, №11, с. 28, 29.
2. Гасанов А., Гасанов Р. Электронный счётчик. — Радио. 2006, № 11, с. 35, 36.

Рис. 172. Пересчетная декада

импульсами. Если уменьшить период повторения импульсов и ввести дополнительные разряды счетчика, то можно в нужное число раз повысить точность измерения.

Одна декада счетчика-секундомера показана на рисунке 172. Она состоит из двоично-десятичного счетчика на дешифратора на и индикатора на неоновой лампе Для питания индикатора нужно высокое напряжение , поэтому по правилам техники безопасности прибором должен пользоваться руководитель. В схеме используется дешифратор, специально предназначенный для работы с высоковольтным индикатором. Вместо лампы можно использовать лампы других типов: рассчитанные на напряжение питания 200 В и силу тока индикации Микросхема состоит из триггера со счетным входом (вход и триггерного делителя на 5 (вход При соединении выхода счетного триггера (выхрд 1) с входом делителя образуется двоично-десятичный счетчик. Он реагирует на задний фронт положительного импульса или на отрицательный скачок напряжения, поданного на вход . В условных обозначениях счетный фронт иногда показывается в виде стрелки, направленной к Микросхеме, если она реагирует на положительный скачок напряжения, или стрелки, направленной от микросхемы, если она реагирует на отрицательный перепад напряжения.

Для управления работой счетной декады используется три кнопки и переключатель. Перед началом счета декада

Если, например, прибор предполагается использовать на уроках физики, то время нужно измерять в довольно широком диапазоне — от 0,001 до 100 с. Для этого генератор должен иметь частоту а счетчик должен состоять из пяти десятичных разрядов. При этом показания цифрового индикатора будут иметь следующий вид: 00,000; 00,001; 00,002 и т.д. до 99,999 с.

Область применения учебного счетчика-секундомера можно значительно расширить, если ввести в него два дополнительных устройства — блок бесконтактного управления и блок выдержек времени. Первый блок должен обеспечивать автоматическое и безинерционное включение и отключение прибора. Для этого можно использовать уже известную схему фотореле (рис. 76), выбрав нужную чувствительность и согласовав напряжения источников питания. В схеме управления должно быть два фотодатчика — один используется для включения, а другой для выключения счетчика-секундомера в моменты пересечения лучей движущимся телом. Зная расстояние между фотодатчиками и показания секундомера, легко вычислить скорость движения тела. В блоке-приставке используются два усилителя фототока. Их выходные сигналы управляют работой счетного триггера, один из выходов которого через транзисторный ключ соединен со входом секундомера.

и неоновой лампы управляемой импульсами мультивибратора (см. рис. 168, 172). Игроки поочередно нажимают кнопку прерывающую счет. Выигрывает тот, у кого индикатор покажет большее число. Момент остановки счетчика, как и момент остановки подбрасываемого кубика с точками от 1 до 6, определяется случайными причинами, поэтому счетная декада вместе с мультивибратором являются электронным датчиком случайных чисел. Приведем еще примеры ее использования в различных игровых ситуациях.

При проверке скорости реакции игроков резистором устанавливается определенная частота работы мультивибратора и скорость смены цифр индикатора (см. рис. 168 и 172). Участникам игры предлагается нажимать на кнопку мультивибратора каждый раз, как индикатор покажет определенную, заранее выбранную цифру. Выполнить поставленное условие тем сложнее, чем выше частота переключения. Первыми выбывают из игры наиболее медлительные, победителем становится игрок, обла дающий лучшей реакцией. В другом, более сложном варианте игры нужно продолжать нажатия кнопки в установленном судьей темпе после того, как исчезают показания индикатора. Для этого его закрывают механической шторкой или отключают кнопкой

Счетную декаду вместе с мультивибратором особенно удобно использовать в играх, если ее питание сделать автономным, т. е. не связанным с сетью. В этом случае используют семисегментный светодиодный индикатор управляемый дешифратором интегральной схемы . С этой микросхемой и индикатором мы уже знакомы (рис. 150, 163). Схемы мультивибратора и счетчика остаются неизменными. Схема датчика случайных чисел, работающего от источника с напряжением 5 В, показана на рисунке 173.

Примером более сложного устройства, работающего на основе электрического счетчика, является блок выдержки времени, или таймер. На рисунке 174 показана принципиальная схема таймера, позволяющего включать различную нагрузку на время от 0 до 999 с. Он состоит из трехразрядного десятичного счетчика, собранного на микросхеме трех дешифраторов на микросхеме мультивибратора и схемы управления на микросхеме а также микросхеме Источником счетных импульсов является мультивибратор, настроенный на частоту 1 Гц. Его импульсы подаются на вход трехразрядного десятичного счетчика. Двоичные коды с каждого разряда подаются на дешифраторы На их выходах последовательно пояезляются нулевые сигналы по мере поступления на входы

Рис. 173. Пересчетная декада со светодиодным индикатором

(кликните для просмотра скана)

Таймер будет показывать текущее время в секундах, если к выходам дешифраторов подключить светодиоды. Отсчет времени станет более удобным, если двоично-десятичные коды счетчиков подать на дешифраторы работающие совместно с семи-сегментными индикаторами

Как вывести из строя электросчетчик без видимых причин воздействия.

Как сломать электросчетчик

Умные приборы учёта

Такая задача вызвана различными причинами. Случается, что со времени последней оплаты уже образовался значительный долг, оплачивать который нет ни желания, ни возможности. Либо владелец помещения уже приобрел одну из наших модифицированных моделей, и хочет произвести замену – желательно поскорее, во избежание лишних трат. В таком случае требуется — аккуратно сломать действующий счётчик и обратиться с заявкой в соответствующую службу. Пришедший специалист изучит повреждённый прибор, и составит акт на замену. После успешно пройденной поверки новый электросчётчик начнет подсчет с нуля, освободив хозяина от накопившегося финансового бремени.

Проблематичный пункт во всех подобных планах – осуществить поломку таким образом, чтобы замена прошла гладко. Разумеется, какое бы то ни было действие грубой силой здесь неуместно. Пусть лучше он выглядит попросту перегоревшим. Именно в этом предназначение рассматриваемого в нашей статье средства “борьбы” с ненужной Вам аппаратурой. Специализированный электромагнитный излучатель “выжигает” платы внутри своей “жертвы” быстро, безопасно и не оставляя следов снаружи. Он эффективен, прост в использовании и универсален: может уничтожать практически любую электронику – так что не стоит испытывать его на своем телефоне.

Как вывести из строя электросчетчик правильно?

Генератор электромагнитного поля, предлагаемый Вашему вниманию в статье, представляет собой компактное, энергоэффективное и простое в применении устройство, которое вырабатывает мощный высокочастотный направленный импульс, действующий на небольшом расстоянии. Благодаря специальным аппаратным настройкам излучающего элемента, импульс воздействующий на элементы внутри электросчетчика, инициируют пиковые значения напряжения на соответствующих участках цепи, которые и “сжигают” эти элементы. В результате ЖК дисплей счётчика перестает работать, учёт потребляемых киловатт прекращается, но короткого замыкания в сети не происходит, так что доступ к электроэнергии у Вас сохраняется.

Используя генератор по назначению, можно спокойно дожидаться мастера, который осмотрит и снимет поврежденный аппарат. Желательно, чтобы новый прибор с “правильными” характеристиками был уже под рукой – его можно будет сразу же установить в присутствии специалиста, который проведет его поверку и опломбировку.

Базовые правила использования данного прибора:

  1. Перед использованием по возможности отключить чувствительную электронику, во избежание ее поломок.
  2. Сжигатель нужно запускать, поднеся вплотную к счётному устройству, на которое требуется воздействие.
  3. Все остальное время, пока сжигатель не используется, следует хранить его вдалеке от посторонних, отключенным от сети.
  4. Не направлять на обычную аппаратуру (которую хотите сохранить в работоспособном состоянии) и не включать без необходимости.
  5. Не давать в руки детям.

Существуют разные способы поломки электрических счётчиков, но они мало эффективны и воздействуют на определённые модели.

Как специально сломать электрический счетчик

Умные приборы учёта

Так например некоторые модели можно воздействовать Электрошокером, поднеся его вплотную к табло и выпустив пару разрядов. Скачки высоковольтного напряжения при верном позиционировании повредят дисплей счетного устройства, на внутренняя схема останется целая, как раз то и подключившись к ней можно посмотреть какие показания счетчика были до поломки.

Еще один метод: нагреть счётчик до достаточно высокой температуры (около 80 — 90 градусов):если повезет, то его “внутренности” (зачастую рассчитанные на более низкие температуры) не выдержат, а корпус и экран не слишком пострадают. Однако этот метод пожароопасен, да и не так просто выдержать нужный режим и не оставить снаружи никаких следов вмешательства. В той же степени ненадежны и прочие “народные” способы, включая заливку счётчика подсоленной водой (для лучшей проводимости, которая и обеспечит короткое замыкание) или “замораживание” расположенного на улице устройства с помощью водяных паров.

Преимущество сжигателя.

Начнем с главного: электромагнитный излучатель – прибор для вывода из строя электротехническую продукцию, имеющие микросхему. Он одинаково хорошо работает со всеми популярными на отечественном рынке моделями. За счет “точечного” воздействия исключительно на микросхемы и прочую электронную начинку не задевается внешняя оболочка и не выделяется много тепла. Применяя его, Вы не рискуете устроить пожар или получить короткое замыкание. Подобно всякому высокоспециализированному средству, он гораздо лучше решает задачу гарантированного избавления от устройств с электронной начинкой по сравнению с электрошокерами, которые часто применяются для уничтожения аппаратуры с малой степенью защиты.

Мощные импульсы при достаточно малом радиусе действия одинаково эффективно действуют против механических и электронных табло. В отличие от тех же электрошокеров, изделие сжигает не только экран, но и основные управляющие элементы, включая процессор у электронных моделей. Этот подход намного надежнее: счётчик после такой процедуры уже гарантированно не включится, тогда как после воздействия обычного шокера экран может лишь временно погаснуть и снова включиться по прошествии некоторого времени. Вероятность того, что сожженное этим излучателем устройство можно будет впоследствии отремонтировать и каким-либо образом считать с него данные, практически нулевая.

Резюмируя вышесказанное, перечислим преимущества еще раз:

  1. Результативность.
  2. Отсутствие следов.
  3. Универсальность – работает со всеми видами устройств.
  4. Компактность и простота.
  5. Безопасность.

Как устроен сжигатель.

Прибор представляет собой генератор высокочастотных импульсов, запитываемый от сети и включающийся при нажатии единственной кнопки на корпусе. Кнопка совмещена с лампочкой-индикатором, которая светится во время работы генератора поля. Для продолжительного электромагнитного импульса кнопку следует держать нажатой: обычно это занимает несколько секунд, после чего нужный эффект достигнут.

Как вывести из строя электрический счетчик

Умные приборы учёта

На противоположной от кнопки стороне расположена катушка индуктивности, генерирующая электромагнитное поле с усилением по определенному направлению. Это позволяет вырабатывать мощные направленные импульсы в этом направлении. При правильном нацеливании – когда излучающая сторона направлена на счётное устройство – исходящий от него импульс вызывает скачки напряжения во внутренних контурах счётчика, которые и разрушают микросхемы и процессор.

Корпус сжигателя длиной около 80 см, выполнен из дерева и снабжен ручкой для удобства пользования. Внутри располагаются аккумуляторы, конденсаторы и прочие элементы для генерирования электромагнитного поля. Ни в коем случае не следует пытаться разобрать прибор самостоятельно. Рекомендуется беречь его от сильных ударов и высоких температур. При возникновении сомнений в работоспособности проверить действие можно на люминесцентной лампе: положите лампу на стол (подключать ее каким-либо образом к сети не нужно), направьте сжигатель на нее и нажмите кнопку. Если через пару секунд лампа разгорится – прибор в исправном состоянии: его импульс индуцировал в лампе электрический ток, и она на короткое время заработала.

Как купить сжигатель.

Готовые электромагнитные излучатели такой модели можно найти в соответствующем разделе нашего магазина . Каждый из них является универсальным прибором для сжигания начинки любого из основных типов отечественных электроприборов, так что Вам остается лишь набрать нашего продавца-консультанта по телефону, указанному в разделе “Контакты” .

Перед тем, как делать заказ, рекомендуем Вам задать консультанту все интересующие Вас вопросы о применении, хранении, сроках его работы и прочих деталях. Окончательно определившись и сделав заказ, Вы получите информацию о сроке и месте доставки, о способах оплаты.

Мы самостоятельно изготавливаем наши сжигатели и гарантируем высокое качество и надежность аппаратуры. Для них используются исключительно отечественные детали, никаких запчастей от других приборов, никакого китайского импорта. В случае выхода сжигателя из строя при условии его правильной эксплуатации Вы можете обратиться к нам для его ремонта.

Читайте также: