Как сделать чтобы светодиоды не моргали

Добавил пользователь Дмитрий К.
Обновлено: 19.09.2024

Моргающий световой сигнал находит широкое применение – от особого режима работы фонарей до индикации сложной аппаратуры. В его основе все чаще используется мигающий светодиод, как надежная и долговечная альтернатива любым другим видам светоисточников.

Рассмотрим, каков его принцип действия, какие готовые решения подобного прибора доступны сегодня на рынке, как сделать, чтобы лед-элемент, функционирующий в обычном режиме, стал работать в мерцающем ритме, какова общая сфера их применения, а также как своими руками на их основе изготовить гирлянды и бегущие огни.

Принцип действия

Светодиод с мигающим световым излучением – это стандартный лэд-кристалл, в электрическую схему питания которого включены задающие режим функционирования емкость и резистор. Внешне он ничем не отличается от обычных аналогов. При этом механизм его работы на уровне процессов, происходящих в электрической цепи, сводится к следующему:

  1. При подаче тока на резистор R накапливается заряд и напряжение в конденсаторе С.
  2. При достижении его потенциала 12 вольт образуется пробой в p-n-границе в транзисторе. Это повышает проводимость, что и инициирует производство светового потока лед-кристаллом.
  3. Когда напряжение снижается, транзистор снова становится закрытым и процесс начинается заново.

Все модули такой схемы функционируют на единой частоте.

Готовые мигающие светодиоды

Мигающие светодиоды от различных производителей по сути представляют собой функционально завершенные, готовые к применению в различных областях схемы. По внешним параметрам они мало чем отличаются от стандартных лед-устройств. Однако в их конструкцию внедрена схема генераторного типа и сопутствующих ему элементов.

Среди главных преимуществ готовых мигающих светодиодов выделяются:

  1. Компактность, прочность корпуса, все компоненты в одном корпусе.
  2. Большой диапазон напряжения питающего тока.
  3. Многоцветное исполнение, широкое разнообразие ритмов переключения оттенков.
  4. Экономичность.

Совет! Простейший мигающий светодиод можно сделать, если соединить в одну цепочку соблюдая правила полярности led-кристалл, CR-батарейку и резистор 160-230 Ом.

Схемы использования

Самый простой вариант схемы, выпускаемых сегодня мигалок на базе светодиодов, изготовление которых возможно своими силами радиолюбителям, включает:

При накоплении заряда осуществляется лавинообразный его пробой с открытием транзисторного модуля и свечением диода. Устройство такого типа часто используется в елочной гирлянде. Недостатком схемы является необходимость применения особого источника питания.

Другой вариант популярных на сегодня схем светодиодов мигающего типа включает пару n-p-n-транзисторов модификации КТ315 Б. Для ее сборки применяются также следующие компоненты:

  1. Две пары резисторов на 6,8–15 кОм и 470–680 Ом.
  2. Два конденсатора емкостью на 47-100 мкФ.
  3. Небольшой светодиод или отрезок лед-полоски.
  4. Источник питания от 3 до 12 В.

Принцип действия устройства обуславливается попеременной сменой цикла зарядки/разрядки конденсаторов, которые в свою очередь открывают транзисторы и питают светодиоды и обеспечивают их мигание.

Обычные светодиоды

Стандартный не мигающий светодиод дает яркое равномерное освещение и характеризуется малым потреблением электроэнергии. Наряду с такими качествами, как долговечность, компактность, энергоэффективность и широкий диапазон температур свечения это делает его вне конкуренции среди прочих искусственных источников света. На базе таких led-элементов и собирается схема мерцающих светильников. Рассмотрим, по какому принципу они изготавливаются.

Как сделать чтобы светодиоды мигали

Мигалка на светодиоде может быть собрана на базе одной из выше представленных схем. Соответственно нужно будет приобрести компоненты, описанные выше. Они необходимы для функционирования того или иного варианта. При этом для сборки потребуется паяльник, припой, флюс и другие необходимые комплектующие для пайки.

Сборка цепочки мигающих светодиодов предваряется обязательным лужением выводных контактов всех соединяемых элементов. Также нельзя забывать о соблюдении правил полярности, особенно при включении конденсаторов. Готовый светильник будет выдавать мерцание с частой около 1,5 Гц или что тоже самое порядка 15 импульсов каждый 10-секундный отрезок времени.


Схемы мигалок на их основе

Чтобы происходили элементарные заданные определенной периодичностью вспышки света, требуется пара транзисторов типа C945 или аналоговых элементов. Для первого варианта коллектор размещается в центре, а у второго – по середине располагается база. Один или пара мигающих светодиодов изготавливается по обычной схеме. При этом частотность вспышек задается наличием в цепочке конденсаторов С1 и С2.

В такую систему допустимо внедрение одновременно нескольких лед-кристаллов при монтаже достаточно мощного транзистора pnp-типа. При этом мигающими светодиоды делаются при соединении их контактов с разноцветными элементами, поочередность вспышек задается генераторным модулем, а частотность – заданными программными настройками.

Область применения

Светодиоды, функционирующие в мигающем ритме, применяются в различных областях:

  1. В развлекательной сфере, в игрушках, для украшения декора, в качестве гирлянд.
  2. Как индикация в бытовых и промышленных приборах.
  3. Светосигнализирующих устройствах.
  4. В элементах рекламы, вывесках.
  5. Информационных табло.

Важно! Светодиоды, излучающие свет в мигающем заданном ритме, применяются не только в видимом диапазоне спектра, но также в инфракрасном и ультрафиолетовом сегментах. Область их назначения – системы автоматизации и дистанционного управления различной техники – отоплением, вентиляцией, бытовыми приборами.

Бегущие огни на светодиодах своими руками

  1. Генератор импульсом прямоугольного вида.
  2. Устройство индикации.
  3. Дешифратор.
  4. Счетчик.


Изготовление схемы осуществляется на макетной плате беспаечного типа. При этом по номиналу резисторов и конденсаторов допускается небольшой разброс, но не выше 20%. Светодиоды от HL1 до HL16 могут быть не обязательно одного цвета, но различных оттенков. Однако падение напряжение каждого лед-элемента должно быть в рамках 3 вольт.

Как сделать гирлянду из светодиодов

Для изготовления гирлянды, периодически мигающей с заданным ритмом, потребуются следующие компоненты и набор инструмента:

  1. Светодиоды на 20 мАч.
  2. Проводка площадью сечения 0,5-0,25 мм 2 .
  3. Трансформатор на 6 вольт.
  4. Резистор на 100 Ом.
  5. Паяльная станция с наконечником небольшого сечения, припой, канифоль.
  6. Нож с острым лезвием.
  7. Герметик на силиконовой основе.
  8. Фломастер.
  1. Определиться точно с промежутками между мигающими элементами.
  2. Подготовить провод и обозначить фломастером отметины под светодиоды.
  3. На местах отметок сделать срезы изоляции острым ножом.
  4. Далее на оголенные участки нанести канифоль с припоем.
  5. Припаять электроды диодов к этим местам.
  6. Нанести силиконовый герметик на оголенные участки для обеспечения электроизоляции.

По завершении подсоединяется блок питания и обычный резистор. Устройство включается в сеть и проверяется на работоспособность.

Совет! При изготовлении гирлянд нужно учитывать, что исключительно последовательный характер соединения светодиодов в цепи будет обеспечивать свойственный им мигающий эффект.

Основные выводы

Мигающий светодиод – это стандартный лед-элемент, оснащенный для специфического ритмичного свечения резистором и конденсатором, работающий по следующему принципу:

  1. Поступающий ток накапливает заряд на резисторе.
  2. По достижении заданного потенциала происходит пробой в p-n-переходе транзистора – ток проходит, светодиод вспыхивает.
  3. По мере снижения заряда транзистор закрывается и процесс повторяется.

Схема распространенного мигающего самодельного светодиода может включать один или пару транзисторов. При самостоятельной их сборке нужно заранее подготовить все необходимые компоненты и требуемые в ходе работы инструменты. Область применения мерцающих лед-светильников огромна – от игрушек и гирлянд до сигнализации, индикации и систем дистанционного управления.

Если вы знаете, как другим способом собрать схему мигающего светодиода, обязательно поделитесь полезной информацией в комментариях.


Вот и Новый год скоро! На прилавках магазинов рядом с мандаринами, конфетами и шампанским появляются елочные игрушки: разноцветные шары, мишура, всевозможные флажки, бусы и, конечно же, электрические гирлянды.

Обычную гирлянду из разноцветных лампочек, пожалуй, и не купить. Зато различных мигалок, в основном китайского производства, просто не счесть. Микроскопические лампочки могут располагаться на куске картона или вплетаются в ковер из проводов, которым можно украсить сразу целое окно.

Елочные гирлянды тоже отличаются большим разнообразием, прежде всего внешним оформлением, дизайном. Стоимость подобных гирлянд невелика, как, собственно, и мощность лампочек.

Большинство гирлянд имеют маленькую пластмассовую коробочку с одной кнопкой, шнуром с сетевой вилкой и проводами, идущими на гирлянду разноцветных лампочек. Оформление гирлянды может быть самым разнообразным.


Рисунок 1. Гирлянда за сорок рублей

Гирлянды другого фасона имеют на лампочках небольшие пластиковые плафончики, например, в виде прозрачных цветков с лепестками. Но коробочка с кнопкой остается той, же самой, хотя цена гирлянды доходит рублей до двухсот. Попробуем открыть коробочку, и посмотреть, что же там внутри.


Рисунок 2. Внешний вид контроллера гирлянды с тремя тиристорами

В нижней части рисунка показаны два провода, это как раз подключение устройства к сети. Здесь же находится кнопка, с помощью которой переключаются режимы работы. В верхней части можно увидеть три тиристора и провода, отходящие к гирляндам.

В середине платы находится микроконтроллер в бескорпусной микросхеме, — такая черная капля, установленная на маленькой печатной плате. Плата имеет контактные площадки, с помощью которых контроллер впаивается в основную плату.

Сколько тиристоров на плате

К выходам микроконтроллера подключаются управляющие электроды тиристоров, которые включают гирлянды лампочек. Микроконтроллер имеет четыре выхода, но часто, вместо четырех тиристоров на плате установлено только три, а в некоторых случаях всего два.

Необходимый визуальный эффект достигается подключением гирлянд и расположением лампочек: в одной гирлянде запаяны лампочки двух, а то и трех цветов. Как раз такая плата и показана на рисунке 2.

Если посмотреть на эту плату со стороны печатного монтажа, то можно увидеть, что три тиристора запаяны, а под четвертый имеются отверстия с залуженными контактными площадками, как показано на рисунке 3. В некоторых случаях отверстия даже не просверлены, мол, кому заблагорассудится, просверлит сам.


Рисунок 3. Плата контроллера гирлянды. Свободное место для тиристора

Здесь следует заметить такую особенность: если выход контроллера никуда не подключен, это вовсе не означает, что он нерабочий. Программа во всех контроллерах прошита, видимо, одна и та же, все выходы контроллера задействованы.

В этом легко убедиться с помощью стрелочного тестера. Если померить постоянное напряжение на свободной ноге, то стрелка будет скакать, дергаться и отклоняться вместе с миганием других гирлянд. Достаточно просто запаять в плату недостающий тиристор, и, пожалуйста, получаем полноценную четырехканальную гирлянду.

Тиристор можно взять со старой неисправной платы (бывает, что в негодность приходит контроллер) или за сорок рублей купить дополнительную гирлянду и оттуда извлечь тиристор. Для хорошего дела расходы крайне незначительны!

Принципиальная схема гирлянды

По печатной плате несложно составить принципиальную схему. Существуют две разновидности схем, несколько отличающиеся друг от друга. Первый, наиболее совершенный вариант показан на рисунке 4.


Рисунок 4. Контроллер китайской гирлянды. Вариант 1

Питание всей схемы осуществляется через диодный мост VD1…VD4. Гирлянды питаются пульсирующим напряжением и включаются контроллером через тиристоры VS1…VS4. Резистор R1 и микроконтроллер DD1 образуют делитель напряжения, на выходе которого получается напряжение 12В.

Конденсатор C1 сглаживает пульсации выпрямленного напряжения. Через резистор R7 сетевое напряжение подается на вход контроллера 1 для синхронизации схемы с частотой сети 220В, что позволяет осуществлять фазовое управление тиристорами. Эта синхронизация позволяет осуществлять плавное зажигание и угасание гирлянд. Именно такие платы можно встретить в дорогих гирляндах.

Плата, показанная на рисунке 3, собрана по несколько упрощенной схеме, которая показана на рисунке 5.


Рисунок 5. Контроллер китайской гирлянды. Вариант 2

Сразу бросается в глаза, что тиристоров всего три штуки, а от выпрямительного моста остался всего один диод. Также исчезли резисторы из управляющих электродов тиристоров. Но, в целом, потребительские свойства остались теми же, что и в предыдущей схеме, несмотря на то, что лампочки зажигаются только тогда, когда на верхнем проводе схемы присутствует положительный полупериод сетевого напряжения. Без выпрямительного моста получается однополупериодное выпрямление.

Как подключить мощные лампы

Недостатком схемы можно считать необходимость дополнительного источника питания 12В, а также переделку самой платы контроллера: тиристоры предлагается заменить транзисторами КТ3102.

Если не хочется переделывать плату

Гораздо проще обойтись без переделки платы контроллера. Все, что придется сделать, это изготовить четыре мощных выходных ключа с оптронными развязками и присоединить их вместо маломощных гирлянд. Схема силового ключа показана на рисунке 6.


Рисунок 6. Мощный силовой ключ с оптронной развязкой

Собственно, схема типовая, работает безотказно, никаких подводных камней в себе не содержит. Как только засвечивается светодиод оптрона MOC3021, открывается маломощный оптронный тиристор и через выводы 4, 6 и резистор R1 соединяются управляющий электрод и анод симистора BTA16-600. Симистор открывается и включает нагрузку, в данном случае гирлянду.

Оптрон следует применить без встроенной схемы CrossZero (детектор перехода сетевого напряжения через ноль), например, MOC3020, MOC3021, MOC3022, MOC3023. Если оптрон имеет узел CrossZero, то схема РАБОТАТЬ НЕ БУДЕТ! Об этом забывать не следует.

Симистор BTA16-600 обладает следующими параметрами: прямой ток 16А, обратное напряжение 600В. При токе 5А и напряжении 220В мощность нагрузки уже целый киловатт. Правда, потребуется установить симистор на радиатор.

Металлическая подложка изолирована от кристалла, о чем говорит буква А в маркировке симистора. Это дает возможность устанавливать симисторы на радиатор без слюдяных прокладок и изоляторов для винта. Кстати, именно эти симисторы стоят в регуляторах мощности бытовых пылесосов, при этом радиатор обдувается потоком воздуха на выходе пылесоса.

Если мощность нагрузки не более 400Вт, то можно обойтись и без радиатора. Цоколевка симистора показана на рисунке 7.


Рисунок 7. Цоколевка симистора BTA16-600

Этот рисунок будет совсем не лишним при сборке схемы силового ключа. Все четыре силовых ключа, лучше всего, собрать на общей печатной плате. Резистор R лучше собрать из двух резисторов мощностью по 2Вт, что позволит избежать их чрезмерного нагрева. Максимальный ток входного светодиода оптрона 50мА, поэтому ток в 20…30мА обеспечит его долговременную безотказную работу.

Итак, будем считать, что силовые ключи изготовлены, остается только подключить их согласно схеме, показанной на рисунке 8.

Рисунок 8. Подключение силовых ключей к плате контроллера

В целом все понятно и просто. От контроллера отпаиваются гирлянды, а вместо них запаиваются входные цепи силовых ключей. При этом не требуется никакого вмешательства в печатный монтаж контроллера. Исключение составляет только запаивание дополнительного тиристора, при условии, что его удастся найти. Также придется несколько умощнить сетевой шнур с вилкой, поскольку оригинальный имеет очень маленькое сечение.

При правильном монтаже и исправных деталях схема не нуждается в настройке. Конструкция устройства произвольная, лучше всего в металлическом корпусе, подходящих размеров, который будет выполнять роль радиатора для симисторов.

С целью обеспечения электробезопасности устройство следует включать через автоматический выключатель, или хотя бы плавкий предохранитель.

режим мигания

режим мигания, начинающегося с включенного состояния — Тематики автоматизация, основные понятия EN on flasher mode … Справочник технического переводчика

режим мигания, начинающегося с отключенного состояния — режим мигания, начинающегося с отлюченного состояния Тематики автоматизация, основные понятия EN off flasher mode … Справочник технического переводчика

Батарейные фонари СССР — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей … Википедия

Текстовый видеорежим — Norton Commander работал в текстовом режиме. Текстовый видеорежим режим компьютерного видеоадаптера, в котором экран представлен в виде решётки знакомест (а не пикс … Википедия

Видеокарта — семейства GeForce 4, с радиатором и вентилятором Видеокарта (также видеоадаптер, графический адаптер, графическая плата, графическая карта, графический ускоритель) … Википедия

Škoda Yeti — Skoda Yeti … Википедия

Ту-22М — Не следует путать с Ту 22. Ту 22М … Википедия

Люминесцентная лампа — Различные виды люминесцентных ламп Люминесцентная лампа газоразрядный источник … Википедия

ГОСТ Р МЭК 60204-1-2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования — Терминология ГОСТ Р МЭК 60204 1 2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования оригинал документа: TN систем питания Испытания по методу 1 в соответствии с 18.2.2 могут быть проведены для каждой цепи… … Словарь-справочник терминов нормативно-технической документации

Дневной свет — Различные виды люминесцентных ламп Люминесцентная лампа газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не… … Википедия

Лампа дневного света — Различные виды люминесцентных ламп Люминесцентная лампа газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не… … Википедия

Схема


На транзисторе VT4 собран генератор импульсов частота следования которых определяется сопротивлением резистора R7 и ёмкостью конденсатора C1. Данные импульсы через резистор R3 поступают на базу транзистора VT3 и открывают его. В момент открывания транзистора VT3 происходит закрывание транзистора VT1, и светодиоды HL1 — HL18 включенные в цепь коллектора транзистора VT1 гаснут. В результате этого происходит мигание светодиодов гирлянды.


В качестве светодиодов гирлянды HL1-HL18, были использованы светодиоды от однотипных китайских фонарей, у которых вышли из строя аккумуляторы. Конкретный тип светодиодов не был известен. Проведенные замеры показали, что рабочее напряжение светодиодов в схеме фонаря составляет около 3 Вольт, а ток протекающий через них (светодиоды в фонаре были включены параллельно) составляет от 21 до 26 мА. Исходя из этого, резистором R1 был установлен ток через светодиоды гирлянды HL1 — HL18 на уровне 23 мА. Светодиоды было решено разместить вместо ламп накаливания в ёлочной гирлянде отечественного производства, которая состояла из 18 ламп на 13,5 Вольт. Лампы в данной гирлянде находились внутри разноцветных пластмассовых шаров, которые разъединялись на две половинки. Установленные в гирлянде лампы имели гибкие выводы. Поэтому, выводы светодиодов было решено надставить проводами до такой-же длинны которые были у ламп накаливания. В результате этого, светодиоды удалось установить вместо штатных ламп, без каких-либо переделок в конструкции ёлочной гирлянды.


Чтобы случайно не включить в сеть 220 В переделанную ёлочную гирлянду, у ней была удалена сетевая вилка, а провода идущие к ней были подключены непосредственно к печатной плате устройства.


Детали


Данный трансформатор Т1 вероятно был китайского производства, каких-либо обозначений на нём не было. В разрыв одного провода сетевой обмотки трансформатора был включён кнопочный выключатель, а в разрыв второго впаян предохранитель на 0,1 Ампер, на который надевается трубка ПВХ. При желании конечно можно установить и специальный держатель предохранителя. Трансформатор Т1 можно заменить на ТП-115-16, ТП-113-2*24 вторичные обмотки у которых включаются последовательно. Устройство было размещено в пластмассовой электромонтажной коробки 85*85*42 мм.


Частоту мигания светодиодов гирлянды можно менять путем изменения сопротивления резистора R7. Схему предложил YRIT.

Заметил такую штуку. Светодиодные лампочки позиционируются на рынке как самые надежные, экономичные и долговечные. Производители обещают, что они будут служить 10 лет. По факту работают они ровно до окончания срока гарантии. Хотя могли бы светить дольше.

Китайцы экономят на всем, чем только можно – компонентах драйвера, светодиодах, материалах платы и корпуса. Как следствие, лампочки перегружаются и перегреваются. Светодиоды эксплуатируются в предельных режимах!

Светодиодная лампочка

Заметил я это, когда очередная лампочка перестала светить через год. Я решил ее разобрать и посмотреть, в чем проблема. Оказалось, что резисторы и конденсаторы подобраны так, чтобы светодиоды работали на всю свою мощь. Неудивительно, что один из них сгорел.








Схема типового LED драйвера мощной лампочки на 220 В

Для того чтобы снизить уровень выдаваемой мощности преобразователя (ведь по факту уже в 2 раза меньше нагрузка), пришлось вникнуть в схему драйвера и изменить токозадающим резистором значение выхода.


Можно конечно было просто перерезать дорожку на выходе и поставить туда резистор по-мощнее, но не факт что его мощность не расплавила бы пластиковый корпус лампы.




В общем найдя похожую по схемотехнике включение микросхемы преобразователя, удалось выяснить что ток задаётся парочкой низкоомных резисторов. Он был задан на 100 миллиампер сопротивлением 2 Ома. Поставив 4 Ома его значение изменилось на 60 миллиампер, а 5,6 Ом снизили его до 40 мА. На этом и остановился.




LED лампа вновь вернулась с респауна на своё законное место в настольном светильнике. Насколько хватит её теперь сказать трудно, но в любом случае получен превосходный опыт ремонта подобных устройств и при следующем перерождении просто придётся перепаять все SMD светодиоды, вновь подняв её мощность до 100%.

Форум по ремонту диодных ламп

Разборка

Решено было продлить срок службы лампочки самым варварским способом. Начну сначала – с разборки.

  1. Берем острый нож. Надеваем перчатки, чтобы не порезаться.
  2. Кладем лампочку на стол.
  3. Вставляем лезвие ножа в микрощель между рассеивателем и средней частью лампы.
  4. Они соединены чем-то вроде герметика.
  5. Слегка надавливаем сверху на нож и перекатываем лампу.
  6. Пара минут, и герметик срезается, а плафон выходит из защелок средней части.
  7. Под крышкой покажутся последовательно подключенные светодиоды на плате.
  8. Откручиваем 2 винта, отпаиваем. Вырезаем по кругу термоклей.
  9. Достаем плату, поддев ножом.
  10. За ней находится драйвер, который можно вытащить пальцами. Собственно все, лампочка разобрана.

Устроена она очень просто:

Строение светодиодной лампы схема

Жизнь вторая

Прежде чем начать операцию по спасению, нужно обзавестись парочкой полезных приспособлений — это кусок шнура с сетевой вилкой на 220 В и такой-же провод, но с патроном и кнопкой.


С ними очень удобно проводить измерение, проверку и перепайку лампочки прямо на столе, не бегая после каждого изменения к розетке (светильнику).


Для отделения пластиковой колбы от корпуса, можно на поставить в место стыка нож и несколько раз ударить по нему молотком, делаем это аккуратно, перемещая по кругу. Подробнее о ремонте было здесь.


Сняв колбу видно десяток SMD светодиодов, каждый из которых легко проверяется обычным блоком питания. Экспериментально установлено рабочее напряжение примерно 10 — 12 вольт. Как и ожидалось, один светодиод не выдержал суровой жизни и сгорел.


Можно конечно его выпаять и заменить на аналогичный, но это надо иметь подходящее оборудование (паяльную станцию), нужные диоды на замену, и желание всем этим заниматься. Проще содрать с него гелевый слой с кристаллом и замкнуть, банально залив припоем верхнюю часть.


До блока питания даже не пришлось добираться — всё заработало и лампа вновь заняла свое почетное место.

Восстановление

Сделать самому лампочку меня надоумило вот это видео:

  1. Находим сгоревший светодиод (или несколько).
  2. Обычно они отмечены черной точкой. В моем случае весь светодиод был выгоревший.
  3. Выкрашиваем погорельца ножом или отверткой.
  4. Капаем на оголившийся контакт флюсом и наносим капельку припоя.

Рекомендуем: Шаг к цивилизации: узнайте, что можно бросать в контейнер для пластика, а что нельзя

Переделка лампочки

Таким образом мы восстанавливаем цепь и лампочка снова начинает работать. Но! Есть одна загвоздка. Напряжение после этого повышается, и светодиоды будут гореть один за другим. Возможно, лампочка проработает еще месяц. А может быть, только один день.

Переделка лампочки 2

Повышение яркости

Лампочки

Чтобы увеличить яркость лампочки, взял старенький компакт-диск. Немного доработал и получил мощный отражатель.

Итог. Из нерабочей светодиодной лампочки получился эдакий мини-прожектор. Смотреть на него некомфортно, но зато гараж освещен на все 200%! Конечно, для дома такой вариант не подойдет. Равно как и для улицы (сырых помещений). Там яркостью придется пожертвовать ради эстетики и безопасности.

Рекомендуем: 8 способов быстро почистить требуху

Предвижу, что многие скажут, а зачем вообще ремонтировать и продлять жизнь светодиодным лампам? Сегодня цена на них ну очень доступная. Выкинуть старую, и купить новую может позволить себе каждый. Но я из принципа решил выжать из нее максимум. Результатом доволен на все сто. В гараже светло как днем. За 3 года ни один светодиод не перегорел. Лампа стала ярче в два раза, и дольше служит уже в три раза (и это не предел)!



Светодиодный светильник из перегоревших лед ламп

Сгоревшие светодиодные лампы Светильник от лампы накаливания Блок питания (лед драйвер ) на 12в 1А Соеденительные провода Любые лед, для украшения Паяльник Дрель/шуруповерт Мультиметр Источник напряжения для проверки (АКБ или блок питания) Пару болтиков и гаек Двухсторонний скотч

Светильник. Оригинальный б\у светильник выглядит так.



Верхнее стекло я выбросил за ненадобностью и вместо него использую оргстекло. Оргстекло лежит на нержавейке и поэтому плохо видно.



Вырезаю и наждачкой заматовываю одну сторону.

В светильнике на старом стекле была вот такая круглая резинка.



Выбрасывать я ее не стал, может еще пригодится!

С плоским стеклом-рассеивателем светильник принимает совершенно другой вид.



Высота светильника примерно 5-6 см.




Я не использовал лампы, в которых было 3 светодиода. Верхний матовый чехол просто выкручивается.



Ради чистоты эксперимента я решил поискать примерно похожий драйвера на алишке. По цене они стоили немного больше чем половина лед лампы. Я посчитал это не целесообразно.

А может я ошибся и просто перегорел светодиод? Слабо веря в эту теорию, я уверенно подношу 12в к проводам питания.

Как видно с картинки, светодиоды светят не очень ярко. Вот тут и стал у меня вопрос, а хватит ли светового потока, что бы осветить хотя бы прихожую или ванную. Я решил поэкспериментировать со светодиодиками и посмотреть их ток. Так уж меня приучили в универе, обязательно производить измерения и закреплять формулами и расчетами. Я вообще не понимаю, как можно делать что-то электрическое и не измерять напряжение и ток. Эти величины для меня святая святых. Амперметр и Вольтметр сила.

Я выпаял один светодиод и впаял туда перемычку.



Перехожу к своим любимым измерениям. Напряжения на АКБ 12,02 В



Ток на 4 светодиодах 0.09 А, ха….копейки.



Ток на 3 светодиодах…..ОГО аж 0,8 А. Здесь очень плохо видны показания, на следующем фото я развею ваши сомнения!



Действительно 0,8 А.



При подключении 4 светодиодов на 12в, световой поток составляет примерно 30% от той яркости, который давал оригинальный драйвер. Т.е с родным драйвером 100% а от АКБ примерно 30%.

При подключении 3 светодиодов на 12 в световой поток составил примерно 60-70% от оригинальной яркости.

Тут сразу стал вопрос о блоке питания, которым я буду запитывать всю мою лед индустрию. Я нашел у себя вот такой блок питания или лед драйвер.



Максимальный ток у него 1А, поэтому вопрос о 3 или 4 лед снят. Раз всё ясно, значит, пора переходить к монтажу. Сверлю отверстия и наглухо креплю блок питания.



Итак, в мои сети попались 7 штук неработающих лед ламп. Я решил крепить внутрь светильника светодиоды вместе с радиаторами, тем более место позволяет.



Было бы больше, было бы лучше, но и это сойдёт! Располагаю всё имеющие ледЫ по кругу и клеем-сопля приклеиваю их!



В ходе клейки меня терзали смутные сомнения по поводу моего клея, не расплавиться ли он. До этого я проверял одну лампу подключенную от АКБ. Просветила она минут 5-10 и была еле еле теплая, это и придало мне небольшой стимул пользоваться таким клеем.

По центру я решил добавить еще светодиодов для придания более красивого вида моему светильнику. Для этого я нашел вот такой……даже и не знаю как назвать. Материал как пластмасс, но более мягкий.



Вырезаю вот такой кружок.



Сразу леплю двухсторонний скотч на него.



Вот так!



В качестве декоративной подсветки использую светодиоды, снятые с рекламной вывески.



Мне нужно 5 штучек.



Клею как мне нравиться!



Прикидываю для проверки.



Всё влазит, это хорошо! Припаиваю проводом все радиаторные леды.



Более ближе.



Беру в руки мультиметр, перевожу на амперметр и, замеряю ток. Радиаторные лед. Ток 0,4 А



Декоративная подсветка. Ток 0,12 А



Всё вместе. Ток 0,45



Как видим, суммарный ток немного меньше чем. если бы мы устно сложили радиаторные лед и декоративную подсветку. Сумма получается 0,52 А, а по амперметру 0.45 А. В принципе я догадываюсь, почему так, но хотелось бы услышать мнение специалистов.

Подключаю и креплю окончательно декоративную подсветку.



Вот и пригодилось резиновое кольцо, ложу его чтобы оргстекло не касалось светодиодов и закручиваю окончательно
Подкрепляю свои измерения формулой.
U=12V I=0.5A (ток взял с небольшим запасом) Р=I*U 12*0.5=6 Вт Р=6 Вт

:)

Всё время забываю про индификацию личности Теперь приходиться стоя фоткать логотип :).


Вывод:
На мой взгляд, это достойное применение б/у лед ламп. Многие люди их выбрасывают за не надобностью, а зря, в принципе можно сделать довольно симпатичный вот такой светильник. Я уверен, что он послужит мне еще долго! Всем успехов в творчествостроении.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Всем привет, сегодня мы рассмотрим мигалку на одном транзисторе. Можно сказать это первые шаги в радиоэлектронике, ведь первое, что я решил собрать, была мигалка на транзисторе. Схема очень простая и состоит из четырёх деталей: транзистор n-p-n проводимости (не знаете - поищите в гугле, почитайте что за штука) в моем случае им был bc547, конденсатор электролитический на 470 мкФ (микрофарад), резистор 1,8 килоом и светодиод зеленого свечения.

светодиод внутри

Собрать не так просто - нужна знать, где у светодиода и конденсатора плюс и минус. У светодиода проверяется полярность подключивши его к источнику питания 5-10 вольт через резистор на 100 Ом.

полярность конденсатора

У конденсатора проще, так как на корпусе есть линия белая, жёлтая, синяя - с той стороны у него минус, а с обратной плюс.

Распиновку транзистора 547

Распиновку транзистора используемого вами, лучше посмотреть в интернете, в моем случае такая:

Как заставить светодиод мигать - схема

О радиодеталях кое-что узнали, теперь рассмотрим схему. Ничего сложного в ней нет. Начинаем паять. Зачищаем жало паяльника от грязи и окисла.

Зачищаем жало паяльника

Теперь рассмотрим детали, которые я выпаял из плат. Чтоб опознать номинал сопротивления используйте декодер цветовой маркировки резисторов.

детали в мигалку на одном транзисторе

Припаиваем светодиод до транзистора.

Припаиваем светодиод до транзистора

Потом припаиваем конденсатор, внимательно смотрим на распиновку транзистора и полярность светодиода, конденсатора. Резистор не имеет полярности - его можно запаять любой стороной.

Припаиваем светодиод до транзистора и конденсатора

Как заставить светодиод мигать


Про использование технологии беспроводного питания различных устройств.


Что такое OLED, MiniLED и MicroLED телевизоры - краткий обзор и сравнение технологий.


Приводятся основные сведения о планарных предохранителях, включая их технические характеристики и применение.


Переделываем игрушку обычный трактор в радиоуправляемый - фотографии процесса и получившийся результат.

на последней фотке средний вывод не задействован.почему?вроде средний вывод у всех транзисторов подобного типа коллектор,а на схеме он действующий.или я чтото не понимаю в этих BC547

"У светодиода проверяется полярность подключивши его к источнику питания 5-10 вольт через резистор на 100 Ом."
При 10 в и 100 Ом светодиод мигнет один раз - последний. Нужно брать резистор приблизительно по 100 Ом на каждый вольт, превышающий 3 Вольта. Для 10 вольт резистор должен быть 680-750 Ом. От батарейки на 3 Вольта светодиод можно зажечь без резистора.

Если светодиодов много и не жалко - подключайте. Но все же советую посмотреть в справочнике параметры светодиода.

Смотрел. Интересний факт если подключить лед через резитор 100 ом к импольсному бп зарядки от мобили светит и не горит. но если подключить к трансформаторному бп лед накрилса. Почиму так происходит. арядка нокіа 5в 350ма транс после диодного моста и кондера 4.8 в скока а незнаю.

Для светодиода нужно 10-20 мА. Что там написано на блоке питания - неважно. Важно, что он на самом деле может выдать. А от мощности блока питания номинал резистора не зависит, за исключением того случая, что блок питания настолько слабый, что даже светодиод не тянет или напряжение сильно проседает. А так, возьмите блок питания, который может выдать 5В 100А, все равно для светодиода потребуется резистор 200 ом (или 100 ом, если светодиод помощнее). Закон Ома пока еще не отменили.

Читайте также: