Как сделать центр тяжести

Добавил пользователь Валентин П.
Обновлено: 18.09.2024

Рассмотрим твердое тело весом P и объемом V в системе координат Oxyz , где оси x и y связаны с поверхностью земли, а ось z направлена в зенит.

Если разбить тело на элементарные части объемом ∆Vi , то на каждую его часть будет действовать сила притяжения ∆Pi, направленная к центру Земли. Предположим, что размеры тела значительно меньше размеров Земли, тогда систему сил, приложенных к элементарным частям тела можно считать не сходящейся, а параллельной (рис.1), и к ней применимы все выводы предыдущей главы.

Рис.1. Параллельная система сил

Центром тяжести твердого тела называется центр параллельных сил тяжести элементарных частей этого тела.

При определении центра тяжести полезны несколько теорем.

1) Если однородное тело имеет плоскость симметрии, то центр тяжести его находится в этой

2) Если однородное тело имеет ось симметрии, то центр тяжести тела находится на этой оси.

3) Если однородное тело имеет центр симметрии, то центр тя­жести тела находится в этой точке.

§2. Способы определения координат центра тяжести.

1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии (рис.2), то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

Рис.2. Центр тяжести тел, имеющих ось симметрии

2. Разбиение. Тело разбивается на конечное число частей (рис.3), для каждой из которых положение центра тяжести и площадь известны.

Рис.3. Центр тяжести сплошной

сложной геометрической фигуры

- центр тяжести и площадь первой фигуры;

- центр тяжести и площадь второй фигуры;

- координата центра тяжести сплошной сложной геометрической фигуры по оси x;

- координата центра тяжести сплошной сложной геометрической фигуры по оси y;

3. Метод отрицательных площадей. Частный случай способа разбиения (рис.4). Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Тело в виде пластинки с вырезом представляют комбинацией сплошной пластинки (без выреза) с площадью S1 и площади вырезанной части S2 .

Рис.4. Центр тяжести сложной геометрической фигуры,

- центр тяжести и площадь первой фигуры;

- центр тяжести и площадь второй фигуры;

- координата центра тяжести сложной геометрической фигуры по оси x;

- координата центра тяжести сложной геометрической фигуры по оси y;

§3. Координаты центра тяжести некоторых простых фигур.

1. Центр тяжести тре­угольника. Центр тяжести треугольника лежит в точке пересечения его медиан (рис.5). Координаты центра тяжести треугольника представляют собой среднее арифметическое из координат его вершин: xc =1/3(x1+x2+x3) ; yc =1/3(y1+y2+y3).

Рис.5. Центр тяжести треугольника

2. Центр тяжести прямоугольника. Центр тяжести прямоугольника лежит в точке пересечения его диагоналей (рис.6). Координаты центра тяжести прямоугольника рассчитываются по формулам: xc =b/2 ; yc =h/2.

Рис. 6. Центр тяжести треугольника

3. Центр тяжести полукруга. Центр тяжести полукруга лежит на оси симметрии (рис.7). Координаты центра тяжести полукруга рассчитываются по формулам: xc =D/2 ; yc =4R/3π.

Рис. 7. Центр тяжести полукруга

4. Центр тяжести круга. Центр тяжести круга лежит в центре (рис.8). Координаты центра тяжести круга рассчитываются по формулам: xc =R ; yc =R.

Рис. 8. Центр тяжести круга

Вопросы для самопроверки:

- Что называется центром параллельных сил?

- Что называется центром тяжести тела?

- Почему силы притяжения Земле, действующие на точку тела, можно принять за систему параллельных сил?

- Запишите формулу для определения положения центра тяжести неоднородных и однородных тел, формулу для определения положения центра тяжести плоских сечений?

- Запишите формулу для определения положения центра тяжести простых геометрических фигур: прямоугольника, квадрата, трапеции и половины круга?

- Как используются свойства симметрии при определении центров тяжести тел?

На каждое тело на Земле действует сила тяжести. При этом тела бывают самой разнообразной формы. Различные машины, механизмы, конструкции и строения, созданные человеком, должны быть устойчивыми для их нормального использования.

Это значит, что они должны находиться в равновесии. Каким образом добивается это условие?

В данном уроке мы рассмотрим как действует сила тяжести, к какой точке она приложена, чтобы мы могли говорить о равновесии тела. Мы введем определение центра тяжести тела и рассмотрим его особенности.

Центр тяжести

Рассмотрим простой пример. Возьмем линейку и подвесим ее на нити (рисунок 1).

Передвигая нить по длине линейки, найдем такое положение, чтобы линейка находилась в равновесии. Мы можем сказать, что линейка подвешена в центре тяжести.

Центр тяжести тела — это точка приложения равнодействующей сил тяжести, действующих на отдельные части тела.

Если мы мысленно разделим линейку на на несколько частей, то на каждую их них будет действовать сила тяжести. Сила тяжести всегда направлена вертикально вниз вне зависимости от положения тела.

Как мы увидели, у линейки центр тяжести будет находиться посередине ее длины. Но это справедливо не для всех тел. Если мы таким же образом подвесим лопату и будем искать положение, в котором она будет находиться в равновесии, то увидим другую ситуацию (рисунок 2). Лопата будет подвешена в центре тяжести ближе к началу ее черенка.

Расположение центра тяжести тела

Вокруг нас полно твердых тел сложной формы. Если с линейкой все было достаточно просто, то как найти центр тяжести более сложного тела?

Попробуем сделать это на практике. Вырежем фигуру произвольной неправильной формы из картона. Подвесим ее, используя отвес (рисунок 3, а).

Отвес — это приспособление, состоящее из нити и маленького грузика на ее конце. Служит для определения правильного вертикального положения других тел.

На нашу фигуру действуют две силы: сила тяжести и силы упругости. Сила тяжести направлена вертикально вниз, а сила упругости — вдоль нити. Так как мы используем отвес, задающий идеальную вертикальную линию, то сила упругости будет направлена вертикально вверх.

Картонная фигура покоится. Значит, эти две силы уравновешивают друг друга. Они равны по величине и направлены в противоположные стороны. Мы можем сказать, что точки приложения этих сил находятся на одной вертикальной прямой, которую отмечает отвес. Отметим эту линию карандашом на картоне.

Отцепим нашу фигуру и подвесим ее снова, но в другой точке (рисунок 3, б). Снова проведем линию по отвесу. Мы можем провести бесконечное множество линий, подвешивая фигуру в разных ее точках. Все эти линии будут пересекаться в одной точке (рисунок 3, в). Эта точка и будет центром тяжести тела C.

Это легко проверить. Возьмем фигуру из картона и поставим ее на острие карандаша а найденном центре тяжести (точка C). Фигура не будет крениться в какую-либо сторону, не упадет — она будет находится в равновесии (рисунок 3, г).

При любом положении тела его центр тяжести находится в одной и той же точке.

Для нахождения центра тяжести объемных геометрических фигур используют похожие способы. Так, центр тяжести шара находится в его геометрическом центре, а у параллелепипеда — в точке пересечения его диагоналей (рисунок 4).

Центр тяжести тела может находиться и вне самого тела. Например, у кольца (рисунок 5).

Примером тела с центром тяжести, находящимся вне тела, также могут служить разные сувениры. Например, вот эта птичка (рисунок 6). Она сделана так, что ее центр тяжести находится ровно под ее клювом. Это позволяет зрелищно держать такую игрушку на кончике пальца, создавая иллюзию полета.

Может ли измениться центр тяжести тела? Да, но только в том случае, если изменяется относительное расположение частей тела. Например, при непластичной деформации.

Как известно, сила тяжести тела равна векторной сумме сил тяжести, которые действуют на все материальные точки, на которые можно разбить рассматриваемое тело. Точку, к которой приложена результирующая сила тяжести, называют центром тяжести. Если известно положение центра тяжести, то можно считать, что на тело действует только одна сила тяжести, приложенная к центру тяжести.

Следует учитывать, что силы тяжести, действующие на отдельные элементы тела, направлены к центру Земли и не являются строго параллельными. Но так как размеры большинства тел на Земле много меньше ее радиуса, поэтому эти силы считают параллельными.

Определение центра тяжести тела

Центром тяжести называют точку, через которую проходит равнодействующая всех сил тяжести, действующих на материальные точки, на которые разбито рассматриваемое тело, при любом положении тела в пространстве.

Центр тяжести - это точка, относительно которой суммарный момент сил тяжести равен нулю при любом положении тела.

От положения центра тяжести зависит устойчивость всех конструкций.

Как найти центр тяжести?

Для нахождения центра тяжести тела сложной формы необходимо мысленно разбить тело на части простой формы и определить место нахождения центров тяжести для них. У тел простой формы центр тяжести определяют, используя их симметрию. Так, центр тяжести однородных диска и шара расположен в их центре, однородного цилиндра в точке на середине его оси; однородного параллелепипеда на пересечении его диагоналей и т, д. У всех однородных тел центр тяжести совпадает с центром симметрии. Центр тяжести может находиться вне тела, например, у кольца.

Определив, где расположены центры тяжести отдельных частей тела, переходят к поиску места расположения центра тяжести тела в целом. Тело представляют в виде системы материальных точек. При этом каждая точка имеет массу своей части тела и располагается в ее центре тяжести.

Координаты центра тяжести тела

В трехмерном пространстве координаты центра тяжести для твердого тела нахояд как:

где $m$ - масса тела.$;;x_i$ - координата на оси X элементарной массы $\Delta m_i$; $y_i$ - координата на оси Y элементарной массы $\Delta m_i$; ; $z_i$ - координата на оси Z элементарной массы $\Delta m_i$.

В векторной форме записи система уравнений (1) представляется как:

$<\overline>_c$ - радиус - вектор, определяющий положение центра тяжести; $<\overline>_i$ - радиус-векторы, которые определяют положения элементарных масс.

Центр тяжести, центр масс и центр инерции тела

Считают, что центр тяжести тела совпадают с центром масс тела, если его размеры малы в сравнении с расстоянием до центра Земли. При этом формулы, которые определяют положение цента тяжести и центра масс тела совпадают с выражениями (1) и (2). В основной массе задач центр тяжести принимают совпадающим с центром масс тела.

Сила инерции в неинерциальных системах отсчета, движущихся поступательно, приложена к центру тяжести тела.

Но центробежная сила инерции (в общем случае) не приложена к центру тяжести, поскольку в неинерциальной системе отсчета на элементы тела действуют разные центробежные силы инерции (даже если массы элементов равны), так как расстояния до оси вращения разные.

Примеры задач с решением

Задание: Каковы координаты центра тяжести системы из трех точечных масс, расположенных в вершинах и одной в центре равностороннего треугольника, со стороной равной $a\ (м)$ (рис.1)?

Центр тяжести тела, пример 1

Решение: Определение для координат $x_c\ и\ y_c$ центра тяжести в нашем случае запишем в виде:

Из рис.1 мы видим, что соответствующие абсциссы точек равны:

Тогда абсцисса центра тяжести получается равной:

Найдем ординаты точек.

Для того чтобы найти ординату $y_2$ найдем, высоту в равностороннем треугольнике:

Ординату $y_3$ найдем, учитывая, что медианы в равностороннем треугольнике точкой пересечения делятся в отношении 2:1 от вершины, имеем:

Вычислим ординату центра тяжести:

Задание: Каковы координаты центра тяжести системы из четырех элементарных масс, расположенных в вершинах куба со стороной равной $a$ (рис.2)?

Наиболее часто для нахождения центра тяжести тела или фигуры применяют следующие методы:

  • метод симметрии;
  • метод разбиения;
  • метод отрицательных масс.

Рассмотрим приемы, применяемые в каждом из перечисленных методов.

Метод симметрии

Представим себе однородное тело, которое имеет плоскость симметрии. Выберем такую систему координат, чтобы оси x и z лежали в плоскости симметрии (см. рисунок 1) .

методы нахождения центра тяжести

В этом случае каждой элементарной частице силой тяжести Gi с абсциссой yi = +a соответствует такая же элементарная частица с абсциссой yi = -a , тогда:

Отсюда вывод: если однородное тело имеет плоскость симметрии, то центр тяжести тела лежит в этой плоскости.

Аналогично можно доказать и следующие положения:

  • Если однородное тело имеет ось симметрии, то центр тяжести тела лежит на этой оси;
  • Если однородное тело имеет две оси симметрии, то центр тяжести тела находится в точке их пересечения;
  • Центр тяжести однородного тела вращения лежит на оси вращения.

Метод разбиения

Этот метод заключается в том, что тело разбивают на наименьшее число частей, силы тяжести и положение центров тяжести которых известны, после чего применяют приведенные ранее формулы для определения общего центра тяжести тела.

Допустим, что мы разбили тело силой тяжести G на три части G' , G'' , G''' , абсциссы центров тяжести этих частей x'C, x''C, x'''C известны.
Формула для определения абсциссы центра тяжести всего тела:

Перепишем ее в следующем виде:

Последнее равенство запишем для каждой из трех частей тела отдельно:

Сложив левые и правые части этих трех равенств, получим:

Но правая часть последнего равенства представляет собой произведение GxC , так как

Следовательно, xC = (G'x'C + G''x''C + G'''x'''C)/G , что и требовалось доказать.
Аналогично определяются координаты центра тяжести на координатных осях y и z :

Полученные формулы аналогичны формулам для определения координат цента тяжести, выведенные выше. Поэтому в исходные формулы можно подставлять не силы тяжести элементарных частиц Gi , а силы тяжести конечных частей; под координатами xi , yi , zi понимают координаты центров тяжести частей, на которые разбито тело.

Метод отрицательных масс

Этот метод заключается в том, что тело, имеющее свободные полости, считают сплошным, а массу свободных полостей – отрицательной. Вид формул для определения координат центра тяжести тела при этом не меняется.

Таким образом, при определении центра тяжести тела, имеющего свободные полости, следует применять метод разбиения, но считать массу полостей отрицательной.

Практические методы определения центра тяжести тел

На практике для определения центра тяжести плоских тел сложной формы часто применяют метод подвешивания , который заключается в том, что плоское тело подвешивают на нити за какую-нибудь точку. Прочерчивают вдоль нити линию, и тело подвешивают за другую точку, не находящуюся на полученной линии.
Затем вновь проводят линию вдоль нити.
Точка пересечения двух линий и будет являться центром тяжести плоского тела.

определение центра тяжести взвешиванием

Еще один способ определения центра тяжести, применяемый на практике, называется метод взвешивания . Этот метод часто применяется для определения центра тяжести крупных машин и изделий – автомобилей, самолетов, колесных тракторов и т. п., которые имеют сложную объемную форму и точечную опору на грунт.
Метод заключается в применении условий равновесия, исходя из того, что сумма моментов всех сил, действующих на неподвижное тело равна нулю.
Практически это осуществляется взвешиванием одной из опор машины (задние или передние колеса устанавливаются на весы), при этом показания весов, по сути, являются реакцией опоры, которая учитывается при составлении уравнения равновесия относительно второй точки опоры (находящейся вне весов).
По известной массе (соответственно – весу) тела, показанию весов в одной из точек опоры, и расстоянию между точками опоры можно определить расстояние от одной из точек опоры до плоскости, в которой расположен центр тяжести.
Чтобы найти подобным образом линию (ось), на которой расположен центр тяжести машины, необходимо произвести два взвешивания по принципу, изложенному выше для метода подвешивания (см. рис. 1а) .

Положение центра тяжести некоторых фигур

Прямоугольник. Так как прямоугольник имеет две оси симметрии, то центр тяжести его площади находится в точке пересечения этих осей, иначе говоря, в точке пересечения диагоналей прямоугольника.

положение центра тяжести треугольника и дуги

Треугольник. Пусть дан треугольник АBD (см. рисунок 2) .
Разобьем его на элементарные (бесконечно узкие) полоски, параллельные стороне AD . Центр тяжести каждой полоски будет лежать на медиане Bd (т. е. в середине каждой полоски) , следовательно, на этой медиане будет лежать и центр тяжести всей площади треугольника. Разбив треугольник на элементарные полоски, параллельные стороне AB , увидим, что искомый центр тяжести лежит и на медиане aD .
Проделав аналогичное действие с треугольником относительно стороны ВD , получим тот же результат – центр тяжести находится на соответствующей медиане.
Следовательно, центр тяжести всей площади треугольника лежит на точке пересечения его медиан, поскольку эта точка является единственной общей точкой для всех трех медиан данной геометрической фигуры.

Из геометрии известно, что медианы треугольника пересекаются в одной точке и делятся в соотношении 1:2 от основания. Следовательно, центр тяжести треугольника расположен на расстоянии одной трети высоты от каждого основания.

Дуга окружности. Возьмем дугу окружности АВ радиусом R с центральным углом 2α (см. рисунок 3) . Систему координат выберем так, чтобы начало координат было в центре окружности, а ось x делила дугу пополам, тогда yC = 0 вследствие симметрии дуги относительно оси x . Определим координату центра тяжести xC .

Разобьем дугу АВ на элементарные части li , одна из которых изображена на рисунке. Тогда, согласно сделанным выше выводам,

Дугу li вследствие малости примем за отрезок прямой. Из подобия треугольника ODiCi и элементарного треугольника S (на рисунке заштрихован) получим:

центр тяжести сектора окружности

поскольку RΣΔyi = AB , а Σli = l – длина дуги АВ . Но АВ = 2R sinα , а l = 2Rα , следовательно,

При α = π/2 рад (полуокружность) , xC = 2R/π .

Круговой сектор. Возьмем сектор радиусом R с центральным углом 2α (см. рисунок 3а) . Проведем оси координат, как показано на рисунке (ось x направлена вдоль оси симметрии сектора), тогда yC = 0 .

Определим xC , для чего разобьем сектор на ряд элементарных секторов, каждый из которых из-за малости дуги li можно принять за равнобедренный треугольник с высотой R . Тогда центр тяжести каждого элементарного сектора будет находиться на дуге радиуса 2R/3 и задача определения центра тяжести сектора сводится к определению центра тяжести этой дуги.
Очевидно, что

При α = π/2 рад (полукруг) : xC = 4R/(3π) .

Пример решения задачи на определение центра тяжести

нахождение центра тяжести составной фигуры или сечения

Задача:
Определить положение центра тяжести сечения, составленного из двутавра № 22 и швеллера № 20, как показано на рисунке 4 .

Решение.
Из курса инженерной графики известно, что номер проката соответствует наибольшему габаритному размеру его сечения, выраженного в сантиметрах.

Так как сечение, составленное из двутавра и швеллера, представляет собой фигуру, симметричную относительно оси y , то центр тяжести такого сечения лежит на этой оси, т. е. xC = 0 .
По справочнику определим площади и координаты центров тяжести двутавра 1 и швеллера 2.

Для двутаврового сечения: А1 = 15,2 см 2 ; y1 = 22/2 = 11 см.
Для швеллерного сечения: А2 = 12 см 2 ; y2 = 22 + d – z0 = 22 + 0,32 – 1,25 = 21,07 см ,
где d – толщина стенки швеллера; z0 – размер, определяющий положение центра тяжести швеллера.

Применим формулу для определения координаты центра тяжести всего сечения:

В инженерной практике случается, что возникает необходимость вычислить координаты центра тяжести сложной плоской фигуры, состоящей из простых элементов, для которых расположение центра тяжести известно. Такая задача является частью задачи определения.

Библиотека элементарных фигур.

Формулы расчета центров тяжести и площадей плоских фигур

Для симметричных плоских фигур центр тяжести совпадает с центром симметрии. К симметричной группе элементарных объектов относятся: круг, прямоугольник (в том числе квадрат), параллелограмм (в том числе ромб), правильный многоугольник.

Из десяти фигур, представленных на рисунке выше, только две являются базовыми. То есть, используя треугольники и сектора кругов, можно скомбинировать почти любую фигуру, имеющую практический интерес. Любые произвольные кривые можно, разбив на участки, заменить дугами окружностей.

Оставшиеся восемь фигур являются самыми распространенными, поэтому они и были включены в эту своеобразную библиотеку. В нашей классификации эти элементы не являются базовыми. Прямоугольник, параллелограмм и трапецию можно составить из двух треугольников. Шестиугольник – это сумма из четырех треугольников. Сегмент круга — это разность сектора круга и треугольника. Кольцевой сектор круга — разность двух секторов. Круг – это сектор круга с углом α=2*π=360˚. Полукруг – это, соответственно, сектор круга с углом α=π=180˚.

Расчет в Excel координат центра тяжести составной фигуры.

Чертеж составной фигуры с координатами центра тяжести

Составное сечение представляет собой прямоугольник (с размерами a1 =80 мм, b1 =40 мм), к которому слева сверху добавили равнобедренный треугольник (с размером основания a2 =24 мм и высотой h2 =42 мм) и из которого справа сверху вырезали полукруг (с центром в точке с координатами x03 =50 мм и y03 =40 мм, радиусом r3 =26 мм).

В помощь для выполнения расчета привлечем программу MS Excel или программу OOo Calc. Любая из них легко справится с нашей задачей!

В ячейках с желтой заливкой выполним вспомогательные предварительныерасчеты .

В ячейках со светло-желтой заливкой считаем результаты .

Синий шрифт – это исходные данные.

Черный шрифт – это промежуточные результаты расчетов.

Красный шрифт – это окончательные результаты расчетов.

Начинаем решение задачи – начинаем поиск координат центра тяжести сечения.

Исходные данные:

1. Названия элементарных фигур, образующих составное сечение впишем соответственно

в ячейку D3: Прямоугольник

в ячейку E3: Треугольник

в ячейку F3: Полукруг

в ячейку D4: =80/2=40,000

xc 1 = a 1 /2

в ячейку D5: =40/2=20,000

yc 1 = b 1 /2

в ячейку E4: =24/2=12,000

xc 2 = a 2 /2

в ячейку E5: =40+42/3=54,000

yc 2 = b 1 + h 2 /3

в ячейку F4: =50=50,000

xc 3 = x03

в ячейку F5: =40-4*26/3/ПИ()=28,965

yc 3 = y 03 -4* r3 /3/π

в ячейке D6: =40*80=3200

F1 = a 1 * b1

в ячейке E6: =24*42/2=504

F2 = a2 * h2 /2

в ячейке F6: =-ПИ()/2*26^2=-1062

F3 = -π/2* r3 ^2

Площадь третьего элемента – полукруга – отрицательная потому, что это вырез – пустое место!

Таблица Excel с расчетом координат центра тяжести составной фигуры

Расчет координат центра тяжести:

4. Определим общую площадь итоговой фигуры F0 в мм2

в объединенной ячейке D8E8F8: =D6+E6+F6=2642

F0 = F 1 + F 2 + F3

5. Вычислим статические моменты составной фигуры Sx и Sy в мм3 относительно выбранных осей 0x и 0y

в объединенной ячейке D9E9F9: =D5*D6+E5*E6+F5*F6=60459

Sx = yc1 * F1 + yc2 * F2 + yc3 * F3

в объединенной ячейке D10E10F10: =D4*D6+E4*E6+F4*F6=80955

Sy = xc1 * F1 + xc2 * F2 + xc3 * F3

6. И в завершение рассчитаем координаты центра тяжести составного сечения Xc и Yc в мм в выбранной системе координат 0x — 0y

в объединенной ячейке D11E11F11: =D10/D8=30,640

Xc = Sy / F0

в объединенной ячейке D12E12F12: =D9/D8=22,883

Задача решена, расчет в Excel выполнен — найдены координаты центра тяжести сечения, составленного при использовании трех простых элементов!

Заключение.

Пример в статье был выбран очень простым для того, чтобы легче было разобраться в методологии расчетов центра тяжести сложного сечения. Метод заключается в том, что любую сложную фигуру следует разбить на простые элементы с известными местами расположения центров тяжести и произвести итоговые вычисления для всего сечения.

Представленный ниже расчетный файл Excel в данном случае программой не является. Скорее – это набросок калькулятора, алгоритм, шаблон по которому следует в каждом конкретном случае составлять свою последовательность формул для ячеек с яркой желтой заливкой.

Для получения информации о выходе новых статей и для скачивания рабочих файлов программ прошу вас подписаться на анонсы в окне, расположенном в конце статьи или в окне вверху страницы.

Прошу, УВАЖАЯ труд автора, скачивать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.

Читайте также: