Хомутовый нагреватель своими руками

Добавил пользователь Дмитрий К.
Обновлено: 18.09.2024

Кстати но я бы все-таки предпочел керамические нагреватели не знаю почему может быть из за того что накапливается .

Собираю простейший индукционный нагреватель на базе блока питания для галогенных ламп. Без сложных схем и .

Очень экономичный и простой в изготовлении обогреватель из керамической плитки. Всего 120Вт/час Тёплый пол с этого .

Простой индукционный нагреватель на двух полевых транзисторах типа IRF640-630.В видео покажу,как он работает, .

Нагревательный элемент своими руками Готовый на AliExpress ali.pub/2d775n слюда ali.pub/2d7sc9 нихром .

. поэтому как я уже обещал попробую сделать гайка нагреватель ну или как он правильно называется нагреватель болтов .

Как рассчитать мощность: Напряжение ÷сопротивление = электрическая мощность 12K = 33 Ом/метр Например: 220 В (10 .

Греющая панель от А до Я! Для неё нам понадобиться греющий кабель 66 Ом сопротивления - ali.pub/5gvgv7 .

Заказал по своим размерам кольцевые нагреватели. Нихромовая плоская проволока намотана на полосках слюды .

Сейчас мы узнаем как сделать своими руками индукционный нагреватель, который можно использовать для разных проектов или просто для удовольствия. Вы сможете мгновенно плавить сталь, алюминий или медь. Вы можете использовать её для пайки, плавления и ковки металлов. Вы можете использовать самодельный индуктивный нагреватель и для литья.

Мое учебное пособие охватывает теорию, компоненты и сборку некоторых из важнейших компонентов.

Инструкция большая, в ней мы рассмотрим основные шаги, дающие вам представление о том, что входит в такой проект, и о том, как его спроектировать, чтобы ничего не взорвалось.

Для печи я собрал очень точный недорогой криогенный цифровой термометр. Кстати, в тестах с жидким азотом он неплохо себя показал против брендовых термометров.

Шаг 1: Компоненты


Основные компоненты высокочастотного индукционного нагревателя для нагрева металла электричеством — инвертор, драйвер, соединительный трансформатор и колебательный контур RLC. Вы увидите схему чуть позже. Начнем с инвертора. Это — электрическое устройство, которое изменяет постоянный ток на переменный. Для мощного модуля он должен работать стабильно. Сверху находится защита, которая используется, чтобы защитить привод логического элемента МОП-транзистора от любого случайного перепада напряжения. Случайные перепады вызывают шум, который приводит к переключению на высокие частоты. Это приводит к перегреву и отказу МОП-транзистора.

Линии с большой силой тока находятся внизу печатной платы. Много слоев меди используются, чтобы позволить им пропускать более 50А тока. Нам не нужен перегрев. Также обратите внимание на большие алюминиевые радиаторы с водяным охлаждением с обеих сторон. Это необходимо, чтобы рассеивать тепло, вырабатываемое МОП-транзисторами.

Шаг 2: Схема инвертора

Это схема для инвертора. Схема на самом деле не такая сложная. Инвертированный и неинвертированный драйвер повышает или понижает напряжение 15В, чтобы настроить переменный сигнал в трансформаторе (GDT). Этот трансформатор изолирует чипы от мосфетов. Диод на выходе мосфета действует для ограничения пиков, а резистор минимизирует колебания.

Конденсатор C1 поглощает любые проявления постоянного тока. В идеале, вам нужны самые быстрые перепады напряжения на цепи, так как они уменьшают нагрев. Резистор замедляет их, что кажется нелогичным. Однако если сигнал не угасает, вы получаете перегрузки и колебания, которые разрушают мосфеты. Больше информации можно получить из схемы демпфера.

Диоды D3 и D4 помогают защитить МОП-транзисторы от обратных токов. C1 и C2 обеспечивают незамкнутые линии для проходящего тока во время переключения. T2 — это трансформатор тока, благодаря которому драйвер, о котором мы поговорим далее, получает обратный сигнал от тока на выходе.

Шаг 3: Драйвер


Эта схема действительно большая. Вообще, вы можете прочитать про простой маломощный инвертор. Если вам нужна большая мощность, вам нужен соответствующий драйвер. Этот драйвер будет останавливаться на резонансной частоте самостоятельно. После того, как ваш металл расплавится, он останется заблокированным на правильной частоте без необходимости какой-либо регулировки.

Если вы когда-либо строили простой индукционный нагреватель с чипом PLL, вы, вероятно, помните процесс настройки частоты, чтобы металл нагревался. Вы наблюдали за движением волны на осциллографе и корректировали частоту синхронизации, чтобы поддерживать эту идеальную точку. Больше не придется этого делать.

Я проведу вас по цепи:

Сигнал емкости конденсатора находится слева от LM6172. Это высокоскоростной инвертор, который преобразует сигнал в красивую, чистую квадратную волну. Затем этот сигнал изолируется с помощью оптического изолятора FOD3180. Эти изоляторы являются ключевыми!

Далее сигнал поступает в PLL через вход PCAin. Он сравнивается с сигналом на PCBin, который управляет инвертором через VCOout. Ардуино тщательно контролирует тактовую частоту PLL, используя 1024-битный импульсно-модулированный сигнал. Двухступенчатый RC-фильтр преобразует сигнал PWM в простое аналоговое напряжение, которое входит в VCOin.

Как Ардуино знает, что делать? Магия? Догадки? Нет. Он получает информацию о разности фаз PCA и PCB от PC1out. R10 и R11 ограничивают напряжение в пределах 5 напряжений для Ардуино, а двухступенчатый RC-фильтр очищает сигнал от любого шума. Нам нужны сильные и чистые сигналы, потому что мы не хотим платить больше денег за дорогие мосфеты после того, как они взорвутся от шумных входов.

Шаг 4: Передохнём

Тем не менее, давайте продолжим.

Шаг 5: LC-контур





К этой части есть несколько подходов. Если вам нужен мощный нагреватель, вам понадобится конденсаторный массив для управления током и напряжением.

Во-первых, вам нужно определить, какую рабочую частоту вы будете использовать. Более высокие частоты имеют больший скин-эффект (меньшее проникновение) и хороши для небольших объектов. Более низкие частоты лучше для больших объектов и имеют большее проникновение. Более высокие частоты имеют большие потери при переключении, но через бак пройдет меньше тока. Я выбрал частоту около 70 кГц и дошел до 66 кГц.

Мой конденсаторный массив имеет ёмкость 4,4 мкФ и может выдерживать более 300А. Моя катушка около 1мкГн. Также я использую импульсные пленочные конденсаторы. Они представляют собой осевой провод из самовосстанавливающегося металлизированного полипропилена и имеют высокое напряжение, высокий ток и высокую частоту (0.22 мкФ, 3000В). Номер модели 224PPA302KS.

Я использовал две медные шины, в которых просверлил соответствующие отверстия с каждой стороны. Паяльником я припаял конденсаторы к этим отверстиям. Затем я прикрепил медные трубки с каждой стороны для водного охлаждения.

Не берите дешевые конденсаторы. Они будут ломаться, и вы заплатите больше денег, чем если бы вы сразу купили хорошие.

Шаг 6: Сборка трансформатора




Если вы внимательно читали статью, вы зададите вопрос: а как управлять LC-контуром? Я уже рассказывал об инверторе и контуре, не упоминая, как они связаны.

Соединение осуществляется через соединительный трансформатор. Мой от Magnetics, Inc. Номер детали — ZP48613TC. Adams Magnetics также является хорошим выбором при выборе ферритовых тороидов.

Тот, что слева, имеет провод 2мм. Это хорошо, если ваш входной ток ниже 20А. Провод перегреется и сгорит, если ток больше. Для высокой мощности вам нужно купить или сделать литцендрат. Я сделал сам, сплетя 64 нити из проволоки 0.5мм. Такой провод без проблем может выдержать ток 50А.

Инвертор, который я показал вам ранее, принимает высоковольтный постоянный ток и изменяет его на переменные высокие или низкие значения. Эта переменная квадратная волна проходит черезч соединительный трансформатор через переключатели мосфета и конденсаторы связи постоянного тока на инверторе.

Медная трубка из емкостного конденсатора проходит через нее, что делает ее одновитковой вторичной обмоткой трансформатора. Это, в свою очередь, позволяет сбрасываемому напряжению проходить через конденсатор емкости и рабочую катушку (контур LC).

Шаг 7: Делаем рабочую катушку




Возьмите медную трубку от холодильника 9мм и заполните ее чистым песком. Перед тем, как сделать это, закройте один конец какой-нибудь лентой, а также закройте другой после заполнения песком. Вкопайте трубу соответствующего диаметра в землю. Отмерьте длину трубки для вашей катушки и начните медленно наматывать её на трубу. Как только вы сделаете один виток, остальные будет сделать несложно. Продолжайте наматывать трубку, пока не получите количество желаемых витков (обычно 4-6). Второй конец нужно выровнять с первым. Это упростит подключение к конденсатору.

Теперь снимите колпачки и возьмите воздушный компрессор, чтобы выдуть песок. Желательно делать это на улице.

Обратите внимание, что медная трубка также служит для водного охлаждения. Эта вода циркулирует через емкостный конденсатор и через рабочую катушку. Рабочая катушка генерирует много тепла от тока. Даже если вы используете керамическую изоляцию внутри катушки (чтобы удерживать тепло), вы по-прежнему будете иметь чрезвычайно высокие температуры в рабочем пространстве, нагревающие катушку. Я начну работу с большим ведром ледяной воды и через некоторое время она станет горячей. Советую заготовить очень много льда.

Шаг 8: Обзор проекта


Выше представлен обзор проекта на 3 кВт. Он имеет простой PLL-драйвер, инвертор, соединительный трансформатор и бак.

Видео демонстрирует 12кВт индукционный горн в работе. Основное различие заключается в том, что он имеет управляемый микропроцессором драйвер, более крупные МОП-транзисторы и теплоотводы. Блок 3кВт работает от 120В переменного тока; блок 12 кВт использует 240В.

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

Схема индукционного нагревателя на 500 Ватт, который можно сделать своими руками! В интернете множество подобных схем, но интерес к ним пропадает, так как в основном они или не работают или работают но не так как хотелось бы. Данная схема индукционного нагревателя полностью рабочая, проверенная, а главное, не сложная, думаю вы оцените!

Схема индукционного нагревателя:

Схема индукционного нагревателя

Компоненты и катушка:

Рабочая катушка содержит 5 витков, для намотки была использована медная трубка диаметром около 1 см, но можно и меньше. Такой диаметр был выбран не случайно, через трубку подаётся вода для охлаждения катушки и транзисторов.

Транзисторы ставил IRFP150 так как IRFP250 под рукой не оказалось. Конденсаторы плёночные 0,27 мкФ 160 вольт, но можно поставить 0,33 мкФ и выше, если первые найти не получится. Обратите внимание, что схему можно питать напряжением до 60 вольт, но в этом случае, рекомендуется ставить конденсаторы на напряжение 250 вольт. Если схема будет питаться напряжением до 30 вольт, то на 150 вполне хватит!

Стабилитроны можно ставить любые на 12-15 вольт от 1 Ватт, например 1N5349 и им подобные. Диоды можно использовать UF4007 и ему подобные. Резисторы 470 Ом от 2-х Ватт.

Немного фотографий:

За место радиаторов, были использованы медные пластины, которые припаиваются прямо к трубке, так как в данной конструкции используется водное охлаждение. На мой взгляд это самое эффективное охлаждение, потому что транзисторы греются хорошо и ни какие вентиляторы и супер радиаторы не спасут их от перегрева!

Охлаждающие пластины на плате расположены таким образом, что бы трубка катушки проходила через них. Пластины и трубку нужно припаять между собой, для этого я использовал газовую горелку и большой паяльник для пайки автомобильных радиаторов.

Конденсаторы расположены на двух стороннем текстолите, плата припаивается так же к трубке катушки на прямую, для лучшего охлаждения.

Дроссели намотаны на ферритовых кольцах, лично я достал их из компьютерного блока питания, провод использовался медных в изоляции.

Индукционный нагреватель получился достаточно мощным, латунь и алюминий плавит очень легко, железные детали тоже плавит, но немного медленнее. Так как я использовал транзисторы IRFP150 то по параметрам, схему можно питать напряжением до 30 вольт, поэтому мощность ограничивается только этим фактором. Так что всё таки советую использовать IRFP250.

На этом всё! Ниже оставлю видео работы индукционного нагревателя и список деталей, которые можно купить на AliExpress по очень низкой цене!

Индукционный нагреватель металла своими руками схема

Как выполнить индукционный нагреватель собственными руками?

Электромеханические нагреватели действуют по принципу “получение тока из магнетизма”. В специализированной катушке создается переменое магнитное поле большой мощности, которое порождает вихревые переменные токи в замкнутом проводнике.

медной трубки

Замкнутым проводником в индукционных плитах считается посуда из металла, которая разогревается вихревыми переменными токами. В общем, рабочий принцип этих устройств прост, и если есть наличие маленьких знаний в физике и электрике, собрать индукционный нагреватель собственными руками не будет составлять огромного труда.

Своими силами могут изготавливаться следующие приборы:

  1. Приборы для нагревания носителя тепла в отопительном котле.
  2. Мини-печи для плавки металлов.
  3. Плиты для готовки пищи.

Помимо прочего большая сложность на конструкторском уровне плиты состоит в подборе материала для основания электрической плиты, которое обязано удовлетворять таким требованиям:

  1. Замечательно проводить электромагнитное излучение.
  2. Не являться токопроводящим материалом.
  3. Держать большую температурную нагрузку.

В бытовых варочных индукционных поверхностях применяется элитная керамика, во время изготовления дома индукционной плиты, найти хорошую замену подобному материалу – не легко. Благодаря этому, для начала следует соорудить что-нибудь намного проще, к примеру, индукционную печь для закалки металлов.

Инструкция по изготовлению

Для производства печи потребуются следующие инструменты и материалы:

  • паяльный аппарат;
  • припой;
  • текстолитовая плата.
  • мини-дрель.
  • радиоэлементы.
  • термопаста.
  • реагенты химии для травления платы.

Добавочные материалы и их специфики:

  1. Для производства катушки, которая будет источать нужное для нагревания переменое магнитное поле, нужно приготовить отрезок медной трубки диаметром 8 мм, и длиной 800 мм.
  2. Мощные силовые транзисторы являются очень дорогой частью самодельной индукционной установки. Для установки схемы частотного генератора нужно приготовить 2 подобных элемента. Под эти цели подходят транзисторы марок: IRFP-150; IRFP-260; IRFP-460. Во время изготовления схемы применяются 2 похожих из указанных полевых транзисторов.
  3. Для производства колебательно контура потребуются керамические конденсаторы ёмкостью 0,1 mF и рабочим напряжением 1600 В. Для того, чтобы в катушке появился электрический ток большой мощности, понадобится 7 подобных конденсаторов.
  4. Во время работы подобного индукционного прибора, полевые транзисторы будут сильно прогреваться и если к ним не будут присоединены отопительные приборы из сплава алюминия, то уже через пару секунд работы на самой большой мощности, данные детали поломаются. Устанавливать транзисторы на теплоотводы следует через тоненький слой термопасты, иначе результативность подобного охлаждения будет минимальна.
  5. Диоды, которые применяют в индукционном нагревателе, непременно должны быть ультрабыстрого действия. Самыми приемлимыми для этой схемы, диоды: MUR-460; UF-4007; HER – 307.
  6. Резисторы, которые применяют в схеме 3: 10 кОм мощностью 0,25 Вт – 2 шт. и 440 Ом мощностью – 2 Вт. Стабилитроны: 2 шт. с рабочим напряжением 15 В. Мощность стабилитронов должна составлять не меньше 2 Вт. Дроссель для подключения к силовым выводам катушки применяется с индукцией.
  7. Для питания всего устройства потребуется блок питания мощностью до 500. Вт. и напряжением 12 – 40 В. Запитать это устройство можно от аккумулятора для автомобиля, однако получить самые высокие показания мощности при подобном напряжении не выйдет.

нагреватель

Сам производственный процесс электронного генератора и катушки занимает мало времени и выполняется в этой очередности:

  1. Из трубы из меди выполняется спираль диаметром 4 см. Для производства спирали следует медную трубку намотать на стержень с плоской поверхностью диаметром 4 см. Спираль обязана иметь 7 витков, которые не должны контактировать. На 2 конца трубки припаиваются крепёжные кольца для подсоединения к отопительным приборам транзистора.
  2. Монтажная плата делается по схеме. Если имеется возможность установить полипропиленовые конденсаторы, то в силу того, что подобные элементы обладают очень маленькими потерями и стойкой работой при больших амплитудах колебания стрессов, устройство будет работать более стабильны. Конденсаторы в схеме монтируются параллельно организуя с медной катушкой колебательный контур.
  3. Нагрев металла происходит в середине катушки, как только схема будет подсоединена к блоку питания или аккумулятору. При нагревании металла приходится следить за тем, чтобы не было короткого замыкания обмоток пружины. Если затронуть нагреваемым металлом 2 витка катушки одновременно, то транзисторы ломаются очень быстро.

индукционный нагреватель

Блиц-советы

индукционный

  1. Работа самодельных устройств индукционного нагрева, не всегда дает возможность исключить распространение опасного для человека электромагнитного излучения, благодаря этому индукционный котёл следует ставить в помещении не для жилья и экранировать оцинковкой.
  2. В первую очередь во время работы с электротокомнужно выполнять правила техники безопасности, тем более это касается сетей электрического тока напряжением 220 В.
  3. В качестве экспериментаможно сделать электроплиту для готовки пищи по схеме указанной в публикации, но использовать этот прибор регулярно не рекомендуется из-за причины недоработки самостоятельного изготовления экранирования такого устройства, благодаря этому возможно действие на человеческий организм плохого электромагнитного излучения, способного плохо отразиться на здоровье.

Индукционный нагреватель собственными руками

Индукционный нагреватель очень нужная вещь для кузнецов, токарей, слесарей и домашних умельцев. С его помощью всегда без проблем и легко можно подогреть и даже расплавить металл, вам не требуются не дешёвые тепловые носители, такие, как уголь и газ, необходимо только подключить к прибору электричество. Происходит бесконтактный нагрев металла токами высокой частоты, по научному волнами радиочастотного диапазона. Прибор повсеместно используют для термообработки, закалки и гибки деталей, бесконтактной плавки, пайки и сварки, металлов. В ювелирном деле для обработки термическим способом небольших деталей. В медицине для дезинфекции медицинского инструмента. В автомобильном сервисе слесаря греют заржавевшие гайки. Также индуктор устанавливают в индукционных котлах, используемых для отапливания помещений для жилья.

На этом рисунке показана рабочая схема индукционного нагревателя, который вы легко можете выполнить собственными руками.

металл

Схема индукционного нагревателя

Устройство состоит из задающего генератора высокой частоты собранного на 2-ух мощных полевых транзисторах. Напряжение работы генератора зависит от мощности установленных полевых транзисторов. С транзисторами IRFP250 устройство можно питать напряжением от 12 до 30 вольт. А если установить транзисторы IRFP260, тогда напряжение питания можно поднять от 12 до 60 вольт.

Мощность индуктора ощутимо возрастет, температура нагрева металла увеличится более 1000 градусов, что даст возможность плавить металлы. Во время работы транзисторы будут особенно сильно разогреваться, благодаря этому их нужно установить на большие отопительные приборы и установить мощный вентилятор. На холостом ходу индуктор потребляет не меньше 10А, а в исправном состоянии не меньше 15А, естественно требуется высокомощный блок питания минимум на 20А.

На этом рисунке показана монтажная плата индукционного нагревателя.

металл

Также вам потребуются резисторы R1, R2 на 10К мощностью 0.25 Ватт. Резисторы R3, R4 с сопротивлением 470 Ом не меньше 2 Ватт. Диоды D1, D2 ультрабыстрые UF4007 или остальные такие же на самый большой ток до 1А. Стабилитроны VD1, VD2 мощностью не меньше 5 Ватт с напряжением стабилизации 12В к примеру 1N5349 и остальные. Дроссели L1, L2 размером 27х14х11 мм жёлтого цвета с белой полосой я вытащил из компьютерных трансформаторов. На каждый дроссель нужно накрутить 25 витков медного провода диаметром 1 мм лучше всего в лаковой изоляции, если не найдете, подойдёт одножильный провод в полихлорвиниловой изоляции на скорость особо не действует.

индукционный

Конденсаторы С1-С16 металлоплёночные 0.33 мкФ 630В, соединяются параллельно рядами 4х4, в блоке всего шестнадцать штук. С небольшим рабочим напряжением лучше не устанавливать, будут перегреваться. Между конденсаторами оставляйте маленькое расстояние для отличного охлаждения воздушным потоком.

медной трубки

Дроссели решил наклеить герметиком из силикона, чтобы не болтались.

индукционного нагревателя

индукционный

Во время работы индуктор будет сильно разогреваться от раскаленной детали, что может привести к повреждению медной трубки, благодаря этому нужно выполнить охлаждение. На концы медной трубки я одел силиконовые трубки и подключил насос омывателя лобового стекла автомобиля. Насос от ВАЗ 2114 и силиконовые трубки купил в автомобильном магазине. Вышла нормальная гидравлическая система охлаждения.

медной трубки

Чтобы охлаждать отопительные приборы и блок конденсаторов поставил мощный вентилятор от процессора. Для питания от 12 вольт подобного охлаждения в реальности достаточно. Если пожелаете поднять напряжение от 12 до 60 вольт, дабы получить самую большую мощность от индукционного нагревателя, выставьте намного мощнее отопительные приборы и очень производительный вентилятор, к примеру от отопителя салона ВАЗ 2107. Лучше всего выполнить железную шторку оберегающую нагреваемую деталь и медный индуктор от потока нагнетаемого вентилятором холодного воздуха.

нагреватель

Так как индукционный нагреватель потребляет большой ток около 20А, все дорожки на монтажной плате следует улучшить медной проволокой, напаянной сверху.

нагреватель

А сейчас самое любопытное… Проверки индукционного нагревателя я проводил от двенадцати вольтового аккумулятора для автомобиля. Иного источника питания способного выдавать большие токи у меня попросту нет. Лезвие от ножа для канцелярских работ нагрелось до красна за 10 секунд. А это эффективный результат, если взять во внимание, что индуктор запитан только от двенадцати вольт!

металл

Друзья! По желанию собрать индукционный нагреватель собственными руками. Мой вам совет… Сразу ставьте полевые транзисторы IRFP260, большие отопительные приборы и мощный вентилятор от отопителя салона ВАЗ 2107, для питания индуктора в первую очередь применяйте мощный источник питания прекраснее всего начиная от 24В до 60В с силой тока минимум на 20А.

Радиодетали для сборки индукционного нагревателя

  • Транзисторы Т1, Т2 IRFP250 лучше IRFP260 2 шт.
  • Резисторы R1, R2 10K 0.25W 2 шт. R3, R4 470R 2W 2 шт.
  • Диоды D1, D2 ультрабыстрые UF4007 2 шт. или подобные
  • Стабилитроны VD1, VD2 на 12V 1W 1N5349 или подобные 2 шт.
  • Конденсаторы C1-C16 0.33mf 630V 16 шт.
  • Дроссели от компьютерного БП жёлтые с белой полосой, размер 27х14х11 мм 2 шт.
  • Колодка клемная для провода сечением 16 мм? 2 шт.
  • Провод медный в лаковой изоляции d=1 мм длина 2 метра
  • Трубка медная d=6 мм, длина 1 метр
  • Отопительный прибор если больше, то лучше 2 шт.
  • Насос омывателя лобового стекла от ВАЗ 2114 1 шт.
  • Трубка силиконовая 2 метра
  • Вентилятор чем мощнее, тем лучше. Советую от отопителя салона ВАЗ 2107 1 шт.

Друзья, желаю вам удачи и прекрасного настроения! До встречи в новых статьях!

Советую взглянуть видеоролик о том, как выполнить индукционный нагреватель собственными руками

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Схема самодельного индукционного нагревателя

индукционный

Вот проект индукционного нагревателя металлов самой простой конструкции, он собран по схеме мультивибратора и часто выступает как первый нагреватель, который выполняют радиолюбители.

Рабочий принцип ТВЧ установки

Катушка выполняет высокочастотное магнитное поле, и в железном предмете внутри катушки появляются вихревые токи, которые будут его разогревать. Даже небольшие катушки раскачивают ток около 100 A, благодаря этому параллельно с катушкой, подключена резонансная емкость, которая возмещает ее индукционный характер. Схема катушка-конденсатор должна работать на их резонансной частоте.

индукционный

ТВЧ катушка рукодельная

Схема принципиальная электрическая

Вот необычная схема генератора индукционного нагревателя, а ниже неё чуть изменённый вариант, по которому и была собрана конструкция мини ТВЧ установки. Ничего дефицитного здесь нет — приобрести нужно будет только полевые транзисторы, задействовать можно BUZ11, IRFP240, IRFP250 или IRFP460. Конденсаторы специализированные высоковольтные, а питание будет от аккумулятора для автомобиля 70 А/ч — он намного лучше будет держать ток.

индукционного нагревателя

металл

индукционного нагревателя

Ток использования от источника питания 11 А, но после прогрева падает до приблизительно 7 A, так как сопротивление металла при нагревании ощутимо возрастает. И не забывайте сюда задействовать толстые провода, которые способны выдерживать более 10 А тока, иначе провода во время работы станут горячие.

медной трубки

Нагрев отвертки до синего цвета ТВЧ

нагреватель

Нагрев ножа ТВЧ

Другой вариант схемы — с питанием от сети

Чтобы удобнее настраивать отклик можно собрать более совершенную схему с драйвером IR2153. Рабочая частота настраевается регулятором 100к в отклик. Частотами можно управлять в диапазоне приблизительно 20 — 200 кГц. Схема управления нуждается в вспомогательном напряжении 12-15 В от адаптера сети, а силовая часть через диодный мост может быть подключена прямо к сети 220 В. Дроссель имеет около 20 витков 1,5 мм на ферритовом сердечнике 8?10 мм.

медной трубки

Схема индукционного нагревателя от сети 220В

Рабочая катушка ТВЧ должна быть из толстой проволки или лучше медной трубки, и имеет около 10-30 витков на оправке 3-10 см. Конденсаторы 6 х 330n 250V. И то, и другое через определенный промежуток времени очень разогревается. Резонансная частота около 30 кГц. Эта рукодельная установка индукционного нагрева собрана в пластиковом корпусе и не прекращает работу уже больше года.

Читайте также: