Электронное зажигание на лодочный мотор стрела своими руками

Добавил пользователь Дмитрий К.
Обновлено: 19.09.2024

Приветствую уважаемых коллег-радиолюбителей. Многие имели дело с очень простыми, и потому очень не надёжными системами зажигания в мотоциклах, мопедах, лодочных моторах и подобных изделиях прошлого века. Был и у меня мопед. Искра у него пропадала так часто и по стольким разным причинам, что это очень надоедало. Вы, вероятно, и сами видели постоянно встречающихся на дорогах мотолюбителей без искры, которые пытаются завестись с разбега, с горки, с толкача. В общем пришлось придумывать свою систему зажигания. Требования были такие:

  • должна быть максимально проста, но не в ущерб функциональности;
  • минимум переделок в месте установки;
  • питание безаккумуляторное;
  • улучшение надёжности и мощности искры.

Всё это, или почти всё, было реализовано и прошло многолетнюю проверку. Остался доволен и хочу предложить собрать такую схему вам, у кого остались двигатели из прошлого века. Но и современные двигатели можно снабдить этой системой, если собственная пришла в негодность, а покупать новую дорого. Не подведёт!

БЛОК ЭЛЕКТРОННОГО ЗАЖИГАНИЯ в мопед

Схема модуля зажигания

СХЕМА БЛОКА ЭЛЕКТРОННОГО ЗАЖИГАНИЯ

Монтажная схема модуля

Монтажная СХЕМА БЛОКА ЭЛЕКТРОННОГО ЗАЖИГАНИЯ

Печатные платы для сборки

Плата БЛОКА ЭЛЕКТРОННОГО ЗАЖИГАНИЯ

Плата и детали БЛОКА ЭЛЕКТРОННОГО ЗАЖИГАНИЯ

Для малого потребления тока была выбрана КМОПовская микросхема КР561ЛЕ5 и стабилизатор на светодиодах. КР561ЛЕ5 работает начиная с 3 В и с очень малым (15 uA) током, что является важным для данной схемы.

Компаратор на элементах: DD1.1, DD1.2, R1, R2 служит для более чёткого реагирования на уровень нарастающего напряжения после индукционного датчика и для устранения реакции на помехи. Формирователь импульса запуска на элементах: DD1.3, DD1.4, R3, C1 нужен для формирования нужной длительности импульса, для хорошей работы импульсного трансформатора, чёткого отпирания тиристора и для всё той же экономии тока питания схемы.

Импульсный трансформатор Т1 служит также для развязки от высоковольтной части схемы. Ключ выполнен на транзисторной сборке К1014КТ1А - он формирует хороший импульс, с крутыми фронтами и достаточным током в первичной обмотке импульсного трансформатора, что обеспечивает, в свою очередь, надёжное отпирание тиристора. Импульсный трансформатор изготовлен на ферритовом кольце 2000НМ / К 10*6*5 с обмотками по 60-80 витков провода ПЕВ или ПЕЛ 0.1 - 0.12 мм.

Стабилизатор напряжения на светодиодах был выбран по причине очень малого начального тока стабилизации, что ещё вносит свой вклад в экономию тока потребления схемы, но, при этом, чётко стабилизирует напряжение на микросхеме на уровне 9 В (1.5 В один светодиод) и ещё служит дополнительно световым индикатором наличия напряжения с магнеты, в схеме.

Стабилитроны VD13, VD14 служат для ограничения напряжения и включаются в работу только при очень больших оборотах двигателя, когда экономия питания не очень важна. Желательно намотать такие катушки в магнете, чтобы эти стабилитроны включались только на самой верхушке, только на самом максимально возможном напряжении (в последней модификации стабилитроны не устанавливались, т.к. напряжение итак никогда не превышало 200 В). Две ёмкости: С4 и С5 для увеличения мощности искры, в принципе схема может и на одной работать.

Важно! Диод VD10 (КД411АМ) подбирался по импульсным характеристикам, другие очень грелись, не выполняли в полной мере свою функцию защиты от обратного выброса. К тому же через него идёт обратная полуволна колебания в катушке зажигания, что увеличивает длительность искры почти в два раза.

Ещё эта схема показала нетребовательность к катушкам зажигания – ставились любые какие были под рукой и все работали безупречно (на разные напряжения, под разные системы зажигания - прерывательные, на транзисторном ключе).

Резистор R6 предназначен для ограничения тока тиристора и для его чёткого запирания. Его подбирают в зависимости от используемого тиристора так, чтобы ток через него не мог превысить максимальный для тиристора и, самое главное, чтобы тиристор успевал запираться после разряда ёмкостей С4, С5.

Мостики VD11, VD12 выбираются по максимальному напряжению с катушек магнеты.

Катушек, заряжающих ёмкости для высоковольтного разряда, две (это решение также гораздо экономичнее и эффективнее чем преобразователь напряжений). Такое решение пришло потому, что катушки имеют разное индуктивное сопротивление и их индуктивные сопротивления зависят от частоты вращения магнитов, т.е. и от частоты вращения вала. Эти катушки должны содержать разное количество витков, тогда на малых оборотах будет работать в основном катушка с большим количеством витков, а на больших с малым, так как увеличение наводимого напряжения с увеличением оборотов будет падать на увеличивающемся индуктивном сопротивлении катушки с большим количеством витков, а на катушке с малым количеством витков напряжение растёт быстрее, чем её индуктивное сопротивление. Таким образом всё друг друга компенсирует и напряжение заряда ёмкостей в определённой степени стабилизируется.

  1. вначале замеряется напряжение на экране осциллоскопа с этой обмотки. Осциллоскоп нужен для более точного определения максимального амплитудного напряжение на обмотке, так как обмотку близко от максимума напряжения закорачивает прерыватель и тестер покажет некое заниженное действующее значение напряжение. Но ёмкости будут заряжаться до максимального амплитудного значения напряжения, да ещё и полным (без прерывателя) периодом.
  2. после, сматывая обмотку, надо посчитать количество её витков.
  3. разделив максимальное амплитудное напряжение обмотки на число её витков получаем сколько вольт даёт один виток (вольт/виток).
  4. разделив необходимые для нашей схемы напряжения на полученный (вольт/виток) получим количество витков, которые необходимо будет намотать для каждого из нужных напряжений.
  5. наматываем и выводим на клемник. Обмотка освещения остаётся прежней.

Используемые в схеме детали

Микросхема КР561ЛЕ5 (элементы 2 ИЛИ НЕ); интегральный ключ на МОП-транзисторе К1014КТ1А; тиристор ТС112-10-4; выпрямительные мосты КЦ405 (А,Б,В,Г), КЦ407А; диоды импульсные КД 522, КД411АМ (очень хороший диод, другие греются или работают гораздо хуже); светодиоды АЛ307 или другие; конденсаторы С4,С5 – К73-17/250-400В, остальные любого типа; резисторы МЛТ. Файлы проекта сложены сюда. Схема и описание - ПНП.

Форум по обсуждению материала СХЕМА БЛОКА ЭЛЕКТРОННОГО ЗАЖИГАНИЯ


Переделываем игрушку обычный трактор в радиоуправляемый - фотографии процесса и получившийся результат.


Микрофоны MEMS - новое качество в записи звука. Подробное описание технологии.


В каком направлении течет ток - от плюса к минусу или наоборот? Занимательная теория сути электричества.


Про использование технологии беспроводного питания различных устройств.

Самодельный блок зажигания двухтактного мотора вихрь30

Доброго времени, вопрос имею скорее теоретический .
На лодочный мотор "вихрь 30" взамен штатной схемы зажигания собрал электронное вот по этой схеме. Схема взята на просторах сети и неоднократно проверена , в частности на форуме мотолодка.орг есть даже отдельная ветка по этой и подобным схемам. Но народ там сильно далек от электроники. Схема практически один в один повторяет штатный блок МБ- 22, за исключением отсутствия ограничения оборотов на варисторе и диода встречно-паралельно катушке зажигания.
L1 - обмотка питания, L2- обмотка датчика. Катушка от ГАЗ, не помню марку. Схема рабочая, и после сборки сразу заработала. Но происходит трабла , после 10-15 минут работы начинают падать обороты, вплоть до того, что двигатель глохнет. Искра при этом не пропадает, т.е. имеет место быть изменение во времени появления искры. Зажигание становиться или слишком ранее или слишком позднее. После остывания все приходит в норму и опять 10-15 минут работает нормально.

Вопрос что в этой схеме может приводить к таким явлениям ? тут деталей десяток диоды все 1n4007, тиристор ВТ 151, конденсатор К73-17, резисторы МЛТ 0.25 . Вроде нет тут компонентов зависимых от температуры. Дело осложняется тем , что там где находиться мотор нет сети и я не могу посмотреть осциллографом , что происходит. Может есть у кого мысли на этот счет ?
з.ы. сам мотор исправен 100% с контактным зажиганием работает без проблем.


Наш проект живет и развивается для тех, кто ищет ответы на свои вопросы и стремится не потеряться в бушующем море зачастую бесполезной информации. На этой странице мы рассказали (а точнее - показали :) вам Как настроить зажигание на лодочном моторе стрела . Кроме этого, мы нашли и добавили для вас тысячи других видеороликов, способных ответить, кажется, на любой ваш вопрос. Однако, если на сайте все же не оказалось интересующей информации - напишите нам, мы подготовим ее для вас и добавим на наш сайт!
Если вам не сложно - оставьте, пожалуйста, свой отзыв, насколько полной и полезной была размещенная на нашем сайте информация о том, Как настроить зажигание на лодочном моторе стрела .

Система зажигания лодочного двигателя обеспечивает исправную и цельную работу всего мотора. От того, насколько хорошо она функционирует будет зависеть вся слаженность плавания. Поэтому зажигание стараются постоянно проверять и тестировать на неполадки.

Зажигание для лодочного мотора

Зажигание для лодочного мотора Вихрь

Из каких компонентов состоит система зажигания?

Система зажигания имеет весьма простую конструкцию, за счет которой вся система является довольно ремонтопригодной. Многие судовладельцы, разобравшись в компонентах зажигания, производят ремонт в домашних условиях:

  • система зажигания состоит из следующих компонентов: источник тока, аккумулятор агрегата, высоковольтный трансформатор и свечи всей системы зажигания;
  • на подвесном лодочном моторе (плм), как правило, устанавливается также еще и такая деталь, как магдино. Она включает в себя статор, который оснащен катушками. В катушках в ситуациях прохождения постоянных магнитов, которые заливаются в маховик устройства, наводится электродвижущая сила. Она обычно создает переменный ток в обмотках всех катушек;

Зажигание для лодочного мотора

  • кроме того если рассматривать зажигание лодочного мотора на 4 такта, в нем также имеется еще и такая деталь, как прерыватель-распределитель. Он занимается тем, что распределяет все напряжение по так называемым цилиндрам. Кроме того, он обеспечивает еще и искрообразование в цилиндре мотора;
  • а, если говорить, про двухтактные лодочные моторы, там у каждого цилиндра есть свой трансформатор. Настройка некоторых современных лодочных моторов предполагает совмещение с колпачком, который одевается на свечу зажигания. Обычно это снижает риск поломки всей системы зажигания в ситуации высокой влажности или другой непогоды. Особенно это актуально в морских условиях.

Зажигание на подвесные лодочные моторы

Регулирование системы зажигания – важный процесс в жизни любого лодочника. Чтобы правильно отрегулировать те или иные детали зажигания, конечно же, нужно понять принцип их функционирования:

Оказывается, система зажигания на лодочном моторе требует особенного контроля и ухода. Именно она в целом определяет исправность и надежность вашего подвесного лодочного двигателя. Если вдруг ваш подвесной лодочный мотор начал работать как-то с перебоями, то в первую очередь вам стоит осмотреть ваши запальные свечи. Если мотор будет эксплуатироваться в системе высокой теплонапряженности, а также постепенно будет сгорать масло в топливе, то постепенно будет наблюдаться образование так называемого нагара. В этом случае важно, чтобы все детали вашего двигателя были отрегулированными.

Зажигание для лодочного мотора

Зажигание для подвесных лодочных моторов

  • очень важно также запомнить, что в системе зажигания вашего подвесного лодочного мотора постоянного внимания и даже пристального контроля больше всего просят лишь 2 основные детали. Речь идет про контакты прерывателей и свечи зажигания. А все остальные элементы данной системы, такие как конденсаторы, катушки зажигания, трансформатор не требуют такого большого ухода. Вообще, они крайне редко как-либо выходят из строя, и являются вполне практичными и долговечными элементами системы зажигания;
  • также обязательно проводить определенный тестинг такому элементу, как коромысло. Очень рекомендуют обращать внимание на так называемую текстолитовую подушечку, которая относится к этому элементу системы зажигания подвесного лодочного мотора. Особенно это касается тех подвесных лодочных моторов, которые уже послужили какое-то время и немного, так сказать, поизносились. При неправильном одевании моховика подушечка может быть повреждена.

Порой просто необходимо проверить все нюансы и перспективы работы вашего электронного зажигания. Этим типом системы зажигания оснащены, как правило, средне и сильно мощные подвесные лодочные моторы.

Самое интересное, что, если взять период за последние 50 лет, то существенно в системе зажигания двигателя ничего сильно не поменялось. Надо отметить, что изменилась лишь только свеча этой технической системы. Это произошло за счет того, что возросла температура в цилиндре, а это в свою очередь случилось по причине повышения степени сжатия.

В свое время была изобретена современная свеча, которая обладает изолятором окиси алюминия. Этот тип свечи может очень хорошо помогать современному подвесному лодочному мотору функционировать в нормальном режиме. В свою очередь, чтобы получить необходимую для вас искру можно использовать аккумуляторную батарею, напряжение которой, как правило, ровняется цифре 13 ампер. Нужно достаточно часто менять или хотя бы чистить контакты такой детали, как прерыватель.

Читайте также: