Шим регулятор для двигателя постоянного тока с обратной связью своими руками

Добавил пользователь Morpheus
Обновлено: 04.10.2024

В статье дается краткий обзор и анализ популярных схем, предназначенных для управления коллекторными двигателями постоянного тока, а также предлагаются оригинальные и малоизвестные схемотехнические решения

Электродвигатели являются, наверное, одним из самых массовых изделий электротехники. Как говорит нам всезнающая Википедия, электрический двигатель – электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую. Началом его истории можно считать открытие, которое сделал Майкл Фарадей в далеком 1821 году, установив возможность вращения проводника в магнитном поле. Но первый более-менее практический электродвигатель с вращающимся ротором ждал своего изобретения до 1834 года. Его во время работы в Кёнигсберге изобрел Мориц Герман фон Якоби, более известный у нас как Борис Семенович. Электродвигатели характеризуют два основных параметра – это скорость вращения вала (ротора) и момент вращения, развиваемый на валу. В общем плане оба этих параметра зависят от напряжения, подаваемого на двигатель и тока в его обмотках. В настоящее время имеется достаточно много разновидностей электродвигателей, и поскольку, как заметил наш известный литературный персонаж Козьма Прутков, нельзя объять необъятное, остановимся на рассмотрении особенностей управления двигателями постоянного тока (далее электродвигателями).

Коллекторные двигатели (Рисунок 1) более дешевы и, как правило, не требуют сложных систем управления. Для их функционирования достаточно подачи напряжения питания (выпрямленного, постоянного!). Проблемы начинают возникать, когда появляется необходимость в регулировке скорости вращения вала такого двигателя или в специальном режиме управления моментом вращения. Основных недостатков таких двигателей три – это малый момент на низких скоростях вращения (поэтому часто требуется редуктор, а это отражается на стоимости конструкции в целом), генерация высокого уровня электромагнитных и радиопомех (из-за скользящего контакта в коллекторе) и низкая надежность (точнее малый ресурс; причина в том же коллекторе). При использовании коллекторных двигателей необходимо учитывать, что ток потребления и скорость вращения их ротора зависят от нагрузки на валу. Коллекторные двигатели более универсальны и имеют более широкое распространение, особенно в недорогих устройствах, где определяющим фактором является цена.

Поскольку скорость вращения ротора коллекторного двигателя зависит, в первую очередь, от подаваемого на двигатель напряжения, то естественным является использование для его управления схем, имеющих возможность установки или регулировки выходного напряжения. Такими решениями, которые можно найти в Интернете, являются схемы на основе регулируемых стабилизаторов напряжения и, поскольку век дискретных стабилизаторов давно прошел, для этого целесообразно использовать недорогие интегральные компенсационные стабилизаторы, например, LM317 [2]. Возможные варианты такой схемы представлены на Рисунке 2.

Схема примитивная, но кажется очень удачной и, главное, недорогой. Посмотрим на нее с точки зрения инженера. Во-первых, можно ли ограничить момент вращения или ток двигателя? Это решается установкой дополнительного резистора. На Рисунке 2 он обозначен как RLIM. Его расчет имеется в спецификации, но он ухудшает характеристику схемы как стабилизатора напряжения (об этом будет ниже). Во-вторых, какой из вариантов управления скоростью лучше? Вариант на Рисунке 2а дает удобную линейную характеристику регулирования, поэтому он и более популярен. Вариант на Рисунке 2б имеет нелинейную характеристику. Но в первом случае при нарушении контакта в переменном резисторе мы получаем максимальную скорость, а во втором – минимальную. Что выбрать – зависит от конкретного применения. Теперь рассмотрим один пример для двигателя с типовыми параметрами: рабочее напряжение 12 В; максимальный рабочий ток 1 А. ИМС LM317, в зависимости от суффиксов, имеет максимальный выходной ток от 0.5 А до 1.5 А (см. спецификацию [2]; имеются аналогичные ИМС и с бóльшим током) и развитую защиту (от перегрузки и перегрева). С этой точки зрения для нашей задачи она подходит идеально. Проблемы скрываются, как всегда, в мелочах. Если двигатель будет выведен на максимальную мощность, что для нашего применения весьма реально, то на ИМС, даже при минимально допустимой разнице между входным напряжением VIN и выходным VOUT, равной 3 В, будет рассеиваться мощность не менее

Таким образом, нужен радиатор. Опять вопрос – на какую рассеиваемую мощность? На 3 Вт? А вот и нет. Если не полениться и рассчитать график нагрузки ИМС в зависимости от выходного напряжения (это легко выполнить в Excel), то мы получаем, что при наших условиях максимальная мощность на ИМС будет рассеиваться не при максимальном выходном напряжении регулятора, а при выходном напряжении равном 7.5 В (см. Рисунок 3), и она составит почти 5.0 Вт!

Рисунок 3. График зависимости мощности, рассеиваемой на ИМС регулятора, от выходного напряжения.

Как видим, получается что-то уже не дешевое, но очень громоздкое. Так что такой подход годится только для маломощных двигателей с рабочим током не более 0.25 А. В этом случае мощность на регулирующей ИМС будет на уровне 1.2 Вт, что уже будет приемлемо.

На первом операционном усилителе собран генератор, на втором компаратор. На вход компаратора подается сигнал с конденсатора C1, а путем регулирования порога срабатывания формируется уже сигнал прямоугольной формы с нужным отношением τ/T (Рисунок 5).

Управление двигателями постоянного тока
Рисунок 5. Диаграмма управления коллекторным двигателем на основе ШИМ. Верхняя трасса – напряжение на конденсаторе С1; средняя (пересекает верхнюю) – сигнал управления (напряжение на движке резистора RV2); нижняя – напряжение на двигателе.

Диапазон регулировки устанавливается подстроечными резисторами RV1 (быстрее) и RV3 (медленнее), а сама регулировка скорости осуществляется резистором RV2 (скорость). Обращаю внимание читателей, что в Интернете на русскоязычных форумах гуляет похожая схема с ошибками в номиналах делителя, задающего порог компаратора. Управление непосредственно двигателем осуществляется через ключ на мощном полевом транзисторе типа BUZ11 [4]. Особенности этого транзистора типа MOSFET – большой рабочий ток (30 А постоянного, и до 120 А импульсного), сверхмалое сопротивление открытого канала (40 мОм) и, следовательно, минимальная мощность потерь в открытом состоянии.

На что нужно в первую очередь обращать внимание при использовании таких схем? Во-первых, это исполнение цепи управления. Здесь в схеме (Рисунок 4) есть небольшая недоработка. Если со временем возникнут проблемы с подвижным контактом переменного резистора, мы получим полный почти мгновенный разгон двигателя. Это может вывести из строя наше устройство. Какое противоядие? Установить добавочный достаточно высокоомный резистор, например, 300 кОм с вывода 5 ИМС на общий провод. В этом случае при отказе регулятора двигатель будет остановлен.

Еще одна проблема таких регуляторов – это выходной каскад или драйвер двигателя. В подобных схемах он может быть выполнен как на полевых транзисторах, так и на биполярных; последние несравненно дешевле. Но и в первом и во втором варианте необходимо учитывать некоторые важные моменты. Для управления полевым транзистором типа MOSFET нужно обеспечить заряд и разряд его входной емкости, а она может составлять тысячи пикофарад. Если не использовать последовательный с затвором резистор (R6 на Рисунке 4) или его номинал будет слишком мал, то на относительно высоких частотах управления операционный усилитель может выйти из строя. Если же использовать R6 большого номинала, то транзистор будет дольше находиться в активной зоне своей передаточной характеристики и, следовательно, имеем рост потерь и нагрев ключа.

Еще одно замечание к схеме на Рисунке 4. Использование дополнительного диода D2 лишено смысла, так как в структуре транзистора BUZ11 уже имеется свой внутренний защитный быстродействующий диод с лучшими характеристиками, чем предлагаемый. Диод D1 также явно лишний, транзистор BUZ11 допускает подачу напряжения затвор-исток ± 20 В, да и переполюсовка в цепи управления при однополярном питании, как и напряжение выше 12 В, невозможны.

Схема регулятора основанного на широтно-импульсной модуляции или просто ШИМ, может быть использована для изменения оборотов двигателя постоянного тока на 12 вольт. Регулирование частоты вращения вала при помощи ШИМ дает большую производительность, чем при использовании простого изменения постоянного напряжения подаваемого на двигатель.

Шим регулятор оборотов двигателя

Двигатель подключен к полевому транзистору VT1, который управляется ШИМ мультивибратором, построенным на популярном таймере NE555. Из-за применения таймера NE555 схема регулирования оборотов получилась достаточно простой.

Как уже было сказано выше, шим регулятор оборотов двигателя выполнен с помощью простого генератора импульсов вырабатываемого нестабильным мультивибратором с частотой 50 Гц выполненного на таймере NE555. Сигналы с выхода мультивибратора обеспечивают смещение на затворе MOSFET транзистора.


Представляем простую конструкцию регулятора мощности, схема которого построена на таймере 555, работающем в режиме ШИМ. Транзисторы IRF3205 являются управляемыми элементами, причем транзисторы соединены параллельно для уменьшения сопротивления и лучшего рассеивания тепла.

Схема ШИМ на 12 В для ламп

Напряжение от трансформатора выпрямляется мостом на 50 А, установленным на радиаторе. Подается оно далее на стабилизатор 8 В, а затем в схему управления. Устройство должно было работать с несколькими галогенками 12 В 50 Вт.

ШИМ регулятор 12В на 555

Кстати, вы можете хорошо уменьшить нагрев транзисторов снизив частоту коммутации – на это стоит обратить внимание.

ШИМ регулятор 12В на 555

При полной яркости будет ток в нагрузке около 25 А. Так что уделите особое внимание винтовым соединительным разъемам. Кабели сечением 1,5 мм2 тоже недостаточны для такого большого тока.

ШИМ регулятор 12В на 555

Конечно, затворы лучше переключать напряжением около 10 – 12 В (не более 15 В для безопасности МОП-транзисторов), чем 6 В, хотя бы для того чтобы быть уверенным в их насыщении во включенном состоянии. А более высокое напряжение также означает более быструю перезагрузку затворов, что приводит к более короткому переходному времени, а это снижает потери мощности на них. Если они не насыщаются, то тепло, генерируемое на них с высокой рабочей мощностью, заставит транзисторы сильно греться.

Чтобы поднять управляющее напряжение, достаточно подключить R3 напрямую к источнику питания, а не к стабилизатору. Чтобы ускорить переключение, предлагаем конденсатор 0.1 мкФ поставить параллельно с R2 и, если необходимо, дополнительно в ряд перед этим параллельным соединением резистор, чтобы минимизировать токи при разряде конденсатора.

ШИМ регулятор 12В на 555

Вместо резистора R3 ещё лучше ставить резисторы 5-10 Ом в затворах mosfet и использовать более мощные биполярные транзисторы, например семейства BD136 – BD140 соответствующих типов проводимости.

Упрощенный ШИМ 12V регулятор постоянного тока

ШИМ регулятор 12В на 555

Для регуляторов оборотов мотора постоянного тока можно использовать эту, показанную выше схему. Здесь нет необходимости использовать управляющие транзисторы. Mosfet могут быть подключены параллельно, добавив один 30-ти омный резистор к затвору каждого транзистора. Плату можете скачать в архиве.

Регулировка оборотов электродвигателей в современной электронной технике достигается не изменением питающего напряжения, как это делалось раньше, а подачей на электромотор импульсов тока, разной длительности. Для этих целей и служат, ставшие в последнее время очень популярными - ШИМ (широтно-импульсно модулируемые) регуляторы. Схема универсальная - она же и регулятор оборотов мотора, и яркости ламп, и силы тока в зарядном устройстве.

Схема ШИМ регулятора

Схема ШИМ регулятора с полевым транзистором

Указанная схема отлично работает, печатная плата прилагается.

Печатная плата ШИМ регулятора

Без переделки схемы напряжение можно поднимать до 16 вольт. Транзистор ставить в зависимости от мощности нагрузки.

ШИМ РЕГУЛЯТОР ОБОРОТОВ

ШИМ РЕГУЛЯТОР ДВИГАТЕЛЯ

Можно собрать ШИМ регулятор и по такой электрической схеме, с обычным биполярным транзистором:

Схема ШИМ регулятора с составным транзистором

А при необходимости, вместо составного транзистора КТ827 поставить полевой IRFZ44N, с резистором R1 - 47к. Полевик без радиатора, при нагрузке до 7 ампер, не греется.

ШИМ регулятор - плата печатная

ШИМ регулятор своими руками

Работа ШИМ регулятора

Таймер на микросхеме NE555 следит за напряжением на конденсаторе С1, которое снимает с вывода THR. Как только оно достигнет максимума - открывается внутренний транзистор. Который замыкает вывод DIS на землю. При этом на выходе OUT появляется логический ноль. Конденсатор начинает разряжаться через DIS и когда напряжение на нем станет равно нулю - система перекинется в противоположное состояние — на выходе 1, транзистор закрыт. Конденсатор начинает снова заряжаться и все повторяется вновь.

Заряд конденсатора С1 идет по пути: «R2->верхнее плечо R1 ->D2«, а разряд по пути: D1 -> нижнее плечо R1 -> DIS. Когда вращаем переменный резистор R1, у нас меняются соотношения сопротивлений верхнего и нижнего плеча. Что, соответственно, меняет отношение длины импульса к паузе. Частота задается в основном конденсатором С1 и еще немного зависит от величины сопротивления R1. Меняя отношение сопротивлений заряда/разряда - меняем скважность. Резистор R3 обеспечивает подтяжку выхода к высокому уровню — так так там выход с открытым коллектором. Который не способен самостоятельно выставить высокий уровень.

Рекомендации по сборке и настройке

Диоды можно ставить любые, конденсаторы примерно такого номинала, как на схеме. Отклонения в пределах одного порядка не влияют существенно на работу устройства. На 4.7 нанофарадах, поставленных в С1, например, частота снижается до 18кГц, но ее почти не слышно.

Если после сборки схемы греется ключевой управляющий транзистор, то скорее всего он полностью не открывается. То есть на транзисторе большое падение напряжения (он частично открыт) и через него течет ток. В результате рассеивается большая мощность, на нагрев. Желательно схему параллелить по выходу конденсаторами большой емкости, иначе будет петь и плохо регулировать. Чтобы не свистел - подбирайте С1, свист часто идет от него. В общем область применения очень широкая, особенно перспективным будет её использование в качестве регулятора яркости мощных светодиодных ламп, LED лент и прожекторов, но про это в следующий раз. Статья написана при поддержке ear, ur5rnp, stalker68.

Форум по обсуждению материала СХЕМА ШИМ РЕГУЛЯТОРА


В каком направлении течет ток - от плюса к минусу или наоборот? Занимательная теория сути электричества.


Переделываем игрушку обычный трактор в радиоуправляемый - фотографии процесса и получившийся результат.


Приводятся основные сведения о планарных предохранителях, включая их технические характеристики и применение.


Про использование технологии беспроводного питания различных устройств.

Читайте также: