Двигатель свинтицкого своими руками

Обновлено: 02.07.2024

Согласно закону сохранения энергии, любой современный эл. привод не может иметь КПД выше 100%, потому как часть энергии нужно потратить на собственные нужды. Решить этот вечный вопрос призван двигатель на постоянных магнитах (униполярный, линейный, роторный, гравитационный и т. п), в котором механическое перемещение компонентов происходит за счет их взаимодействия на уровне магнитных свойств.

Принцип действия вечного магнитного движителя

Большинство современных эл. двигателей используют принцип трансформации эл. тока в механическое вращение ротора, а вместе с ним и приводного вала. Это значит, что любой расчет покажет КПД меньше 100%, а сам агрегат является зависимым, а не автономным. Та же ситуация наблюдается в случае генерирующего устройства. Здесь уже момент вращения вала, которое происходит за счет тепловой, ядерной, кинетической или потенциальной энергии движения среды, приводит к выработке электрического тока на коллекторных пластинах.

Статор представляет собой условно пластину из экранируемого материала, на которую по кольцевой траектории крепят постоянные магниты, например, неодимовые. Их полюса расположены перпендикулярно по отношению к полюсам дискового магнита и ротора. В результате, когда статор приближается к ротору на определенное расстояние, возникает поочередное притяжение, отталкивание в магнитном поле, которое формирует момент затем перерастает во вращение шарика по кольцевой траектории (дорожке). Пуск и остановка происходят за счет приближения или отдаления статора с магнитами. Этот вечный двигатель на постоянных магнитах будет работать до тех пор, пока они не размагнитятся. Расчет ведется относительно размера коридора, диаметров шарика, пластины статора, а также цепи управления на реле или катушках индуктивности.

На подобном принципе действия было разработано немало моделей действующих образцов, например, синхронных двигателей, генераторов. Наиболее известными среди них являются двигатели на магнитной тяге Тесла, Минато, Перендев, Говарда Джонсона, Лазарева, а также линейные, униполярные, роторные, цилиндровые и т. д.

Рассмотрим каждый из примеров подробнее.

Магнитный униполярный двигатель Тесла

Выдающийся ученый, ставший в свое время пионером в области снабжения эл. током, асинхронных электродвигателей на переменном токе, не обделил своим вниманием и расчетом вопрос вечного источника энергии. В научной среде это изобретение именуется иначе, как униполярный генератор Тесла.

Магнитный двигатель Тесла и его схема

Магнитный двигатель Тесла и его схема

На схеме, которая была представлена в оригинальном патенте, есть конструкция с двумя валами, на которых размещаются две пары магнитов: В, В создают условно положительное поле, а С, С – отрицательное. Между ними располагаются униполярные диски с отбортовкой, используемые в качестве генерирующих проводников. Оба униполярных диска связаны между собой тонкой металлической лентой, которая может быть в принципе использована, как проводник (в оригинале) или для вращения диска.

Двигатель Минато

Еще одним ярким примером использования энергии магнетизма для самовозбуждения и автономной работы является сегодня уже серийный образец, разработанный более тридцати лет назад японцем Кохеи Минато. Его отличают бесшумность и высокая эффективность. По собственным заявлениям Минато, самовращающийся магнитный двигатель подобной конструкции имеет КПД выше 300%.

Двигатель Минато

Двигатель Минато

Ротор имеет форму диска или колеса, на котором под определенным углом располагаются магниты. Когда к ним подводится статор с большим магнитом, возникает момент и колесо Минато начинает вращаться, используя попеременное сближение и отталкивание полюсов. Чем ближе статор к ротору, тем выше момент и скорость вращения. Питание осуществляется через цепь реле прерывателя.

Для предотвращения импульсов и биения при вращении колеса Минато, используют реле стабилизаторы и сводят к минимуму потребление тока управляющего эл. магнита. Недостатком можно считать отсутствие данных по нагрузочным характеристикам, тяге, используемых реле цепи управления, а также необходимость периодического намагничивания, о которой, кстати, тоже от Минато информации нет.

Может быть собран, как и остальные прототипы, экспериментально, из подручных средств, например, деталей конструктора, реле, эл. магнитов и т. п.

Двигатель Лазарева

Устройство двигателя Лазарева

Устройство двигателя Лазарева

Отечественный разработчик Николай Лазарев создал работающий и довольно простой вариант агрегата, использующего магнитную тягу. Его двигатель или роторный кольцар, состоит из емкости, разделенной пористой перегородкой потока на верхнюю и нижнюю части. Они сообщаются между собой за счет трубки, по которой из нижней камеры в верхнюю идет поток воды/жидкости. В свою очередь поры обеспечивают гравитационное перетекание вниз. Если под потоком жидкости поместить колесико, на лопастях которого будут закреплены магниты, то получиться добиться цели потока – вращения и создания постоянного магнитного поля. Схема роторного двигателя Николая Лазарева используется для расчета и сборки простейших самовращающихся устройств.

Магнитный мотор Говарда Джонсона

Магнитный мотор Говарда Джонсона

Магнитный мотор Говарда Джонсона

В своей работе и следующем за ней патенте на изобретение, Говард Джонсон использовал энергию, генерируемую потоком непарных электронов, присутствующих в магнитах для организации цепи питания мотора. Статор Джонсона представляет собой совокупность множества магнитов, дорожка расположения и движения которых будет зависеть от конструктивной компоновки агрегата Говарда Джонсона (линейной или роторной). Они закрепляются на специальной пластине с высокой степенью магнитной проницаемости. Одноименные полюса статорных магнитов направляются в сторону ротора. Это обеспечивает поочередное притяжение и отталкивание полюсов, а вместе с ними, момент и физическое смещение элементов статора и ротора относительно друг друга.

Организованный Говардом Джонсоном расчет воздушного зазора между ними позволяет корректировать магнитную концентрацию и силу взаимодействия в большую или меньшую сторону.

Генератор Перендева

Генератор Перендева

Генератор Перендева

Еще одним неоднозначным примером действия магнитных сил является самовращающийся магнитный двигатель Перендев. Его создатель Майк Брэди, до того, как в его отношении начали уголовное производство, даже успел обзавестись патентом, создать одноименную фирму (Перендев) и поставить дело на поток. Если анализировать представленную в патенте схему и принцип, или чертежи самодельных эл. двигателей, то ротор и статор имеют форму диска и внешнего кольца. На них по кольцевой траектории размещают отдельные магниты, соблюдая определенный угол относительно центральной оси. За счет взаимодействия поля отдельных магнитов статора и ротора Перендев, возникает момент и происходит их взаимное перемещение (вращение). Расчет цепи магнитов сводится к определению угла расхождения.

Синхронный двигатель на постоянных магнитах

Устройство синхронного двигателя на магнитах

Устройство синхронного двигателя на магнитах

Одним из основных видов электродвигателей является синхронный, частота вращения магнитных полей статора и ротора которого равны. У обычного электромагнитного мотора обе эти части состоят из обмоток на пластинах. Но если конструкцию якоря поменять и вместо катушки поставить постоянные магниты, то можно получить интересную, эффективную, действующую модель синхронного двигателя. Статор имеет привычную компоновку магнитопровода из пластин и обмоток, в которых способно генерироваться вращающееся магнитное поле от электрического тока. Ротор создает постоянное поле, которое взаимодействует с предыдущим, и создает крутящий момент.

Также следует отметить, что в зависимости от схемы, относительное расположение статора и якоря могут меняться, например, последний будет выполнен в форме внешней оболочки. Для пуска мотора от тока из сети используется цепь из магнитного пускателя (реле, контактора) и теплового защитного реле.

Сотни лет человечество пытается создать двигатель, который будет работать вечно. Сейчас этот вопрос, стоит особенно актуально, когда планета неминуемо движется к энергетическому кризису. Конечно, он может никогда и не наступить, но независимо от этого, люди все-таки нуждаются в том, чтобы отойти от привычных источников энергии и магнитный двигатель – отличный вариант.

Что такое магнитный двигатель и как его сделать своими руками?

Принцип действия вечного магнитного движителя

Большинство современных эл. двигателей используют принцип трансформации эл. тока в механическое вращение ротора, а вместе с ним и приводного вала. Это значит, что любой расчет покажет КПД меньше 100%, а сам агрегат является зависимым, а не автономным. Та же ситуация наблюдается в случае генерирующего устройства. Здесь уже момент вращения вала, которое происходит за счет тепловой, ядерной, кинетической или потенциальной энергии движения среды, приводит к выработке электрического тока на коллекторных пластинах.

Статор представляет собой условно пластину из экранируемого материала, на которую по кольцевой траектории крепят постоянные магниты, например, неодимовые. Их полюса расположены перпендикулярно по отношению к полюсам дискового магнита и ротора. В результате, когда статор приближается к ротору на определенное расстояние, возникает поочередное притяжение, отталкивание в магнитном поле, которое формирует момент затем перерастает во вращение шарика по кольцевой траектории (дорожке). Пуск и остановка происходят за счет приближения или отдаления статора с магнитами. Этот вечный двигатель на постоянных магнитах будет работать до тех пор, пока они не размагнитятся. Расчет ведется относительно размера коридора, диаметров шарика, пластины статора, а также цепи управления на реле или катушках индуктивности.

На подобном принципе действия было разработано немало моделей действующих образцов, например, синхронных двигателей, генераторов. Наиболее известными среди них являются двигатели на магнитной тяге Тесла, Минато, Перендев, Говарда Джонсона, Лазарева, а также линейные, униполярные, роторные, цилиндровые и т. д.

Рассмотрим каждый из примеров подробнее.







Миф или реальность?

Вечный двигатель знаком практически каждому еще со школьной скамьи, только на уроках физики четко утверждалось, что добиться практической реализации невозможно из-за сил трения в движущихся элементах. Среди современных разработок магнитных моторов представлены самоподдерживающие модели, в которых магнитный поток самостоятельно создает вращательное усилие и продолжает себя поддерживать в течении всего процесса работы. Но основным камнем преткновения является КПД любого двигателя, включая магнитный, так как он никогда не достигает 100%. Со временем мотор все равно остановится.

Поэтому все практические модели требуют повторного вмешательства через определенное время или каких-либо сторонних элементов, работающих от независимого источника питания. Наиболее вероятным вариантом бестопливных двигателей и генераторов выступает магнитная машина. В которой основной движущей силой будет магнитное взаимодействие между постоянными магнитами, электромагнитными полями или ферромагнитными материалами.

Актуальным примером реализации являются декоративные украшения, выполненные в виде постоянно двигающихся шаров, рамочек или других конструкций. Но для их работы необходимо использовать батарейки, которые питают постоянным током электромагниты. Поэтому далее рассмотрим тот принцип действия, который подает самые обнадеживающие ожидания.

Магнитный униполярный двигатель Тесла

Выдающийся ученый, ставший в свое время пионером в области снабжения эл. током, асинхронных электродвигателей на переменном токе, не обделил своим вниманием и расчетом вопрос вечного источника энергии. В научной среде это изобретение именуется иначе, как униполярный генератор Тесла.


Магнитный двигатель Тесла и его схема

На схеме, которая была представлена в оригинальном патенте, есть конструкция с двумя валами, на которых размещаются две пары магнитов: В, В создают условно положительное поле, а С, С – отрицательное. Между ними располагаются униполярные диски с отбортовкой, используемые в качестве генерирующих проводников. Оба униполярных диска связаны между собой тонкой металлической лентой, которая может быть в принципе использована, как проводник (в оригинале) или для вращения диска.

Рекомендации


Выбор рассматриваемого электродвигателя следует проводить с учетом следующих особенностей:

  1. Мощность – основной показатель, который влияет на срок службы. При возникновении нагрузки, которая превосходит возможности электродвигателя, он начинает перегреваться. При сильной нагрузке, возможно искривление вала и нарушение целостности других компонентов системы. Поэтому следует помнить о том, что диаметр вала и другие показатели выбираются в зависимости от мощности двигателя.
  2. Наличие системы охлаждения. Обычно особого внимания на то, как проводится охлаждение, никто не уделяет. Однако при постоянной работе оборудования, к примеру под солнцем, следует задуматься о том, что модель должна быть предназначена для продолжительной работы под нагрузкой при тяжелых условиях.
  3. Целостность корпуса и его вид,год выпуска – основные моменты, на которые уделяют внимание при покупке двигателя бывшего употребления. Если имеются дефекты корпуса, велика вероятность того, что конструкция имеет повреждения и внутри. Также, не стоит забывать о том, что подобное оборудование с годами теряет свой КПД.
  4. Особое внимание нужно уделятькорпусу, так как в некоторых случаях можно провести крепление только в определенном положении. Самостоятельно создать посадочные отверстия, приварить уши для крепления практически невозможно, так как нарушение целостности корпуса не допускается.
  5. Вся информация об электродвигателе находится на пластине, которая прикрепляется к корпусу. В некоторых случаях, есть только маркировка, по расшифровке которой можно узнать основные показатели работы.

В заключение отметим, что многие двигатели, которые были произведены несколько десятилетий назад, зачастую проходили восстановительные работы. От качества проведенной восстановительной работы зависят показатели электродвигателя.

Двигатель Минато

Еще одним ярким примером использования энергии магнетизма для самовозбуждения и автономной работы является сегодня уже серийный образец, разработанный более тридцати лет назад японцем Кохеи Минато. Его отличают бесшумность и высокая эффективность. По собственным заявлениям Минато, самовращающийся магнитный двигатель подобной конструкции имеет КПД выше 300%.


Двигатель Минато

Ротор имеет форму диска или колеса, на котором под определенным углом располагаются магниты. Когда к ним подводится статор с большим магнитом, возникает момент и колесо Минато начинает вращаться, используя попеременное сближение и отталкивание полюсов. Чем ближе статор к ротору, тем выше момент и скорость вращения. Питание осуществляется через цепь реле прерывателя.

Для предотвращения импульсов и биения при вращении колеса Минато, используют реле стабилизаторы и сводят к минимуму потребление тока управляющего эл. магнита. Недостатком можно считать отсутствие данных по нагрузочным характеристикам, тяге, используемых реле цепи управления, а также необходимость периодического намагничивания, о которой, кстати, тоже от Минато информации нет.

Может быть собран, как и остальные прототипы, экспериментально, из подручных средств, например, деталей конструктора, реле, эл. магнитов и т. п.

Запускаем электродвигатель

В принципе, если вы всё сделали правильно, электродвигатель на неодимовом магните должен запуститься самостоятельно, а чтобы остановить его, достаточно разорвать контакт между батарейкой и магнитом. Если двигатель не запустился, необходимо тщательно проверить все электрические соединения. А именно, проверьте:

  • Имеет ли проволочный контур хороший контакт по окружности магнита и с положительной клеммой батарейки?
  • Хорошо ли зачищена медная проволока?
  • Не препятствует ли что-либо (например, несимметричная форма контура) вращению конструкции?

В заключение разговора о моторах на неодимовых магнитах предлагаем посмотреть их в работе:

Двигатель Лазарева


Устройство двигателя Лазарева

Отечественный разработчик Николай Лазарев создал работающий и довольно простой вариант агрегата, использующего магнитную тягу. Его двигатель или роторный кольцар, состоит из емкости, разделенной пористой перегородкой потока на верхнюю и нижнюю части. Они сообщаются между собой за счет трубки, по которой из нижней камеры в верхнюю идет поток воды/жидкости. В свою очередь поры обеспечивают гравитационное перетекание вниз. Если под потоком жидкости поместить колесико, на лопастях которого будут закреплены магниты, то получиться добиться цели потока – вращения и создания постоянного магнитного поля. Схема роторного двигателя Николая Лазарева используется для расчета и сборки простейших самовращающихся устройств.

Журналист Фулфорд Бенджамин, проведя независимое расследование, пришел к весьма шокирующему результату — японские компании вынуждены были прикрыть дальнейшие разработки по приказу Правительства, а точнее — министра финансов Такинаки. Тот вынужден был изать такое распоряжение в резульате прямых угроз со стороны Израиля и США о применении геофизического оружия в случае, если Япония не подчинится политике МВФ и Федрезерва.

Магнитный мотор Говарда Джонсона


Магнитный мотор Говарда Джонсона

В своей работе и следующем за ней патенте на изобретение, Говард Джонсон использовал энергию, генерируемую потоком непарных электронов, присутствующих в магнитах для организации цепи питания мотора. Статор Джонсона представляет собой совокупность множества магнитов, дорожка расположения и движения которых будет зависеть от конструктивной компоновки агрегата Говарда Джонсона (линейной или роторной). Они закрепляются на специальной пластине с высокой степенью магнитной проницаемости. Одноименные полюса статорных магнитов направляются в сторону ротора. Это обеспечивает поочередное притяжение и отталкивание полюсов, а вместе с ними, момент и физическое смещение элементов статора и ротора относительно друг друга.

Организованный Говардом Джонсоном расчет воздушного зазора между ними позволяет корректировать магнитную концентрацию и силу взаимодействия в большую или меньшую сторону.

Генератор Перендева

Генератор Перендева

Еще одним неоднозначным примером действия магнитных сил является самовращающийся магнитный двигатель Перендев. Его создатель Майк Брэди, до того, как в его отношении начали уголовное производство, даже успел обзавестись патентом, создать одноименную фирму (Перендев) и поставить дело на поток. Если анализировать представленную в патенте схему и принцип, или чертежи самодельных эл. двигателей, то ротор и статор имеют форму диска и внешнего кольца. На них по кольцевой траектории размещают отдельные магниты, соблюдая определенный угол относительно центральной оси. За счет взаимодействия поля отдельных магнитов статора и ротора Перендев, возникает момент и происходит их взаимное перемещение (вращение). Расчет цепи магнитов сводится к определению угла расхождения.



Немного исторических фактов

Впервые попытка сконструировать магнитный вечный двигатель была предпринята в середине прошлого столетия. 1969 год стал переломным для данного направления научной мысли: публике был представлен полностью работоспособный мотор, цикл которого был конечным, но значительно отличался от других образцов продолжительностью действия. Оправданием этому стали слабые магниты, задействованные в конструкции, и высокая сила трения, погасившая полезную энергию устройства.

Решив погреться в лучах капризной славы на волне всеобщего энтузиазма, специалист Майкл Брэди из Африки сумел сконструировать рабочий движок на 6 кВт. Чтобы развеять любые сомнения в своей изобретательности и смекалке, он снял видеоролик про собственный альтернативный двигатель Перендева и выложил его в Интернет, где с разработкой успели ознакомиться миллионы пользователей сервиса YouTube. Либо они были одурманены увиденным и дали волю мечтам, либо изобретатель сумел мастерски обвести зрителей вокруг пальца, но разработка имела головокружительный успех.

Синхронный двигатель на постоянных магнитах


Устройство синхронного двигателя на магнитах

Одним из основных видов электродвигателей является синхронный, частота вращения магнитных полей статора и ротора которого равны. У обычного электромагнитного мотора обе эти части состоят из обмоток на пластинах. Но если конструкцию якоря поменять и вместо катушки поставить постоянные магниты, то можно получить интересную, эффективную, действующую модель синхронного двигателя. Статор имеет привычную компоновку магнитопровода из пластин и обмоток, в которых способно генерироваться вращающееся магнитное поле от электрического тока. Ротор создает постоянное поле, которое взаимодействует с предыдущим, и создает крутящий момент.

Также следует отметить, что в зависимости от схемы, относительное расположение статора и якоря могут меняться, например, последний будет выполнен в форме внешней оболочки. Для пуска мотора от тока из сети используется цепь из магнитного пускателя (реле, контактора) и теплового защитного реле.

Преимущества и недостатки

Рассматриваемый вариант исполнения имеет следующие достоинства:

  1. Оптимальный режим работы можно получить при воздействии реактивной энергии, что возможно при автоматической регулировке тока. Эта особенность обуславливает возможность работы электродвигателя без потребления и отдачи реактивной энергии в сеть. В отличие от асинхронного двигателя, синхронный имеет небольшие габаритные размеры при той же мощности, но при этом КПД значительно выше.
  2. Колебания напряжения в сети в меньшей степени воздействую на синхронный двигатель. Максимальный момент пропорционален напряжению сети.
  3. Высокая перегрузочная способность. Путем повышения тока возбуждения, можно провести значительное повышение перегрузочной способности. Это происходит на момент резкого и кратковременного возникновения дополнительной нагрузки на выходном валу.
  4. Скорость вращения выходного вала остается неизменной при любой нагрузке, если она не превышает показатель перегрузочной способности.

К недостаткам рассматриваемой конструкции можно отнести более сложную конструкцию и вследствие этого более высокую стоимость, чем у асинхронных двигателей. Однако в некоторых случаях, обойтись без данного типа электродвигателя невозможно.

В этом видео я расскажу о магнитном двигателе, его устройстве и принципе работы. Отвечу на вопрос: миф ли его .

Одна из серий сотен настольных экспериментов, которые привели меня к некоторым реально работающим образцам.

Магнитный вечный двигатель всё же существует, изобретатель показал свой рабочий магнитный двигатель! Мой фейсбук .

Меня зовут Игорь Белецкий. Я давно увлекаюсь техническим творчеством и популяризацией науки в интернете.

Интерестный патент магнитного двигателя на ниодимовых магнитах.patentscope.wipo.int/search/ru/detail.jsf?

@webrasskaz - Веб Рассказ на Telegram. * * * . В семь раз эффективнее, чем его эквивалент на бензине. Многие бы хотели .

Запрещённый магнитный генератор показываю тайный патент! Полностью раскрываю секрет генератора свободной .

Как сделать вечный магнитный двигатель на 3D принтере. Теперь мне под силу любая схема! Купить Неодимовые магниты .

Предупреждаю за не приличные комментарии баню автоматически. Так же запрещено бить стекла и выкручивать .

Использование: двигателестроение. Сущность изобретения: двигатель содержит статор, ротор с постоянномагнитной частью, компрессор для подачи топливной смеси в камеру сгорания, при этом ротор выполнен из дисков с размещенными через 90 o реактивными камерами сгорания, компрессор выполнен в виде размещенного в полом валу ротора поршня, установленного с возможностью взаимодействия с кулачком на неподвижной кольцевой дорожке, постоянномагнитная часть выполнена из кольцевого магнита в виде спирали Архимеда, при этом магниты статора и ротора установлены с возможностью взаимодействия одноименными полюсами в направлении движения часовой стрелки. 3 ил.

Формула изобретения

Магнитопульсирующий реактивный двигатель, содержащий статор, ротор с постоянно-магнитной частью и компрессор для подачи топливной смеси в камеру сгорания, отличающийся тем, что ротор выполнен из соединенных между собой дисков с размещенными через 90 o реактивными камерами сгорания, каждая камера соединена с компрессором увеличивающимися по сечению каналами с клапанами входа и выхода, расстояние между которыми равно углу поворота вала ротора на 15 o , причем клапаны входа и выхода выполнены с возможностью периодического взаимодействия с кулачком, установленным на неподвижной кольцевой дорожке, компрессор выполнен в виде размещенного в полом валу ротора поршня, установленного с возможностью взаимодействия с кулачком на другой неподвижной кольцевой дорожке посредством штока Т-образной формы с роликами через окна полого вала, постоянно-магнитная часть выполнена из кольцевого магнита в виде спирали Архимеда, размещенного на статоре, со срезом полюсов от 0 до минус 5 мм относительно внутреннего диаметра, и сектора-магнита, равного 90 o окружности, установленного на роторе со срезанными на 1/3 сектора полюсами до минус 4 мм относительно окружности внешней части сектора, причем магниты статора и ротора установлены с возможностью взаимодействия одноименными полюсами в направлении движения часовой стрелки.

Описание изобретения к патенту

Изобретение относится к двигателестроению и может быть применено в транспортной технике.

Известен магнитный роторный двигатель, который содержит статор, ротор с постоянной магнитной частью и компрессор для подачи топливной смеси в камеру сгорания (заявка ФРГ N 2355728, кл. НО2К 35/02, 1975).

Известный двигатель обладает недостаточно высоким КПД.

Техническим результатом изобретения является устранение вышеуказанного недостатка.

Данный результат достигается следующим образом.

В магнитопульсирующем реактивном двигателе, содержащем статор, ротор с постоянномагнитной частью и компрессор для подачи топливной смеси в камеру сгорания, ротор выполнен из соединенных между собой дисков с размещенными через 90 o реактивными камерами сгорания, каждая камера соединена с компрессором, увеличивающимися по сечению каналами с клапанами входа и выхода, расстояние между которыми равно углу поворота вала ротора на 15 o , причем клапаны входа и выхода выполнены с возможностью периодического взаимодействия с кулачком, установленным на неподвижной кольцевой дорожке, компрессор выполнен в виде размещенного в полом валу ротора поршня, установленного с возможностью взаимодействия с кулачком на другой неподвижной кольцевой дорожке посредством штока Т-образной формы с роликами через окна полого вала, постоянномагнитная часть выполнена из кольцевого магнита в виде спирали Архимеда, размещенного на статоре со срезом полюсов от 0 до минус 5 мм относительно внутреннего диаметра и сектора-магнита, равного 90 o окружности, установленного на роторе со срезанными на 1/3 сектора полюсами до минус 4 мм относительно окружности внешней части сектора, причем магниты статора и ротора установлены с возможностью взаимодействия одноименными полюсами в направлении движения часовой стрелки.

На фиг. 1 двигатель изображен в продольном разрезе; на фиг.2 поперечный разрез А-А; на фиг.3 поперечный разрез Б-Б.

Двигатель состоит из ротора, выполненного из дисков 1,2 с камерами сгорания 3, установленными через 90 o , в камерах сгорания установлены впускной 4 и выпускной 5 клапаны, а также кулачка 12, поршня, установленного на неподвижной кольцевой дорожке, со скосами захода и схода (поршня), равными 55 o , сектор равный 90 o , установленного вершиной захода скоса на 0 o -дисков (по часовой стрелке) кулачка 6 клапана 5 выхода отработанных газов, кулачка 4 входа рабочей смеси на кольцевой неподвижной дорожке 7. Сектор кулачка 6 равен 15 o , а расстояние между клапанами 15 o или от начала и до конца рабочей реактивной камеры 345 o . В полости вала установлен поршень 8, подпружинен на штоке Т-образной формы 9, с роликами 10-11, для перемещения в окнах вала, и по кулачку 12, клапан 13 всасываемой рабочей смеси, канал 14 для прохода ее под клапан входа рабочей смеси в камеры сгорания через каналы 15-16-17-18, гильза поршня 19 зажата передней частью вала и направляющей штока поршня, удерживающей пружину. Маховик 20 стартера, шестерня отбора мощности 21, водяной насос 22-23, трубка 24 топлива, раструб 25 забора воздуха, заслонка 26 дроссель, запальные свечи 27, ротор 28 магнита 29, сектора 90 o со скосом 4 мм на 1/3 полюсов спереди по ходу. Кольцеобразный магнит 360 o неподвижный срезан по внутреннему периметру полюсов от 0 до минус 5 мм в виде архимедовой спирали и по часовой стрелке, прикреплен к кожуху 33 двигателя, уплотнение 34, прокладка. Диски 1-2 напрессованы на вал и соединяются между собой болтами. Расстояние между реактивной и магнитной частью двигателя 120 мм. Для обслуживания, регулировок, балансировки кожух снабжается лючками, магниты взаимодействуют одноименными полюсами. Системы зажигания, смазки, охлаждения, как и материалы, широкоизвестны. Инжектируется любое топливо, поршнем создается разрежение и для топлива, и для воздуха.

Постоянномагнитный реактивнопульсирующий двигатель работает следующим образом.

Стартером за маховик 20 или другим способом двигатель раскручивается, так как между магнитами 30 и сектором 29 на роторе зазор от 0,1 до минус 5 мм, то при взаимодействии одноименными полюсами в минимальном зазоре плотность поля максимальна, а в максимальном зазоре плотность поля взаимодействия магнитов минимальна, это и обеспечивает расчетный заданный момент вращения работу 359 o , оборота 1 o , докручивания оборота завершения цикла 360 o , завершает работу реактивная часть данного двигателя. Например, необходимо совершать работу 100 л. с. на 360 o , порцию количество энергии можно сжечь и в одном цилиндре, и в 360 цилиндрах данное техническое решение обеспечивает потребление энергии извне в 359 раз меньше, так как 359 ее частей обеспечивают постоянные магниты, заменяют потребление извне. Таким образом, при вращении его дисков 1-2 клапан 5 выхода отработанных газов закроется, сойдет с кулачка 6 на неподвижную дорожку 7, клапан 4 входа рабочей смеси через 15 o надвинется на кулачок 6, откроется камера сгорания 3, через каналы 15-16-17-18, поршень 8 на Т-образной штанге 9 с роликами 10-11 сожмет воздушно-топливную смесь через канал 14, клапан 5, перед началом закрытия, после прохода 12 o , а поршень 8 хода-сжатия вершины кулачков 12 установлен на 0 o , верха начала дисков диаметра, то после прохода 12 o всасывающий впускной клапан 4 перед началом закрытия поршень 8 к крайнему верхнему положению сожмет рабочую смесь, опережая на 1 o закрытие и клапана 4, после закрытия клапанов через 90 o оборота двигателя на запальные свечи 27 подается напряжение-ток, взрывая рабочую смесь, после 345 o клапан 5 выхода отработанных газов откроется, и по каналу 31 они выйдут в патрубок-фланец 32. Число оборотов регулируется дроссельной заслонкой 26. Циклы работы повторяются по необходимости, инжектируя любое топливо.

Диски 300 мм, ширина 40 мм, объем реактивных камер сгорания на 100 л. с. 0,27 л, неподвижный магнит 360 o , o 300 мм, внутренний o 200 мм, ширина магнита 150 мм, поршень o 60 мм.

Реактивная часть двигателя работает от 1 до 10 o , может и 360 o как самостоятельный двигатель, но при взаимодействии с магнитной частью это и самая экономичная, экологически чистая машина, двигатель.

Читайте также: