Как сделать синусоиду на осциллографе

Добавил пользователь Cypher
Обновлено: 04.10.2024

Advertisement

Видео

Физика воздуха. Сжимаемость воздуха.

Что такое электричество? | ПРОСТО ФИЗИКА с Алексеем Иванченко

Курс подготовки к ЕГЭ. Физика. Урок №1 Кинематика равномерного движения

Батавские слезки - опыты

Тепловой рычаг - физические опыты

Секрет ЖК-монитора - поляризационная пленка

ЛАЗЕР В ВОДЕ - физические опыты

ЭЛЕКТРОХРОМНАЯ ПЛЕНКА с токопроводящим слоем и жидкокристаллической основой

Урок из космоса.Физика невесомости

Абсолютный ноль - погоня за абсолютным нулём

Последние комментарии

Определение частоты по осциллограмме

Давно хотел создать тему для всех, да и самому немного разобраться. Как известно в импульсной электронике без осциллографа делать вообще нечего. Тут я расскажу как узнать частоту с помощью осциллографа.

Частота = 1 / период импульса.

Изображение

Период импульса = диапазон положения ручки "время" на осциллографе * количество клеток периода импульса на осциллограмме.

Предлагаю рассмотреть три осциллограммы и рассчитать частоту:
(На всех трёх осциллограммах ручка "время" у меня была в положении "0,05 мкс" [микросекунд])

Первый пример, расписываю очень подробно:

Период импульса = 0,05 мкс * 4,2 клетки = 0,21 мкс
0,21 мкс / 1000 = 0,00 021 мс [миллисекунда]
0,00 021 мс / 1000 = 0,0 000 0021 с [секунды]

Частота = 1 / 0,0 000 0021 с = 4 761 900 Гц
4 761 900 Гц / 1000 = 47 619 кГц
47 619 кГц / 1000 = 4,7619 МГц

Второй пример, кратко:

Период импульса = 0,05 мкс * 2 клетки = 0,1 мкс

Частота = 1 / 0,1 мкс = 10 МГц

Третий пример (прошу прощения за плохую синхронизацию, мой осциллограф уже не "тянет" столь высокую частоту):

Период импульса = 0,05 мкс * 1,2 клетки = 0,06 мкс

Частота = 1 / 0,06 мкс = 16,666 МГц

Всем спасибо. Прошу ткнуть носом в имеющиеся ошибки и опечатки
Уважаемого Админа персонально прошу прокомментировать данный пост

Очевидные вещи комментировать - все верно

Считаем скважность:
Период в первом случае равен 4,2 клетки
Длительность - 2,2 клетки.
Скважность равна 2. Ну примерно
Или коэффициент заполнения - 0,5 (duty=50%)

Всё правильно, только мега- обычно большой буквой М обозначают, а маленькой - милли-. То есть мегагерцы надо вот так: МГц.

Объясните доходчиво на примере моих осциллограмм, что такое амплитуда?
Нашёл в гугле какую-то непонятную ересь:

Амплитуда — максимальное значение смещения или изменения переменной величины от среднего значения при колебательном или волновом движении. Неотрицательная скалярная величина, размерность которой совпадает с размерностью определяемой физической величины.
Иначе: Амплитуда — модуль максимального отклонения тела от положения равновесия.

Спасибо
Получается что амплитуда это модуль напряжения между нулевой точкой сигнала и его максимальной или минимальной величиной?
А если сигнал постоянный, скажем 5В, то никакой амплитуды быть не может?
А как тогда называется "размах сигнала" (в вольтах)? Например пульсации 1 Вольт (5 клеток по 200 мВ).

Получается что амплитуда это модуль напряжения между нулевой точкой сигнала и его максимальной или минимальной величиной?

Нет, почему обязательно между нулевой. Колебания могут быть наложены и на постоянную составляющую. Нормальное же определение:

Амплитуда — максимальное значение смещения или изменения переменной величины от среднего значения при колебательном или волновом движении.

Допустим у тебя на выходе +5 Вольт постоянного напряжения и на них наложена синусоида. Среднее значение будет +5В, а отклонение от +5 Вольт допустим составляет 0,5 Вольта, т.е. сигнал на выходе меняется от 4,5 В, до 5,5 Вольт. Амплитуда будет 0,5 Вольт, размах колебаний (от минимального до максимального значения) 1 Вольт (двойная амплитуда).

Само по себе такое выражение смысла не имеет, обычно подразумевают или "размах пульсаций" или "амплитуду пульсаций" (надо по контексту смотреть). Если речь идёт о помехах на постоянном сигнале, то они часто совсем не синусоидальной формы, не имеют строгой периодичности и отклонение сигнала вверх и вниз тоже не одинаковой величины. В этом случае говорить об амплитуде бессмысленно и говоря о пульсациях подразумевают просто максимальное отклонение от этого постоянного сигнала.

rhf-admin писал(а): Допустим у тебя на выходе +5 Вольт постоянного напряжения и на них наложена синусоида. Среднее значение будет +5В, а отклонение от +5 Вольт допустим составляет 0,5 Вольта, т.е. сигнал на выходе меняется от 4,5 В, до 5,5 Вольт. Амплитуда будет 0,5 Вольт, размах колебаний (от минимального до максимального значения) 1 Вольт (двойная амплитуда).

Тогда если представим что я измеряю пульсации на этой осциллограмме
download/file.php?id=523&mode=view
получается что размах пульсаций здесь = 4,6 клетки; амплитуда пульсаций = 2,3 клетки; двойная амплитуда (первый раз такой термин услышал ) пульсаций = 4,6 клетки?

И ещё вопрос, почему на этой осциллограмме на ножках кварца не синусоида а непонятно что? Или это мой осциллограф её так искажает? Хотя быть такого не может, у него полоса пропускания до 10МГц, а импульсы на осциллограмме под 5 МГц.
download/file.php?id=522&mode=view

Тогда если представим что я измеряю пульсации на этой осциллограмме
download/file.php?id=523&mode=view
получается что размах пульсаций здесь = 4,6 клетки; амплитуда пульсаций = 2,3 клетки; двойная амплитуда (первый раз такой термин услышал ) пульсаций = 4,6 клетки?

Ну это смотря с какой точностью вглядываться. Мне например кажется, что здесь размах 4,3 клетки, амплитуда 2,15 клетки. Но в целом всё верно.

Это нормально. На кварце обычно и не бывает красивой синусоиды (особенно чем выше частота - тем некрасивее синусоида). Есть даже такое понятие как "коэффициент формы". В целом же сигнал похож на синусоиду, - похож. Девайс, к которому этот кварц подключен, такой сигнал устраивает для нормальной работы, - устраивает. Значит всё нормально.

Дико извиняюсь за некрофильство, но другой темы по осциллографам здесь ещё не нашёл.
Вопрос в следующем. Добыл я из своего хламушника осциллограф Н313, да вот родной щуп к нему утерян. Кое-как сделал некое подобие и включил прибор, щуп на палец, подстроился на частоту наведенного напряжения сети и. немного озадачился. В общем и целом, на экране - синусоида, но при рассмотрении её вблизи обнаружены отклонения от математически верной формы. Линия ступенчатая (как ступеньки на иллюстрациях к интегралам ), и отсюда возникает ряд вопросов:
1. Это признак внутренних проблем прибора (типа высыхания электролитов)?
2. Это из-за помех, вносимых народным щупом ( ни грамма пайки, только скотч, алюминиевая фольга, соединители от коаксиального кабеля, стоматологический шпатель из нержавейки и кусок провода из наушников)?
3. Это из-за слишком большого числа окружающих нас импульсных блоков питания?
4. Кто-то рядом запилил отмотку счётчика?
5. Несколько факторов вместе?

В прошлой статье "Что такое осциллограф и как им пользоваться" мы познакомились с основами работы этого замечательного прибора. Чтобы освоить работу с осциллографом, нужны практические упражнения. В статье рассмотрены простые эксперименты с источником питания на основе тарнсформатора, с мостовым выпрямителем, а также с RC-цепями. Материал будет полезен тем кто желает познакомиться с измерительным прибором-осциллографом.

Источник питания и мостовой выпрямитель

Схема для эксперимента и изображение на экране осциллографа

Рис. 1. Схема для эксперимента и изображение на экране осциллографа.

Теперь сравним показания осциллографа и мультиметра. Мультиметр покажет переменное напряжение 12V (или около того), а размах синусоиды на экране осциллографа от пика до пика будет целых 34V. Зная, что амплитудное значение синусоидального напряжения равно половине размаха, а действующее , - в корень_из_2 раз раз меньше амплитудного, вычислим действующее значение:

выражение для расчета

Подключим к вторичной обмотке трансформатора мостовой выпрямитель из четырех диодов (рис. 2). К выходу выпрямителя подключим осциллограф.

На его экране будет весьма интересная картинка, - нижние полуволны синусоиды как бы перевернулись и расположились по положительной оси У. Практически, и частота колебаний увеличилась в два раза, то есть уже не 50, а 100 Гц, а размах уменьшился в два раза.

То, что видно на экране (рис. 2) принято называть пульсирующим напряжением. Но пульсирующее напряжение не годится для питания электронной схемы, - это еще не постоянное напряжение.

А чтобы его сделать постоянным нужно пульсации сгладить с помощью накопительного конденсатора.

На рисунке 3 показана схема с накопительным конденсатором С1 и резистором R1, который служит нагрузкой. Посмотрим, что нам теперь покажут приборы. Мультиметр покажет что-то около 16,5V, а на экране осциллографа будет видна искривленная линия, приподнятая вверх по шкале У на некоторую величину (рисунок 3, левая осциллограмма).

Подключим и исследуем мостовой выпрямитель из четырех диодов

Рис. 2. Подключим и исследуем мостовой выпрямитель из четырех диодов.

Таким образом, на выходе нашего выпрямителя есть постоянное напряжение с пульсациями 1V. Величина этих пульсаций зависит от емкости сглаживающего конденсатора и от нагрузки. Если нагрузка увеличится (уменьшится сопротивление R1) пульсации возрастут.

Сглаживающий конденсатор в выпрямителе

Рис. 3. Сглаживающий конденсатор в выпрямителе.

Это можно проверить, заменив R1 переменным. А с увеличением емкости пульсации уменьшаются. Вот, если в этом же примере (при том же сопротивлении R1) вы параллельно С1 подключите еще один конденсатор емкостью 220мкФ, пульсации уменьшатся до 0,ЗV, а при емкости конденсатора 1000 мкФ уровень пульсаций будет менее 0,1V.

Но это при сопротивлении нагрузки 1 кОм, то есть при токе нагрузки 16 миллиампер. С увеличением тока нагрузки пульсации будут увеличиваться. Именно по этому в выпрямителях, рассчитанных на большие нагрузки, используют сглаживающие конденсаторы очень большой емкости.

Выше, с помощью осциллографа была рассмотрена работа мостового выпрямителя. Но источник питания, часто кроме трансформатора и выпрямителя содержит стабилизатор напряжения.

Схема простейшего параметрического стабилизатора состоит из стабилитрона и токоограничительного резистора. Главное свойство стабилитрона в том, что он вроде бы работает как диод, то есть, пропускает ток в прямом направлении, но он пропускает и обратный ток, но только если обратное напряжение превысило некоторую величину, - напряжение стабилизации.

Исследуем параметрический стабилизатор

Рис. 4. Исследуем параметрический стабилизатор.

Стабилитрон, работая как диодный одно-полупериодный выпрямитель, убрал отрицательные полуволны. А как стабилитрон, он обрезал верхушку положительных полуволн на уровне своего напряжения стабилизации (для Д814В - это 10V).

А теперь, подключим такой же стабилизатор на выходе выпрямительного моста (рис. 5). Импульсы пульсирующего напряжения стабилитрон так же, обрезал на уровне своего напряжения стабилизации. Причем, стабилитрону безразлично какой амплитуды эти импульсы или полуволны, 17V или, например, 27V, он их ограничит СТАБИЛЬНО на уровне 10V.

Исследуем параметрический стабилизатор на выходе моста

Рис. 5. Исследуем параметрический стабилизатор на выходе моста.

На рисунке 6 показана схема источника питания с параметрическим стабилизатором на выходе. Мультиметр и осциллограф покажут постоянное напряжение 10V, а пульсации будут значительно меньше чем без стабилизатора.

Схема источника питания с параметрическим стабилизатором на выходе

Рис. 6. Схема источника питания с параметрическим стабилизатором на выходе.

Исследуем RC-цепи с помощью осциллографа

Еще одним практическим упражнением работы с осциллографом может быть исследование RC-цепи с помощью осциллографа. Для этого нам потребуется генератор прямоугольных импульсов. Во многих осциллографах, в частности, и С1-65, есть калибратор. Это генератор постоянного напряжения или прямоугольных импульсов частотой 1 кГц.

Калибратор предназначен для калибровки, но его можно с успехом использовать как лабораторный генератор прямоугольных импульсов при налаживании и ремонте аппаратуры.

Но, есть осциллографы и без калибраторов, если ваш именно такой, то нужно будет взять лабораторный функциональный генератор или самому сделать простой генератор прямоугольных импульсов частотой около 1 кГц, по схеме, показанной на рисунке 1. Это простейший мультивибратор на цифровой микросхеме. Но для наших опытов он подходит.

Схема простого генератора импульсов

Рис. 1. Схема простого генератора импульсов.

Импульсы на экране осциллограф

Рис. 2. Импульсы на экране осциллограф.

Экспериментировать будем с двумя типами цепей, - дифференцирующей и интегрирующей.

Сначала подключаем дифференцирующую цепь, состоящую из резистора R1 и конденсатора С1 (рис. 3). Теперь импульсы

Практические упражнения по работе с осциллографом

Рис. З. Подключаем дифференцирующую цепь.

Импульсы на экране осциллографа

Рис. 4. Импульсы на экране осциллографа.

Если начать поворачивать рукоятку переменного резистора R1, его сопротивление будет уменьшаться, и при этом, амплитуда импульсов будет увеличиваться, но и наклон в сторону к спаду тоже возрастает. На рисунке 5 уже совсем не похоже на прямоугольные импульсы. Однако амплитуда пиков сильно выросла. При дальнейшем повороте R1, амплитуда пиков будет продолжать расти, а наклоны приобретут параболический вид.

Это уже не похоже на прямоугольные импульсы

Рис. 5. Это уже не похоже на прямоугольные импульсы.

Но, при дальнейшем повороте R1, амплитуда начинает снижаться, и в самом крайнем положении, когда сопротивление R1 равно нулю, импульсы пропадают (это и не удивительно, ведь R1, в состоянии нулевого сопротивления, фактически замкнул вход осциллографа).

Вывод такой, что в результате дифференцирования прямоугольного импульса, он превращается в остроконечный импульс увеличенной амплитуды. Причем, чем больше R1, тем более импульс похож на прямоугольный.

Связанно это с тем, что от сопротивления R1 зависит время зарядки - разрядки конденсатора. И чем меньше R1, тем меньше это время. К тому же, при переходе от положительной полуволны к отрицательной (и наоборот), накопленное на конденсаторе напряжение добавляется к амплитуде импульса.

Поэтому, амплитуда напряжения на резисторе R1 в пиках увеличивается тем больше, чем быстрее заряжается конденсатор. Но при этом пики тем уже, чем меньше R1. Теперь поменяем детали местами, чтобы получилась схема, показанная на рисунке 6. RC-цепочка стала интегрирующей.

Новая схема для эксперимента

Рис. 6. Новая схема для эксперимента.

Если переменный резистор R1 находится в положении минимального сопротивления, на экране осциллографа будет как на рис. 7. Почти такие же прямоугольные импульсы, только фронты и спады слегка сглажены.

Начинаем поворачивать ручку переменного резистора R1, - фронты и спады еще сильнее сглаживаются и приобретают вид, как на рисунке 8. При этом амплитуда существенно снижается.

Выкручиваем ручку переменного резистора R1 до конца (в положение максимального сопротивления), - амплитуда импульсов сильно снижается, и они уже напоминают скорее треугольники (рис.9).

Изображение на экране осциллографа для эксперимента

Рис. 7. Изображение на экране осциллографа для эксперимента.

В интегрирующей цепи осциллограф показывает напряжение на конденсаторе. На него поступают импульсы через резистор R1 и заряжают и разряжают его. Как и в первом случае, скорость заряда -разряда тем больше, чем меньше сопротивление резистора. Но, здесь ситуация обратная, поэтому, чем меньше R1 тем скорее С1 заряжается или разряжается до максимального или минимального значения.

А значит, тем круче фронты и спады импульсов на С1. Вот эти закругления, видимые на осциллограмме на рис. 7 и есть то самое время, в течение которого происходит зарядка и разрядка конденсатора.

И чем быстрее конденсатор заряжается, тем меньше эти участки. Быстрота же зарядки конденсатора зависит от сопротивления резистора R1, через который на него поступают импульсы.

С увеличением сопротивления резистора R1 конденсатор все медленнее и плавней заряжается - разряжается, - закругления, показывающие время зарядки - разрядки увеличиваются. Поэтому фронты и спады сглаживаются, становятся наклонными.

При дальнейшем увеличении сопротивления R1 время, необходимое на зарядку конденсатора до максимального напряжения увеличивается на столько, что уже становится больше длительности полу-периода импульса. Конденсатор просто не успевает зарядиться до максимальной величины, как начинается его разрядка.

Фронты и спады еще более сглажены

Рис. 8. Фронты и спады еще более сглажены.

Импульсы - треугольники на экране осциллографра

Рис. 9. Импульсы - треугольники на экране осциллографра.

Поэтому амплитуда импульса уменьшается на столько, на сколько конденсатор не успевает зарядиться. В конечном итоге форма импульсов все более и более становится похожа на треугольную.

Читайте также: