Как сделать производную в c

Добавил пользователь Владимир З.
Обновлено: 04.10.2024

Здравствуйте!
Задана строка, задающая функцию, содержащую переменную x, знаки арифметических действий +, -, * и функции sin, cos, tg, ctg. Найти производную заданной функции.
т.е. нам дана функция sin(x)+cos(3x-4) и ее производная должна быть cos(x)-3*sin(3x-4)
еще, т.к. мы используем то что нам дано по условию, степеней у нас нет, но я так понял , что без деления не обойтись.
сначала даже не знал с чего начать, но потом решил сделать так (за код прошу не ругать):

void __fastcall TForm1::Button1Click(TObject *Sender)
<
AnsiString fun = Memo1->Lines->Text+' ';
AnsiString *stroka=new AnsiString[150];
AnsiString plst="";
int k=0;

for (int i= 1; i Clear();
for (int i = 0; i Lines->Append(stroka);

void __fastcall TForm1::FormCreate(TObject *Sender)
<
Memo1->Clear();
Memo2->Clear();
>
//------------------[/i]

суть кода в том, что берется строка с данной функцией и по разделяющим знакам я ищу тригонометрические функции. тут вроде все норм. вот я их нашел и делаю производную, вроде тоже все хорошо, НО, он не сохраняет знаки арифметических операций, и не пишет заново все в строку(тут я думаю проблема в мемо, т.к. написано выводить в столбец, хочу попробовать заменить на листбокс). По-поводу знаков, в каде я закомментировал этот кусок,корявый до боли, но не получилось его применить, т.е. он либо выводит знаки, либо функции, как отредактировать еще не додумал. и главная проблема это скобки в аргументах. я думаю сделать еще один цикл, который находит выражение в этих скобках и вычисляет производную, но пока не знаю как это сделать, а потом еще свять с самой функцией.
Заранее спасибо!

Как найти производную, как взять производную? На данном уроке мы научимся находить производные функций. Но перед изучением данной страницы я настоятельно рекомендую ознакомиться с методическим материалом Горячие формулы школьного курса математики. Справочное пособие можно открыть или закачать на странице Математические формулы и таблицы. Также оттуда нам потребуется Таблица производных, ее лучше распечатать, к ней часто придется обращаться, причем, не только сейчас, но и в оффлайне.

Советую следующий порядок изучения темы: во-первых, эта статья. Затем нужно прочитать важнейший урок Производная сложной функции. Эти два базовых занятия позволят поднять Ваши навыки с полного нуля. Далее можно будет ознакомиться с более сложными производными в статье Сложные производные. Логарифмическая производная. Если планка окажется слишком высока, то сначала прочитайте вещь Простейшие типовые задачи с производной. Помимо нового материала, на уроке рассмотрены другие, более простые типы производных, и есть прекрасная возможность улучшить свою технику дифференцирования. Кроме того, в контрольных работах почти всегда встречаются задания на нахождение производных функций, которые заданы неявно или параметрически. Такой урок тоже есть: Производные неявных и параметрически заданных функций.

Я попытаюсь в доступной форме, шаг за шагом, научить Вас находить производные функций. Вся информация изложена подробно, простыми словами.

Собственно, сразу рассмотрим пример:

Найти производную функции

Это простейший пример, пожалуйста, найдите его в таблице производных элементарных функций. Теперь посмотрим на решение и проанализируем, что же произошло? А произошла следующая вещь: у нас была функция , которая в результате решения превратилась в функцию .

Говоря совсем просто, для того чтобы найти производную функции, нужно по определенным правилам превратить её в другую функцию. Посмотрите еще раз на таблицу производных – там функции превращаются в другие функции. Единственным исключением является экспоненциальная функция , которая превращается сама в себя. Операция нахождения производной называется дифференцированием.

Обозначения: Производную обозначают или .

ВНИМАНИЕ, ВАЖНО! Забыть поставить штрих (там, где надо), либо нарисовать лишний штрих (там, где не надо) – ГРУБАЯ ОШИБКА! Функция и её производная – это две разные функции!

Вернемся к нашей таблице производных. Из данной таблицы желательно запомнить наизусть: правила дифференцирования и производные некоторых элементарных функций, особенно:

производную константы:
, где – постоянное число;

производную степенной функции:
, в частности: , , .

В реальности простые табличные примеры – редкость, обычно при нахождении производных сначала используются правила дифференцирования, а затем – таблица производных элементарных функций.

В этой связи переходим к рассмотрению правил дифференцирования:

1) Постоянное число можно (и нужно) вынести за знак производной

, где – постоянное число (константа)

Найти производную функции

Смотрим в таблицу производных. Производная косинуса там есть, но у нас .

Самое время использовать правило, выносим постоянный множитель за знак производной:

А теперь превращаем наш косинус по таблице:

2) Производная суммы равна сумме производных

Найти производную функции

Решаем. Как Вы, наверное, уже заметили, первое действие, которое всегда выполняется при нахождении производной, состоит в том, что мы заключаем в скобки всё выражение и ставим штрих справа вверху:

Применяем второе правило:

Обратите внимание, что для дифференцирования все корни, степени нужно представить в виде , а если они находятся в знаменателе, то переместить их вверх. Как это сделать – рассмотрено в моих методических материалах.

Теперь вспоминаем о первом правиле дифференцирования – постоянные множители (числа) выносим за знак производной:

Обычно в ходе решения эти два правила применяют одновременно (чтобы не переписывать лишний раз длинное выражение).

Все функции, находящиеся под штрихами, являются элементарными табличными функциями, с помощью таблицы осуществляем превращение:

Можно всё оставить в таком виде, так как штрихов больше нет, и производная найдена. Тем не менее, подобные выражения обычно упрощают:

Все степени вида желательно снова представить в виде корней, степени с отрицательными показателями – сбросить в знаменатель. Хотя этого можно и не делать, ошибкой не будет.

Найти производную функции

Попробуйте решить данный пример самостоятельно (ответ в конце урока). Желающие также могут воспользоваться интенсивным курсом в pdf-формате, который особенно актуален, если у вас в распоряжении совсем мало времени.

3) Производная произведения функций

Вроде бы по аналогии напрашивается формула …., но неожиданность состоит в том, что:

Эта необычное правило (как, собственно, и другие) следует из определения производной. Но с теорией мы пока повременим – сейчас важнее научиться решать:

Найти производную функции

Здесь у нас произведение двух функций, зависящих от .
Сначала применяем наше странное правило, а затем превращаем функции по таблице производных:

Сложно? Вовсе нет, вполне доступно даже для чайника.

Найти производную функции

В данной функции содержится сумма и произведение двух функций – квадратного трехчлена и логарифма . Со школы мы помним, что умножение и деление имеют приоритет перед сложением и вычитанием.

Здесь всё так же. СНАЧАЛА мы используем правило дифференцирования произведения:

Теперь для скобки используем два первых правила:

В результате применения правил дифференцирования под штрихами у нас остались только элементарные функции, по таблице производных превращаем их в другие функции:

При определенном опыте нахождения производных, простые производные вроде не обязательно расписывать так подробно. Вообще, они обычно решаются устно, и сразу записывается, что .

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока)

4) Производная частного функций

В потолке открылся люк, не пугайся, это глюк.
А вот это вот суровая действительность:

Найти производную функции

Чего здесь только нет – сумма, разность, произведение, дробь…. С чего бы начать?! Есть сомнения, нет сомнений, но, В ЛЮБОМ СЛУЧАЕ для начала рисуем скобочки и справа вверху ставим штрих:

Теперь смотрим на выражение в скобках, как бы его упростить? В данном случае замечаем множитель, который согласно первому правилу целесообразно вынести за знак производной:

Смотрим на наше выражение в скобках. У нас есть сложение, вычитание и деление. Со школы мы помним, что деление выполняется в первую очередь. И здесь – сначала применяем правило дифференцирования частного:

Таким образом, наша страшная производная свелась к производным двух простых выражений. Применяем первое и второе правило, здесь это сделаем устно, надеюсь, Вы уже немного освоились в производных:

Штрихов больше нет, задание выполнено.

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

Время от времени встречаются хитрые задачки:

Найти производную функции

Смотрим на данную функцию. Здесь снова дробь. Однако перед тем как использовать правило дифференцирования частного (а его можно использовать), всегда имеет смысл посмотреть, а нельзя ли упростить саму дробь, или вообще избавиться от нее?
Дело в том, что формула достаточно громоздка, и применять ее совсем не хочется.

В данном случае можно почленно поделить числитель на знаменатель.
Преобразуем функцию:

Ну вот, совсем другое дело, теперь дифференцировать просто и приятно:

Найти производную функции

Здесь ситуация похожа, превратим нашу дробь в произведение, для этого поднимем экспоненту в числитель, сменив у показателя знак:

Произведение все-таки дифференцировать проще:

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

5) Производная сложной функции

Данное правило также встречается очень часто. Но о нём рассказать можно очень много, поэтому я создал отдельный урок на тему Производная сложной функции.

Пример 4: . В ходе решения данного примера следует обратить внимание, на тот факт, что и – постоянные числа, не важно чему они равны, важно, что это - константы. Поэтому выносится за знак производной, а .

Автор: Емелин Александр

(Переход на главную страницу)

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

Операция отыскания производной называется дифференцированием.

В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

Чтобы найти производную, надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного - в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

Пример 1. Найти производную функции

Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

Из таблицы производных выясняем, что производная "икса" равна единице, а производная синуса - косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

Пример 2. Найти производную функции

Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

Таблица производных простых функций

1. Производная константы (числа). Любого числа (1, 2, 5, 200. ), которое есть в выражении функции. Всегда равна нулю. Это очень важно помнить, так как требуется очень часто
2. Производная независимой переменной. Чаще всего "икса". Всегда равна единице. Это тоже важно запомнить надолго
3. Производная степени. В степень при решении задач нужно преобразовывать неквадратные корни.
4. Производная переменной в степени -1
5. Производная квадратного корня
6. Производная синуса
7. Производная косинуса
8. Производная тангенса
9. Производная котангенса
10. Производная арксинуса
11. Производная арккосинуса
12. Производная арктангенса
13. Производная арккотангенса
14. Производная натурального логарифма
15. Производная логарифмической функции
16. Производная экспоненты
17. Производная показательной функции

Правила дифференцирования

1. Производная суммы или разности
2. Производная произведения
2a. Производная выражения, умноженного на постоянный множитель
3. Производная частного
4. Производная сложной функции

Правило 1. Если функции

дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны, т.е.

Правило 2. Если функции

дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой.

Следствие 1. Постоянный множитель можно выносить за знак производной:

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

Например, для трёх множителей:

Правило 3. Если функции

дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

Где что искать на других страницах

При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные - в статье "Производная произведения и частного функций".

Замечание. Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

А если при дифференцировании произведения или частного у вас появилось слагаемое u'v , в котором u - число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

Другая частая ошибка - механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями.

Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие "Производная суммы дробей со степенями и корнями".

Если же перед Вами задача вроде , то Вам на занятие "Производные простых тригонометрических функций".

Пошаговые примеры - как найти производную

Пример 3. Найти производную функции

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители - суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, "икс" у нас превращается в единицу, а минус 5 - в ноль. Во втором выражении "икс" умножен на 2, так что двойку умножаем на ту же единицу как производную "икса". Получаем следующие значения производных:

Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

А проверить решение задачи на производную можно на калькуляторе производных онлайн.

Пример 4. Найти производную функции

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие "Производная суммы дробей со степенями и корнями".

Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок "Производные простых тригонометрических функций".

Пример 5. Найти производную функции

Решение. В данной функции видим произведение, один из сомножителей которых - квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

Проверить решение задачи на производную можно на калькуляторе производных онлайн.

Пример 6. Найти производную функции

Решение. В данной функции видим частное, делимое которого - квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на :

Проверить решение задачи на производную можно на калькуляторе производных онлайн.

Найти производные самостоятельно, а затем посмотреть решения

Пример 7. Найти производную функции

Пример 8. Найти производную функции

Пример 9. Найти производную функции

Пример 10. Найти производную функции

Пример 11. Найти производную функции

Ещё больше домашних заданий на нахождение производных

Продолжаем искать производные вместе

Пример 12. Найти производную функции

Решение. Применяя правила вычисления производной алгебраической суммы функций, вынесения постоянного множителя за знак производной и формулу производной степени (в таблице производных - под номером 3), получим

Пример 13. Найти производную функции

Решение. Применим правило дифференцирования произведения, а затем найдём производные сомножителей, так же, как в предыдущей задаче, пользуясь формулой 3 из таблицы производных. Тогда получим

Пример 14. Найти производную функции

Решение. Как и в примерах 4 и 6, применим правило дифференцирования частного:

Теперь вычислим производные в числителе и перед нами уже требуемый результат:

Пример 15.Найти производную функции

Шаг1. Применяем правило дифференцирования суммы:

Шаг2. Найдём производную первого слагаемого. Это табличная производная квадратного корня (в таблице производных - номер 5):

Шаг3. В частном знаменатель - также корень, только не квадратный. Поэтому преобразуем этот корень в степень:

и далее дифференцируем частное, не забывая, что число 2 в первом слагаемом числителя - это константа, производная которой равна нулю, и, следовательно всё первое слагаемое равно нулю:

Корень из константы, как не трудно догадаться, является также константой, а производная константы, как мы знаем из таблицы производных, равна нулю:

а производная, требуемая в условии задачи:

Ещё больше домашних заданий на нахождение производных

Напоминаем, что чуть более сложные примеры на производную произведения и частного - в статьях "Производная произведения и частного функций" и "Производная суммы дробей со степенями и корнями".

Функция Softmax при вычислении производной и производной кросс-энтропийного коэффициента

Функция Softmax и производная

Функция softmax широко используется в различных нейронных сетях.Эта статья в общих чертах выводит процесс вычисления производной функции softmax.

Предположим, что функция softmax:



В python softmax можно определить как:

В python.numpy. Диапазон чисел с плавающей запятой составляет 10 ^ 308, поэтому даже для операций сложения, вычитания, умножения и деления этот предел труднодостижим, но для экспоненциальных операций иногда легко превысить это значение, поэтому часто вводится параметр C. , Изготовление:



Выбираем значение C:


Сделайте сдвиг полученного размера в диапазон от отрицательного до 0, чтобы экспоненциальный расчет был более устойчивым.

Из-за интерпретируемости функции softmax мы обычно применяем ее к последнему слою сети, для которого нам нужно вычислить производную softmax,


Согласно теореме о факторе можно вывести

Следует отметить, что ситуацию i = j и i ~ = j необходимо обсуждать в разных категориях.








Обозначения Кронекера:



Перекрестная энтропия и производная

Коэффициент кросс-энтропии определяется как функция, которая измеряет расстояние между выходным распределением и вероятностью исходного распределения, и обычно определяется как:



Я думаю, это определение легко вызвать недоразумение, потому что yi здесь не ярлыки, а правильная вероятность классификации.

Согласно исходному определению, код Python выглядит следующим образом:

Если теоретически вероятность правильной классификации равна 1, то для всех yi, соответствующих правильному классу, их значение равно 1, а для всех yi, соответствующих неправильному классу, их значение равно 0.

так что, Только правильно классифицированные Соответствующее значение функции softmax влияет на кросс-энтропию!

Теперь используйте функцию производной softmax, полученную ранее, чтобы получить производную кросс-энтропии. (Здесь о - передняя а)



Согласно предыдущему выводу,





В коде переведено:

Mengxin легко ошибаться: Поскольку здесь не несколько входов, а один вход, поэтому Здесь L - это не функция потерь, соответствующая большой матрице W, а функция потерь, соответствующая одной строке или одному столбцу (в зависимости от определения) в большой матрице W, которая является так называемой Li. Таким образом, общий убыток следует рассчитывать после средневзвешенного значения:



В случае нескольких входов (то есть, одно измерение матрицы x не равно 1), Li вносит вклад в каждую широту dW (то есть производную), поэтому также необходимо смоделировать вышеуказанную ситуацию и затем усреднить. Будьте осторожны, чтобы не пропустить пункт правила R.

Читайте также: