Как сделать петлю гистерезиса

Добавил пользователь Владимир З.
Обновлено: 05.10.2024

В физике это свойство систем представлено тремя основными разновидностями: магнитным, сегнетоэлектрическим и упругим гистерезисом.
Магнитный гистерезис – явление, которое отражает зависимость вектора напряженности магнитного поля и вектора намагничивания в веществе. Причем как от приложенного внешнего поля, так и от предыстории конкретного образца. Существование постоянных магнитов обуславливается именно этим явлением.

Модель петли представляет собой определенный цикл, который некоторые свойства отправляет на повторную проверку и согласование, а некоторые использует дальше. Избирательный характер зависит от свойств конкретной системы.

Сегнетоэлектрический гистерезис – изменяющаяся зависимость поляризации сегнетоэлектриков от циклического изменения внешнего электрического поля.

Упругий гистерезис – поведение упругих материалов, способных сохранять и утрачивать деформацию под воздействием больших давлений. Это явление обуславливает анизотропию механических характеристик и высокие механические качества кованных изделий.

ГИСТЕРЕ́ЗИС

ГИСТЕРЕ́ЗИС (от греч. ὑστέρησις – от­ста­ва­ние, за­паз­ды­ва­ние), за­паз­ды­ва­ние из­ме­не­ния фи­зич. ве­ли­чи­ны, ха­рак­те­ри­зую­щей со­стоя­ние ве­ще­ст­ва, от из­ме­не­ния др. фи­зич. ве­ли­чи­ны, оп­ре­де­ляю­щей внеш­ние ус­ло­вия. Г. име­ет ме­сто в тех слу­ча­ях, ко­гда со­стоя­ние те­ла в дан­ный мо­мент вре­ме­ни оп­ре­де­ля­ет­ся внеш­ни­ми ус­ло­вия­ми не толь­ко в тот же, но и в пред­ше­ст­вую­щие мо­мен­ты вре­ме­ни. В ре­зуль­та­те для цик­лич. про­цес­са (рост и умень­ше­ние внеш­не­го воз­дей­ст­вия) по­лу­ча­ет­ся пет­ле­об­раз­ная (не­од­но­знач­ная) диа­грам­ма, ко­то­рая на­зы­ва­ет­ся пет­лёй ги­стере­зи­са. Воз­ни­ка­ет Г. в разл. ве­ще­ст­вах и при раз­ных фи­зич. про­цес­сах. Наи­боль­ший ин­те­рес пред­став­ля­ют маг­нит­ный, сег­не­то­элек­три­че­ский и уп­ру­гий гис­те­ре­зис.

Маг­нит­ный Г. – не­од­но­знач­ная за­ви­си­мость на­маг­ни­чен­но­сти $\boldsymbol M$ маг­ни­то­упо­ря­до­чен­но­го ве­ще­ст­ва (маг­не­ти­ка, напр., фер­ро- или фер­ри­маг­не­ти­ка) от внеш­не­го маг­нит­но­го по­ля $\boldsymbol H$ при его цик­лич. из­ме­не­нии (уве­ли­че­нии и умень­ше­нии). При­чи­ной су­ще­ст­во­ва­ния маг­нит­но­го Г. яв­ля­ет­ся на­ли­чие в оп­ре­де­лён­ном ин­тер­ва­ле из­ме­не­ния $\boldsymbol H$ сре­ди со­стоя­ний маг­не­ти­ка, от­ве­чаю­щих ми­ни­му­му тер­мо­ди­на­мич. по­тен­циа­ла, ме­та­ста­биль­ных со­стоя­ний (на­ря­ду со ста­биль­ны­ми) и не­об­ра­ти­мых пе­ре­хо­дов ме­ж­ду ни­ми. Маг­нит­ный Г. мож­но так­же рас­смат­ри­вать как про­яв­ле­ние маг­нит­ных ори­ен­та­ци­он­ных фа­зо­вых пе­ре­хо­дов 1-го ро­да, для ко­то­рых пря­мой и об­рат­ный пе­ре­хо­ды ме­ж­ду фа­за­ми в за­ви­си­мо­сти от $\boldsymbol H$ про­ис­хо­дят, в си­лу ука­зан­ной ме­та­ста­биль­но­сти со­стоя­ний, при разл. зна­че­ни­ях $\boldsymbol H$.

Рис. 1. Петли магнитного гистерезиса:1 – максимальная, 2 – частная; а – кривая намагничивания, б и в – кривые перемагничивания; МR – остаточная намагниченность, Нс – коэрцитивная сила, Ms – намагничен…

На рис. 1 схе­ма­ти­че­ски по­ка­за­на ти­пич­ная за­ви­си­мость $M$ от $H$ в фер­ро­маг­не­ти­ке; из со­стоя­ния $M=0$ при $H=0$ с уве­ли­че­ни­ем $H$ зна­че­ние $M$ рас­тёт (осн. кри­вая на­маг­ни­чи­ва­ния, $\it а$) и в дос­та­точ­но силь­ном по­ле $H⩾H_$ $M$ ста­но­вит­ся прак­ти­че­ски по­сто­ян­ной и рав­ной на­маг­ни­чен­но­сти на­сы­ще­ния $M_$. При умень­ше­нии $H$ от зна­че­ния $H_$ на­маг­ни­чен­ность из­ме­ня­ет­ся вдоль вет­ви $\it б$ и при $H=0$ при­ни­ма­ет зна­че­ние $M=M_$ (ос­та­точ­ная на­маг­ни­чен­ность). Для раз­маг­ни­чи­ва­ния ве­ще­ст­ва ($M=0$) не­об­хо­ди­мо при­ло­жить об­рат­ное по­ле $H= –H_$, на­зы­вае­мое ко­эр­ци­тив­ной си­лой. Да­лее при $H=–H_$ об­ра­зец на­маг­ни­чи­ва­ет­ся до на­сы­ще­ния ($M=–M_$) в об­рат­ном на­прав­ле­нии. При из­ме­не­нии $H$ от $–H_$ до $+H_$ на­маг­ни­чен­ность из­ме­ня­ет­ся вдоль кри­вой $\it в$. Вет­ви $\it б$ и $\it в$, по­лу­чаю­щие­ся при из­ме­не­нии $H$ от $+H_$ до $–H_$ и об­рат­но, об­ра­зу­ют замк­ну­тую кри­вую, на­зы­вае­мую мак­си­маль­ной (или пре­дель­ной) пет­лёй Г. Вет­ви $\it б$ и $\it в$ на­зы­ва­ют­ся, со­от­вет­ст­вен­но, нис­хо­дя­щей и вос­хо­дя­щей вет­вя­ми пет­ли Г. При из­ме­не­нии $H$ на от­рез­ке $[–H_1, H_1]$ с $H_1$ за­ви­си­мость $M(H)$ опи­сы­ва­ет­ся замк­ну­той кри­вой (ча­ст­ной пет­лёй Г.), це­ли­ком ле­жа­щей внут­ри макс. пет­ли ги­сте­ре­зи­са.

Опи­сан­ные пет­ли Г. ха­рак­тер­ны для дос­та­точ­но мед­лен­ных (ква­зи­ста­ти­че­ских) про­цес­сов пе­ре­маг­ни­чи­ва­ния. От­ста­ва­ние $M$ от $H$ при на­маг­ни­чи­ва­нии и раз­маг­ни­чи­ва­нии при­во­дит к то­му, что энер­гия, при­об­ре­тае­мая маг­не­ти­ком при на­маг­ни­чи­ва­нии, не пол­но­стью от­да­ёт­ся при paзмагничивании. Те­ряе­мая за один цикл энер­гия оп­ре­де­ля­ет­ся пло­ща­дью пет­ли Г. Эти по­те­ри энер­гии на­зы­ва­ют­ся гис­те­ре­зис­ны­ми. При ди­на­мич. пе­ре­маг­ни­чи­ва­нии об­раз­ца пе­ре­мен­ным маг­нит­ным по­лем $\boldsymbol H_$ пет­ля Г. ока­зы­ва­ет­ся ши­ре ста­ти­че­ской вслед­ст­вие то­го, что к ква­зи­рав­но­вес­ным гис­те­ре­зис­ным по­те­рям до­бав­ля­ют­ся ди­на­ми­че­ские, ко­то­рые мо­гут быть свя­за­ны с вих­ре­вы­ми то­ка­ми (в про­вод­ни­ках) и ре­лак­са­ци­он­ны­ми яв­ле­ния­ми.

Фор­ма пет­ли Г. и наи­бо­лее важ­ные ха­рак­те­ри­сти­ки маг­нит­но­го Г. (гис­те­ре­зис­ные по­те­ри, $H_с$, $M_$ и др.) за­ви­сят от хи­мич. со­ста­ва ве­ще­ст­ва, его струк­тур­но­го со­стоя­ния и темп-ры, от ха­рак­те­ра и рас­пре­де­ле­ния де­фек­тов в об­раз­це, а сле­до­ва­тель­но, от тех­но­ло­гии его пригoтовления и по­сле­дую­щих фи­зич. об­ра­бо­ток (те­п­ло­вой, ме­ха­нич., тер­мо­маг­нит­ной и др.). С маг­нит­ным Г. свя­за­но гис­те­ре­зис­ное по­ве­де­ние це­ло­го ря­да др. фи­зич. свойств, напр. Г. маг­ни­то­стрик­ции, Г. галь­ва­но­маг­нит­ных и маг­ни­то­оп­тич. яв­ле­ний и т. д.

Сег­не­то­элек­три­че­ский Г. – не­од­но­знач­ная за­ви­си­мость ве­ли­чи­ны век­то­ра элек­трич. по­ля­ри­за­ции $\boldsymbol P$ сег­не­то­элек­три­ков от на­пря­жён­но­сти $\boldsymbol E$ внеш­не­го элек­трич. по­ля при цик­лич. из­ме­не­нии по­след­не­го. Сег­не­то­элек­три­ки об­ла­да­ют в оп­ре­де­лён­ном тем­пе­ра­тур­ном ин­тер­ва­ле спон­тан­ной (т. е. са­мо­про­из­воль­ной, воз­ни­каю­щей в от­сут­ст­вие внеш­не­го по­ля) по­ля­ри­за­ци­ей $\boldsymbol P_$. На­прав­ле­ние по­ля­ри­за­ции мо­жет быть из­ме­не­но элек­трич. по­лем, при этом зна­че­ние $\boldsymbol P$ при дан­ном $\boldsymbol E$ за­ви­сит от пре­дыс­то­рии, т. е. от то­го, ка­ким бы­ло элек­трич. по­ле в пред­ше­ст­вую­щие мо­мен­ты вре­ме­ни. Сег­не­то­элек­трич. Г. име­ет вид ха­рак­тер­ной пет­ли (пет­ля Г.), осн. па­ра­мет­ра­ми ко­то­рой яв­ля­ют­ся ос­та­точ­ная по­ля­ри­за­ция $\boldsymbol P_$ при $\boldsymbol E=0$ и ко­эр­ци­тив­ное по­ле $\boldsymbol E_к$, при ко­то­ром про­ис­хо­дит из­ме­не­ние на­прав­ле­ния (пере­клю­че­ние) век­то­ра $\boldsymbol P_$. Для со­вер­шен­ных мо­но­кри­стал­лов пет­ля Г. име­ет фор­му, близ­кую к пря­мо­уголь­ной, и $\boldsymbol P_=\boldsymbol P_$. В ре­аль­ных кри­стал­лах ос­та­точ­ная по­ля­ри­за­ция мень­ше спон­тан­ной из-за раз­биения кри­стал­ла на до­ме­ны.

Су­ще­ст­во­ва­ние сег­не­то­элек­трич. Г. сле­ду­ет из фе­но­ме­но­ло­гич. тео­рии сег­не­то­элек­трич. яв­ле­ний, в со­от­вет­ст­вии с ко­то­рой рав­но­вес­ным зна­че­ни­ям $\boldsymbol P_$ при лю­бой темп-ре ни­же темп-ры сег­не­то­элек­трич. фа­зо­во­го пе­ре­хо­да от­ве­ча­ют два сим­мет­рич­ных ми­ни­му­ма тер­мо­ди­на­мич. по­тен­циа­ла, раз­де­лён­ные по­тен­ци­аль­ным барь­е­ром. При $E=±E_к$ один из ми­ни­му­мов ис­че­за­ет, и кри­сталл ока­зы­ва­ет­ся в со­стоя­нии с оп­ре­де­лён­ным на­прав­ле­ни­ем век­то­ра $\boldsymbol P_$. При цик­лич. пе­ре­клю­че­нии спон­тан­ной по­ля­ри­за­ции пло­щадь пет­ли Г. оп­ре­де­ля­ет гис­те­ре­зис­ные по­те­ри – ко­ли­че­ст­во энер­гии элек­трич. по­ля, пе­ре­хо­дя­щей в те­п­ло­ту. Ве­ли­чи­на ко­эр­ци­тив­но­го по­ля свя­за­на так­же с про­цес­са­ми за­ро­ж­де­ния и эво­лю­ции в элек­трич. по­ле сег­не­то­элек­трич. до­ме­нов – об­лас­тей кри­стал­ла с вы­де­лен­ным элек­трич. по­лем на­прав­ле­ни­ем век­то­ра спон­тан­ной по­ля­ри­за­ции.

Рис. 2. Петля упругого гистерезиса.

Уп­ру­гий Г. – не­од­но­знач­ная за­ви­си­мость ме­ха­нического на­пря­же­ния от де­фор­ма­ции уп­ру­го­го те­ла при цик­лич. при­ло­же­нии и сня­тии на­груз­ки. Гра­фик за­ви­си­мо­сти на­пря­же­ния $σ$ от де­фор­мации $ε$ от­ли­ча­ет­ся от от­рез­ка пря­мой ли­нии, со­от­вет­ст­вую­щей за­ко­ну Гу­ка, и пред­став­ля­ет со­бой пет­лю Г. (рис. 2). Пло­щадь этой пет­ли про­пор­цио­наль­на ме­ха­нической энер­гии, ко­то­рая рас­сея­лась (пре­вра­ти­лась в те­п­ло­ту) во вре­мя цик­ла.

По­яв­ле­ние уп­ру­го­го Г. в ме­тал­лах свя­за­но с тем, что в не­ко­то­рых зёр­нах по­ли­кри­стал­ла мик­ро­на­пря­же­ния су­ще­ст­вен­но пре­вы­ша­ют ср. на­пря­же­ния в об­раз­це, что при­во­дит к по­яв­ле­нию пла­стич. де­фор­ма­ций и тем са­мым к рас­сея­нию ме­ха­нич. энер­гии. В не­ко­то­рых слу­ча­ях вклад в уп­ру­гий Г. да­ют элек­тро­маг­нит­ные яв­ле­ния.

Уп­ру­гий Г. как про­яв­ле­ние от­ли­чия ре­аль­но­го уп­ру­го­го те­ла от иде­аль­но уп­ру­го­го на­блю­да­ет­ся у всех твёр­дых тел, да­же при весь­ма низ­ких темп-рах. Уп­ру­гий Г. яв­ля­ет­ся при­чи­ной за­ту­ха­ния сво­бод­ных ко­ле­ба­ний уп­ру­гих тел, за­ту­ха­ния в них зву­ка, умень­ше­ния ко­эф. вос­ста­нов­ле­ния при не­уп­ру­гом уда­ре и др. В об­щем слу­чае от­кло­не­ние уп­ру­го­сти от иде­аль­ной вклю­ча­ет­ся в по­ня­тие внут­рен­не­го тре­ния.

Гистерезис в электронике

В электротехнике и электронике свойством гистерезиса пользуются устройства, которые используют различные магнитные взаимодействия. Например, магнитные носители информации или триггер Шмитта.

Это свойство необходимо знать, чтобы использовать его для подавления шумов в момент переключения определенных логических сигналов (дребезга контактов, быстрых колебаний).

Упругий гистерезис бывает двух видов: динамический и статический. В первом случае график будет изображать постоянно изменяющуюся петлю, во втором – равномерную.

Во всех приборах электронного типа наблюдается тепловой гистерезис. После того как прибор был нагрет, а затем охлажден, его характеристики не принимают прежнего значения.
Это происходит из-за того, что неодинаковое тепловое расширение корпусов микросхем, кристаллодержателей, печатных плат и кристаллов полупроводников вызывает механическое напряжение, сохраняющееся и после охлаждения.

Наиболее заметно это явление в прецизионных источниках опорного напряжения, которые используются в измерительных преобразователях.

Петля гистерезиса

На графике зависимости М от Н можно видеть:

  1. Из нулевого состояния, при котором М=0 и Н=0, с увеличением Н растет и М.
  2. Когда поле увеличивается, то намагниченность становится практически постоянной и равна значению насыщения.
  3. При уменьшении Н происходит обратное изменение, но вот когда Н=0, намагниченность М не будет равна нулю. Это изменение можно видеть по кривой размагничивания. И когда Н=0, М принимает значение, равное остаточной намагниченности.
  4. При увеличении Н в интервале -Нт… +Нт происходит изменение намагниченности вдоль третьей кривой.
  5. Все три кривые, описывающие процессы, соединяются и образуют своеобразную петлю. Она-то и описывает явление гистерезиса — процессы намагничивания и размагничивания.

Физический процесс при гистерезисе

Чтобы подробно понять процесс гистерезиса

, необходимо досконально изучить следующие понятия:

Что касается материалов, в которых лучше всего наблюдается эффект гистерезиса, то таковыми являются именно ферромагнетики. Это смесь химических элементов, которая способна намагничиваться за счет направленности магнитных диполей, поэтому обычно в составе имеются такие металлы, как:

  • железо;
  • кобальт;
  • никель;
  • соединения на их основе.

Чтобы увидеть гистерезис

, на катушку с сердечником из ферромагнетика необходимо подать переменное напряжение. При этом от величины его график намагничивания сильно зависеть не будет, потому как эффект зависит напрямую от свойства самого материала и величины магнитной связи между элементами вещества.

Основополагающим моментом при рассмотрении понятия гистерезиса в электронике является как раз магнитная индукция В, созданная вокруг катушки при подаче напряжения. Она определяется по стандартной формуле, как произведение магнитной диэлектрической проницаемости вещества к сумме напряженности и намагниченности поля.

Чтобы понять общий принцип эффекта гистерезиса, необходимо воспользоваться графиком

. На нем видна петля намагничивания из состояния полной размагниченности. Участок можно обозначить цифрами 0-1. При достаточной величине напряжения и длительности воздействия магнитного поля на материал график доходит до крайней своей точки по указанной траектории. Процесс осуществляется не по прямой, а по кривой с определенным изгибом, который характеризует свойства материала. Чем больше в веществе магнитных связей между молекулами, тем быстрее он выходит в насыщение.

После снятия напряжения с катушки напряженность магнитного поля падает до нуля. Это участок на графике 1-2. При этом материал за счет направленности магнитных моментов остается намагниченным. Но величина намагниченности несколько ниже, чем при насыщении. Если такой эффект наблюдается в веществе, то оно относится к ферромагнетикам, способным накапливать в себе магнитное поле за счет сильных магнитных связей между молекулами вещества.

Со сменой полярности напряжения, подводимого к катушке, процесс размагничивания продолжается по той же кривой до состояния насыщения

. Только в этом случае магнитные моменты диполей будут направлены в обратную сторону. С частотой сети процесс будет периодически повторяться, описывая график, получивший название – петля магнитного гистерезиса.

При многократном намагничивании ферромагнетика меньшей, чем при насыщении напряженностью, то можно получить семейство кривых, из которых можно построить общий график, характеризующий состояние вещества от полного размагниченного до полного намагниченного.

Гистерезис – это комплексное понятие

, характеризующее способность вещества накапливать энергию магнитного поля или другой величины за счет имеющихся магнитных связей между молекулами вещества или особенностей работы системы. Но таким эффектом могут обладать не только сплавы железа, кобальта и никеля. Титанат бария даст несколько иной результат, если его поместить в поле с определенной напряженностью.

Так как он является сегнетоэлектриком, то в нем наблюдается диэлектрический гистерезис. Обратная петля гистерезиса образуется при противоположной полярности подводимого к среде напряжения, а величина противоположного поля, действующего на материал, получило название коэрцитивная сила.

При этом величина поля может предшествовать разным напряженностям, что связано с особенностями фактического состояния диполей – магнитных моментов после прошлого намагничивания. Также на процесс влияют различные примеси

, содержащиеся в составе материала. Чем их больше, тем труднее сдвинуть стенки диполей, поэтому остается так называемая остаточная намагниченность.

Кривая намагничивания


Кривая намагничивания. Это важнейшая характеристика магнитных материалов, она показывает зависимость намагниченности или магнитной индукции материала от напряженности внешнего поля Н. Магнитная индукция материала Bi измеряется в теслах (Тл) и связана с намагниченностью. Основная (коммутационная) кривая намагничивания представляет собой геометрическое место вершин петель гистерезиса, полученных при циклическом перемагничивании и отражает изменение магнитной индукции В в зависимости от напряженности магнитного поля Н, которое создается в материале при намагничивании. Напряженность магнитного поля в образце в виде тороида, когда магнитная цепь замкнута, равна напряженности внешнего поля Нв. В разомкнутой магнитной цепи на концах образца появляются магнитные полюса, создающие размагничивающее поле Нр. Разница между магнитными напряженностями внешнего и размагничивающего полей определяют внутреннюю магнитную напряженность Hi материала. Основная кривая намагничивания имеет ряд характерных участков, которые можно условно выделить при намагничивании монокристалла ферромагнетика. Первый участок кривой намагничивания соответствует процессу смещения границ менее благоприятно ориентированных доменов. На втором участке происходит поворот векторов намагниченности доменов в направлении внешнего магнитного поля. Третий участок соответствует парапроцессу, т.е. завершающему этапу процесса намагничивания, когда сильное магнитное поле поворачивает в направлении своего действия не сориентированные магнитные моменты доменов ферромагнетика.

Гистерезис происходит от греческого слова, означающего запаздывание или отставание. С данным понятием связана такая физическая величина, как петля гистерезиса, определяющая одну из характеристик тела. Она определенным образом связана также и с физическими величинами, характеризующими внешние условия, такие как магнитное поле.

Магнитный гистерезис - обычное явление, если магнитный материал намагничен и завершает один полный цикл намагничивания. Когда плотность магнитного потока или плотность намагничивания (B) наносится на график зависимости от магнитной напряженности намагничивающего поля (H) для одного полного цикла намагничивания и размагничивания, то полученная в результате петля называется петлей гистерезиса. Кривая петли гистерезиса может быть разной по форме и размеру в зависимости от природы материала.

Гистерезис Значение

Кривая гистерезиса

петля гистерезиса

Петля гистерезиса, изображающая один полный цикл намагничивания и размагничивания

Петля гистерезиса с разными параметрами

петля гистерезиса

Петля гистерезиса с разными параметрами
Изображение Фото: Craxd1, Кривая и петля BH, CC BY-SA 3.0

Объяснение кривой гистерезиса

Область, ограниченная петлей, представляет собой потерю энергии во время полного цикла намагничивания и размагничивания.

Проницаемость свободного пространства

Проницаемость свободного пространства, μo, является постоянным параметром, представленным точным значением 4π x 10 -7 Н / м используется для воздуха. Эта постоянная μo появляется в уравнениях Максвелла, которые описывают и связывают электрические и магнитные поля вместе со свойствами электромагнитного излучения, т. е. помогают связывать и определять такие величины, как проницаемость, плотность намагниченности, напряженность магнитного поля и т. д.

Магнитный гистерезис подробно обсуждался в этой статье. но в дополнение к этому, нам нужно прояснить некоторые концепции, связанные с намагничиванием, такие как проницаемость, удерживающая способность в свободном пространстве и в другой среде.

Интенсивность намагничивания

Магнитный материал в магнитном поле создает индуцированный дипольный момент в этом материале, и этот момент на единицу объема распознается как интенсивность намагничивания (I) или плотность намагничивания.

где - суммарный индуцированный дипольный момент. Его единица измерения - Am -1

Что такое магнитная интенсивность?

Чтобы намагнитить магнитный материал, необходимо приложить магнитное поле. Отношение этого намагничивающего поля к проницаемости свободного пространства известно как напряженность магнитного поля H.

где , внешнее магнитное поле также называют плотностью магнитного потока.

Единица магнитной напряженности - Ам. -1 такая же, как у интенсивности намагничивания.

Что такое магнитная восприимчивость?

Отношение величины интенсивности намагничивания к величине магнитной напряженности известно как магнитная восприимчивость (). Магнитную восприимчивость можно объяснить как степень легкости, с которой магнитный материал может быть намагничен. Следовательно, материал с более высоким значением магнитной восприимчивости будет легче намагничиваться по сравнению с другими материалами, имеющими меньшее значение магнитной восприимчивости.

= где символы имеют свое обычное значение.

Магнитная восприимчивость - это скалярная величина, не имеющая измерения, следовательно, без единицы измерения.

Что такое магнитная проницаемость?

Магнитная проницаемость - это отношение значения чистого магнитного поля внутри материала к значению магнитной напряженности. Здесь чистое магнитное поле внутри материала является векторным сложением приложенного магнитного поля и магнитного поля для намагничивания этого вещества. Магнитную проницаемость можно просто объяснить как меру степени, в которой намагничивающее поле может проникать (проникать) в данный магнитный материал.

Магнитная проницаемость - это скалярная величина, единица измерения -

Другой термин, связанный с магнитной проницаемостью, - это относительная проницаемость, которую можно определить как отношение проницаемости среды к проницаемости свободного пространства.

Связь между B и H

Общее магнитное поле B, также называемое плотностью потока, представляет собой сумму силовых линий магнитного поля, созданных внутри заданной области. Обозначается символом B.

В качестве магнитной напряженности H, которая прямо пропорциональна внешнему магнитному полю, следовательно, можно утверждать, что напряженность магнитного поля или напряженность магнитного поля H может быть увеличена путем увеличения либо величины тока, либо количества витков катушки, в которой материал сохраняется.

Мы знаем, что B = μH или B = H

μr не имеет постоянного значения, а зависит от напряженности поля, поэтому для магнитных материалов отношение плотности потока или общего магнитного поля к напряженности магнитного поля или напряженности магнитного поля известно B / H.

Следовательно, мы получаем нелинейную кривую, когда строим график магнитного потока (B) и магнитной интенсивности (H) по оси X и оси Y соответственно. Но для катушек без материала внутри, то есть магнитный поток не индуцируется внутри какого-либо материала, а индуцируется в вакууме или в случае сердечника из немагнитного материала, такого как дерево, пластик и т. Д.

Кривая BH для разных материалов из 9 ферромагнитных материалов, показывающих насыщение. 1. Листовая сталь, 2. Кремниевая сталь, 3. Литая сталь, 4. Вольфрамовая сталь, 5. Магнитная сталь, 6. Чугун, 7. Никель, 8. Кобальт, 9. Магнетит, Изображение предоставлено - Charles Proteus Steinmetz, Кривые намагничивания, помечено как общественное достояние, подробнее на Wikimedia Commons

Мы можем наблюдать, что плотность магнитного потока для вышеуказанных материалов, то есть железа и стали, становится постоянной с увеличением величины напряженности магнитного поля, и это известно как насыщение, поскольку плотность магнитного потока насыщается для более высоких значений магнитной напряженности. Когда магнитная напряженность мала и, следовательно, приложенная сила магнетизма мала, выравниваются только несколько атомов в материале. С увеличением магнитной напряженности остальные также легко выравниваются.

Однако с увеличением H, поскольку все больший и больший поток скапливается в одной и той же площади поперечного сечения ферромагнитного материала, очень мало атомов доступно внутри этого материала для выравнивания; поэтому, если мы увеличиваем H, магнитный поток (B) больше не увеличивается и, следовательно, становится насыщенным. Как упоминалось ранее, явление насыщения ограничено электромагнитами с железным сердечником.

Сохраняемость и коэрцитивность в петле гистерезиса

Сохраняемость

Удерживающая способность материала - это мера величины магнитного поля, остающегося в материале, когда внешнее намагничивающее поле удалено. Его также можно определить как способность материала сохранять часть своего магнетизма даже после того, как процесс намагничивания был остановлен. Стабильно зависит от характеристик материалов.

После намагничивания магнитного материала некоторые электроны в атомах остаются выровненными в направлении первоначального направления намагничивающего поля и ведут себя как крошечные магниты со своими собственными дипольными моментами и не возвращаются к полностью случайной структуре, как остальные из них. Из-за этого в материалах остается некоторое магнитное поле или общий магнетизм. Ферромагнитные материалы обладают сравнительно высокой удерживающей способностью по сравнению с другими намагничивающими материалами, что делает их идеальными для создания постоянных магнитов.

Остаточный магнетизм

Остаточный магнетизм - это величина плотности магнитного потока, которая может удерживаться магнитным материалом, и способность удерживать ее известна как удерживающая способность материала.

Коэрцитивная сила

Коэрцитивная сила может быть определена как величина силы намагничивания, необходимая для устранения остаточного магнетизма, удерживаемого материалом.

В следующих разделах мы обсудим типы магнитов, постоянных магнитов и электромагнитов в зависимости от свойств и природы материалов.

Цель работы:Получить на осциллографе петлю гистерезиса ферромагнетика, снять экспериментально основную характеристику намагничивания, рассчитать и построить зависимость относительной магнитной проницаемости от напряженности магнитного поля.

Общие сведения:Все вещества при рассмотрении магнитных свойств принято называть магнетиками, когда они способны под действием магниного поля приобретать магнитный момент (намагничиваться). По своим магнитным свойствам магнетики подразделяются на три основные группы: диамагнетики, парамагнетики, ферромагнетики.

Количественной характеристикой намагниченного состояния вещества служит векторная величина – намагниченность J.

Диамагнетиками называются вещества, которые намагничиваются во внешнем магнитном поле в направлении, противоположном направлению вектора магнитной индукции поля, т.е. магнитные моменты атомов, ионов или молекул в отсутствие внешнего магнитного поля равны нулю. К диамагнетикам относятся: инертные газы, молекулярный водород и азот, цинк, медь, золото, висмут, парафин и многие другие органические и не органические соединения.

Парамагнетики – вещества намагничивающиеся во внешнем магнитном поле по направлению поля. При внесении парамагнетиков во внешнее магнитное поле устанавливается преимущественная ориентация магнитных моментов атомов по полю (полной ориентации препятствует тепловое движение атомов). Таким образом, парамагнетик намагничивается, создавая собственное магнитное поле, совпадающее по направлению с внешним полем и усиливающее его. При ослаблении внешнего магнитного поля до нуля ориентация магнитных моментов вследствие теплового движения нарушается и парамагнетик размагничивается.

Особый класс магентиков образуют вещества, обладающие намагниченностью в отсутствие внешнего магнитного поля. По своему наиболее распространенному представлению (железо) их называют ферроманетиками. Ферромагнетиками называются твердые вещества, обладающие при не слишком высоких температурах самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий – магнитного поля, деформации или изменения температуры. Ферромагнитные вещества в отличие от слабомагнитных диа – и парамагнетиков являются сильномагнитными средами: внутренние магнитное поле в них может в сотни и тысячи раз превосходить внешнее поле. Так как внешнее магнитное поле ориентирует магнитные моменты не отдельных атомов, как в парамагнетике, а целые области спонтанной намагниченности, поэтому с ростом напряженности магнитного поля намагниченность J и магнитная индукция В уже в слабых полях растет довольно быстро до достижения определенной точки в которой наступает магнитное насыщение. Описанный процесс намагничивания ферромагнитного материала во внешнем магнитном поле, более наглядно показывает кривая намагничивания, представляющая собой зависимость магнитной индукции в материале от напряженности магнитного поля (рисунок 5.1). Из рассмотрения этой кривой видно, что магнитная проницаемость с ростом напряженности магнитного поля проходит через максимум.


Рисунок 5.1– Основная кривая индукции и магнитной проницаемости ферромагнитного материала

Кольцевой магнитопровод из ферромагнитного материала не намагничен и тока в витках катушки нет, т.е. В=0 и Н=0 (начало координат на рисунке 5.2). При постепенном увеличении намагничивающего тока, т.е. магнитодвижущая сила МДС, а следовательно, и напряженности поля от нуля до некоторого наибольшего значения магнитная индукция увеличивается по кривой начального намагничивания (0а) и достигает соответствующего максимального значения Ва. Если затем ток и напряженность поля уменьшаются, то и магнитная индукция уменьшается, при соответствующих значениях напряженности магнитная индукция несколько больше, чем при увеличении напряженности. Кривая изменения магнитной индукции (участок аб) располагается выше кривой начального намагничивания. При нулевых значениях тока и напряженности поля магнитная индукция имеет некоторое значение Вr, называемое остаточной индукцией (отрезок 0б на рисунке 5.2).

Таким образом, магнитная индукция в ферромагнитном материале зависит не только от напряженности поля, но и от предшествующего состояния ферромагнетика. Это явление называется гистерезисом. Оно обусловлено как бы внутренним трением, возникающим при изменении ориентации магнитных моментов доменов.

При изменении направления напряженности поля и постепенном увеличении тока обратного направления напряженность поля достигает значения Нс, называемого коэрцитивной силой (отрезок 0в), при котором магнитная индукция В=0. При дальнейшем увеличении тока и напряженности поля магнитопровод намагничивается в противоположном направлении и при напряженности поля Нг= — На магнитная индукция достигнет значения Вг= — Ва. Затем при уменьшении тока и напряженности поля до нуля магнитная индукция Вд становится равной – Вб. Наконец при следующем увеличении напряженности поля до прежнего значения На магнитная индукция увеличится также до прежнего значения Ва. Рассмотренный цикл перемагничивания ферромагнетика по кривой абвгдеа называется гистерезисным циклом (петлей гистерезиса).


Рисунок 5.2 — Петля гистерезиса

Такая симметричная замкнутая петля гистерезиса получается в действительности только после нескольких перемагничиваний. При первых циклах перемагничивания петля несимметричная и незамкнутая. Наибольшая замкнутая петля которая может быть получена для данного ферромагнитного материала, называется предельной.

Периодическое перемагничивание связано с затратой энергии, которая превращаясь в тепло, вызывает нагрев магнитопровода. Площадь петли гистерезиса пропорциональна энергии, затраченной при одном цикле перемагничивания. Эта энергия называется потерями от гистерезиса и выражается в ваттах на килограмм, зависит от материала, максимальной магнитной индукции и числа циклов перемагничивания.

Статьи к прочтению:

Гистерезис


Похожие статьи:

Цель работы:Снять экспериментальную петлю гистерезиса ферромагнетика при различных температурах, определить температуру Кюри и намагниченность насыщения….

Цель работы:Снять экспериментально начальную кривую намагничивания ферромагнетика, рассчитать и построить графики В (Н) и ?(Н) Общие сведения: В технике…

Графическое отображение петли гистерезиса

Графическое отображение петли гистерезиса

Вещества и их магнитные свойства

Вещества, обладающие естественными магнитными свойствами, называют ферромагнетиками. Обычно они используются как постоянные магниты, по составу обычно это металлы, но встречаются и ферримагнитные составы, состоящие из неметаллических элементов. Нужно отметить, что естественная намагниченность существует только при определённом диапазоне температур. По достижении температуры, так называемой точки Кюри, все магнитные свойства элемента теряются. Точка Кюри для разных минералов и веществ отличается.

Природный магнетизм этих веществ изучен и с древних времён поставлен на службу человечеству. Например, всем известен магнитный компас или неодимовые магниты. Основной характеризующий признак этих элементов – это способность создавать собственное магнитное поле, без влияния любого рода извне. Присутствие в составе атомов этих минералов и их смесей некомпенсированных спиновых магнитных моментов служит основной причиной возникновения такого явления, как ферромагнетизм. Обмен при взаимодействии электронов элемента при строго определённом отношении диаметра орбиты атома и его оболочки, при положительной величине интеграла энергии приводит к параллельной ориентации спинов. Ориентация спинов такого рода обеспечивает значение минимальной суммы энергии обменно-магнитного взаимодействия. Нужно отметить что вещества, обладающие обратными характеристиками, обычно называют антиферромагнетиками – это такие металлы, как марганец и хром.

При таком распределении возникают однонаправленные области естественной намагниченности – домены, при включении их в замкнутую сеть достигается наибольшая эффективность действия общего магнитного поля. Но при различной направленности в рядом расположенных доменах между ними появляются пограничные слои, в которых вектор намагниченности постепенно поворачивается в сторону направления вектора следующего домена.

В качестве наиболее простого примера можно взять железо. Кристалл этого металла наиболее легко намагничивается в направлении рёбер, грани обладают средним коэффициентом намагниченности, в то время как точкой наиболее сложной поддающейся намагничиванию является пересечение диагоналей кристалла. В отсутствии магнитного поля кристалл железа размагничен, но при воздействии на него внешнего поля он генерирует собственное. При этом на рост доменов влияет как направление поля, так и сама структура кристалла. Преодоление дефектов структуры и вызывает скачкообразный прирост собственного магнитного поля. В результате такого нарастания появляются импульсы напряжения, вектора которых при увеличении силы внешнего поля поворачиваются в его сторону, до полного совпадения по направлению с ним.

Магнитные вещества по своим характеристикам делятся на:

Магнитомягкие вещества обладают значительной коэрцитивной силой, за счёт чего их насыщение производится сравнительно быстро и при малых затратах энергии. Твёрдые вещества обладают малыми магнетическими способностями, но в то же время успешно работают при больших потерях энергии.

Магнитное поле железа

Магнитное поле железа

Гистерезис и его петля

Это идеальная область полного насыщения ферромагнетика, при спаде поля в ферромагнетике останется остаточное намагничивание. Сам магнитный гистерезис – это отставание намагниченности элемента в зоне действия магнитного поля от воздействия внешнего источника поля. Фактически домены элемента, включаясь в замкнутую магнитную сеть, уменьшают рассеивание, точнее объем занимаемый его полем, и урезают собственную свободную энергию системы.

Гистерезис определяется как разность величины насыщения поля элемента-ферромагнетика и намагниченности замыкающих участков цепи-доменов. Для размагничивания используется отрицательное поле – коэрцитивная сила, при её приложении и достижении ферромагнетиком полного технического насыщения происходит процесс его полного размагничивания. Тут появляется такое понятие, как петля гистерезиса.

Если выводить этот процесс в виде графика, то видно, что кривая намагниченности замыкается, образуя остроугольную замкнутую петлю, – это и есть предельная петля. По её объёму можно узнать затраты энергии на размагничивание, так как она пропорциональна им. Площадь петли гистерезиса – знаковый объект, он используется для определения параметров магнитного поля и самой системы в целом.

Бортовой самописец

Использование явления гистерезиса

Одним из основных направлений использования ферромагнитных элементов является создание записывающих устройств. Для примера можно привести металлическую проволоку в бортовых самописцах водного и воздушного транспорта, ферритовые кольца оперативной памяти и триггеры Шмидта, а также другие магнитные носители.

На этой основе работают электромоторы, устройства шумо-, и помехоподавления, в том числе предназначенные для коммутации логических схем.

Магнитный гистерезис, точнее его действие, активно используется в научных исследованиях, в том числе для управления некоторым оборудованием. Использование графического изображения петель гистерезиса в основе своей применятся для упрощения расчётов характеристик магнитных полей и параметров систем.

Триггер Шмидта

Видео

Читайте также: