Как сделать нанороботов

Добавил пользователь Алексей Ф.
Обновлено: 05.10.2024

Что такое каноничный наноробот? Это робот, обладающий несколькими важными характеристиками. Его размер не должен превышать 100-200 нанометров, он умеет перемещаться в пространстве, получать, обрабатывать и передавать информацию и исполнять программы. И самое важное — он должен уметь манипулировать веществом на молекулярном или атомном уровне.

Последний пункт крайне важен. Во-первых, обладая такой способностью, наномашина сможет реплицировать себя — создать свою точную копию. Такое своеобразное размножение. Во-вторых, наноробот сможет взаимодействовать с атомами, менять их и перестраивать, создавая из одного вещества совершенно другое. И это открывает потрясающие перспективы перед человечеством. Прежде чем мы перейдем к сути, скептикам стоит услышать небольшой экскурс в будущее. Иначе всё, что мы скажем, будет восприниматься не более чем фантастикой.

Дело в том, что динамика развития технологий, в частности, инженерных, компьютерных, микробиологии и генной инженерии позволяет более-менее верно предугадать наши возможности в недалеком будущем. Но наше сознание инертно, а прогресс человечества ускоряется. Возможно, мы настолько слепы, что даже недооцениваем будущее, которое ждет нас через 5, 15, 50 лет. Уже сейчас мы практически научились побеждать рак (и другие болезни), мы выращиваем органы и печатаем высокотехнологичные протезы на 3D-принтерах, мы уже редактируем человеческий геном и можем обеспечить едой всю планету, и уже сейчас мы создаем нанодвигатели и примитивных роботов размером с молекулу (почитай статьи за неделю в любом научно-популярном новостном журнале — удивишься, сколько всего происходит). Да и вообще, у нас под носом мириады микроорганизмов — по сути, нанороботы от природы. Посмотри, например, видео ниже, где показан синтез белка, — чем не робот?

Так что мозговыносящее будущее уже не за горами. Есть даже вероятность, что ты сможешь наслаждаться им бесконечно долго — обретя бессмертие благодаря технологиям. Или нанороботам, которые эти технологии смогут использовать. Теперь расскажем о том, что нам дают нанороботы, а потом поговорим о том, как и почему это может стать достоянием всего человечества.

Нанороботы рулят

Нанороботов достаточно запустить в наш организм, чтобы они смогли добраться до любого участка тела. До любого очага болезни. Например, до раковой опухоли, чтобы уничтожить ее. Разве не круто? Но давай взглянем чуть глубже — нанороботы могут изменить наше тело. Обновить его или вообще модифицировать. Хочешь больше мускулатуры? Пожалуйста! Идеальное зрение? Да хоть третий глаз! Новое сердце? Больше мозгов? Член в 49,5 см?

Каждый с рождения сможет обучаться чему угодно. Каждый сможет быть своеобразным Эйнштейном, гением. Мы станем богоподобными существами.

Разработки Hive, Hololens и Okulus Rift, Neurolink и рядом не стоят с тем, что могут дать нам нанороботы. Подумай, ведь это идеальный, масштабируемый и бесконечно гибкий нейроинтерфейс. Виртуальная реальность может стать для нас вторым домом, ведь нанороботы смогут вводить информацию в мозг напрямую, минуя провода. Это, конечно, опасно, ведь мозги можно будет хакнуть или манипулировать людьми, но давай не будем о плохом. Весь интернет в твоей голове, доступ ко всем знаниям мира — разве это не круто? Или интерактивные фильмы, игры c твоим непосредственным участием. Целые миры, какие только можно представить. А про дополненную реальность можно и вообще не упоминать — это практически само собой разумеющаяся возможность.

Заводы и производства будут не нужны. Зато будут нужны инженеры, ученые и светлые умы. Вообще, с наступлением эпохи нанороботов человечество лишится каких-либо ограничений и наука сделает просто невообразимый рывок вперед. Нанороботы — это катализатор, который выведет человечество на другой уровень эволюции. Мы сможем создавать любые мыслимые устройства, с любыми характеристиками и возможностями.

Если говорить о более приземленных вещах, то ничто тебе не помешает запилить за несколько минут новый iPhone (хотя кому он будет нужен, но для примера пойдет) или построить красивый дом, поменять планировку или дизайн квартиры. Хотя, скорее всего, понятие недвижимости в принципе исчезнет из нашего мира — твой дом будет там, где находишься ты.

Есть, правда, небольшая дилемма. Если нанороботы будут настолько круты, то люди смогут крафтить людей. То есть ты сможешь создать свою копию или запилить себе персональную Krystal Boyd. Или вырастить вагину на своей ладони. Тут, скорее, вопрос в том, будут ли нанороботы иметь ограничения на программном уровне, ведь может найтись сумасшедший хакер или просто псих, который уничтожит человечество. Безопасность — одна из самых больших проблем.

А вот работы и денег мы можем лишиться. И это еще одна из проблем. Тебе и вообще никому не нужно будет работать, чтобы обеспечить свое выживание. Деньги, как класс, тоже не будут нужны — всё, что можно купить, можно создать здесь и сейчас бесплатно. Вопрос: что будут делать люди, если у них будет всё? Наслаждаться жизнью? Творить? Заниматься наукой? Сложный вопрос, на который пока что ни у кого нет ответа. Остается лишь верить в разумность наших собратьев и просто в человечество. Ведь мы умеем находить выход из самых неприятных ситуаций.

Войны. Будут ли вестись войны? Если ресурсы станут безграничны и вседоступны, то нужно ли будет за них бороться? Про идеологические причины войн можно не рассуждать — наше сознание претерпит непрогнозируемые изменения вместе с изменением мира. Но предложить свое видение можешь в комментариях под статьей.

Нанороботы для всех

А теперь немного математики. В Brodude с ней неважно, ведь мы гуманитарии, но немного поднапрячь извилины было приятно. Да и для осознания масштабов достаточно школьной математики. Надеемся, что не ошиблись. Поехали.

Следовательно в одном кубометре может уместиться

(10^5)^3 = 10^15
или
1 000 000 000 000 000 штук.

Далее предположим, что процесс создания копии одним нанороботом занимает у него 1 час.

За 1 час — один робот.
За второй — 4 (ведь их уже двое).
За третий час — 8 нанороботов.

Обычная геометрическая прогрессия. Можем вывести формулу зависимости количества (count) от времени (t):

После 10 часов у нас уже будет 1024 наноробота.
После 24 часов -> 16 777 216.

Найдем время, нужное для создания 10^15 штук.
log(2)10^15 = 40 часов

Всего лишь 40 часов, КАРЛ, чтобы заполнить 1 кубометр пространства нанороботами.

Но нам нужно больше. Поэтому интереса ради посчитаем, сколько времени нужно, чтобы превратить Землю в шар из нанороботов.

T(X)= 2^(X-1), почти идентичная предыдущей. Объем Земли — 1.08 * 10^21. Упростим и посчитаем итоговое время:

log(2) 10^21 — 1 = 70X
70 * 40 = 2800 часов или 116 дней.

116 дней, чтобы превратить Землю в огромный шар из нанороботов (при заданных параметрах). А теперь представь, что наноробот будет тратить минуту, а не час, на создание своей копии. Тогда апокалипсис настанет через 46 часов.

Но так много нам их, конечно, не нужно. Если на человека нужен лишь кубометр, чтобы обеспечить 6 млрд людей, нужно 6 млрд м³ вещества. Это, по сути, куб со стороной 2000 метров. То есть очень мало. Сторона куба уместится в центре Краснодара. Так что каждого жителя Земли можно обеспечить личными нанороботами — это вообще не проблема.

Колонизация космоса

Идея в том, что человечеству достаточно одного наноробота. Всего лишь одного, чтобы изменить целый мир. Вопрос лишь в наличии вещества, из которого будут создаваться новые экземпляры. Родную планету пускать под это дело не очень хочется, но ведь у нас над головой бесконечное количество материи.

Но в космосе так много миров. Теоретически каждый сможет получить планету в подарок. Ты прикинь, своя планета. С которой можно делать всё, что угодно. Звучит нереально, но не забывай о прогрессе и возможностях нанороботов. Можешь назвать нас сумасшедшими, но многие ученые мужи уже сейчас заявляют, что колонизация ближайшей планеты, а затем и галактики — вопрос выживания человечества. А нанороботы — самый простой способ осуществить это.

Нанотехнологии представляют собой исследования и создание объектов имеющих молекулярные или даже атомарные размеры. В настоящее время оказалось возможным создание электронных или механических компонентов на основе отдельных атомов. Подобные крошечные компоненты могут быть использованы для создания устройств размером с бактерию. Фирме IBM уже удалось создать транзисторы, проводники, рычажные механизмы и передачи на атомарном уровне.

Медицинские нанороботы

Нанотехнологии могут оказать неоценимую помощь в создании нанороботов, т. е. роботов, имеющих микроскопические размеры. Представим себе робота, имеющего столь малые размеры, что он может быть непосредственно помещен в кровоток пациента. Перемещаясь по кровотоку, робот может достигнуть области сердца и начать удалять там холестериновые бляшки, восстанавливая полноценную циркуляцию крови. Другие роботы смогут отыскивать раковые опухоли и удалять в них все пораженные клетки. Некоторые пациенты, которые сейчас считаются неоперабельными, смогут быть излечены с применением нанотехнологий.

Развитие нанотехнологий оказало существенное влияние на всю технологию производства роботов: как микроскопических, так и обычных, макроскопических, спектр возможностей которых неизмеримо расширился, начиная от задач уборки помещений и кончая автоматизированным производством продукции. С нанотехнологиями связаны большие надежды на производство новых высококачественных материалов и изделий с относительно низкими затратами.

Военные роботы

Если государство оказывается вовлеченным в военный конфликт, то для достижения скорейшей победы при минимальных потерях использование роботов имеет исключительно важное значение, особенно в современных условиях. Например, использование беспилотной авиации позволяет вести наблюдение за расположением и перемещением сил противника.

Израильские военные нашли для беспилотной авиации остроумное применение. Беспилотный самолет был сконструирован так, чтобы представлять собой удобную цель для радаров. После запуска на вражескую территорию он, естественно, обнаруживался радарами, а израильтяне в свою очередь засекали местоположения этих радаров. После их уничтожения реактивные истребители могли беспрепятственно пролететь через эту территорию.

Война роботов

Сражения роботов оказались настолько популярными, что породили массу разновидностей подобных соревнований. Некоторые ссылки можно найти здесь:

Гражданские применения беспилотных летательных аппаратов

Домашние роботы

Другие применения

Невозможно уследить за всеми научными и технологическими разработками в области робототехники – все происходит чрезвычайно быстро. Для поиска необходимой информации лучше всего воспользоваться сетью Интернет.

Глава 2
Искусственная жизнь и искусственный интеллект

Развитие роботехники подходит к важнейшему этапу: возможности создания искусственной жизни и искусственного интеллекта.

Искусственный интеллект

Еще совсем недавно было предсказано, что использование мощных параллельных процессоров в комбинации с нейронными сетями при использовании принципа нечеткой логики позволит смоделировать человеческий мозг в течение десяти ближайших лет. Прогноз оказался слишком оптимистичным, тем не менее определенных успехов в этом направлении удалось достичь. На рынке появилось уже второе поколение чипов, построенных по принципу нейронных сетей. Совсем недавно две компании (Intel Corp., Santa Clara, CA и Nestor Inc., Providence, RI) объединенными усилиями создали нейрочип Ni1000. Модель Ni1000, выпущенная в 1993 году, содержит 1024 искусственных нейрона. Эта интегральная схема содержит три миллиона транзисторов и способна производить 20 миллиардов двоичных операций в секунду.


Рис. 2.1. График, показывающий возможности суперкомпьютера

Является ли сознание жизнью?

Искусственная жизнь

Нанороботы – мы живые существа?

Наноробот представляет собой робота, имеющего размеры микроба. Фирме IBM удалось достичь определенных успехов в создании электронных и механических устройств (транзисторы и проводники), имеющих молекулярные или даже атомарные размеры. Подобные достижения вселяют уверенность в возможности создания предметов сколь угодно малых размеров, поэтому роботы размером с бактерию теоретически возможны.

Некоторые ученые предсказывают, что следующим эволюционным шагом будет возникновение жизни на основе кремния, которая заменит на планете углеродные формы жизни. То, что мы сейчас называем электронными устройствами и роботами, станут формами саморазвивающейся и саморазмножающейся силиконовой жизни.

Немного истории

Прогресс компьютерных технологий за последние пять с половиной десятилетий можно назвать ошеломляющим. Созданный в 1946 году компьютер ENIAC представлял собой целую гору электронного оборудования. При размерах 30 м в длину, 2,4 м в высоту и 0,9 м в ширину его вес доходил до 30 т. ENIAC содержал 18 тыс. электронных ламп, 70 тыс. резисторов, 10 тыс. конденсаторов, 6 тыс. переключателей и 1,5 тыс. электромагнитных реле. Производительность машины составляла 5 тыс. сложений, 357 умножений или 38 делений в секунду. Сегодня подобный компьютер образца 1946 года можно уместить на крошечной кремниевой пластинке площадью менее 5 кв. мм.

Совершеннее, чем мы

Хотим ли мы как представители разумной расы создать интеллект, превосходящий наш собственный? Если думать над этой проблемой, то в долговременной перспективе он может потребоваться нам хотя бы для целей выживания. Подумайте о перспективах той страны, которая первой создаст ИИ с IQ порядка 300. Подобной машине ИИ можно поручать проблемы оздоровления национальной экономики, очистки окружающей среды, прекращения загрязнений, развития военных стратегий на случай конфликтов, осуществления медицинских и научных исследований и, конечно, создания более совершенных устройств ИИ. Возможно, что следующая теория развития Вселенной будет предложена не человеком (как в свое время это сделал Альберт Эйнштейн), а машинным ИИ.

Запертая клетка

Почему так важно создать суперинтеллект? Найдет ли человечество, в конце концов, решение этой волнующей проблемы? Возможно. Необходимость создания мощного ИИ можно проиллюстрировать одной историей, которую я услышал или прочитал. Боюсь только, что я не вспомню фамилии автора, за что приношу ему свои извинения. Если я немного исказил историю своим пересказом, то прошу прощения и за это.

В клетке находятся десять шимпанзе. Дверь клетки заперта. Чтобы догадаться, как отпереть замок и открыть дверцу клетки, требуется коэффициент интеллекта IQ порядка 90. Каждый шимпанзе, сидящий в клетке, был подвергнут тестированию и показал IQ порядка 60. Могут ли десять шимпанзе, объединив усилия, найти способ открыть дверцу клетки? Ответ однозначен – НЕТ. Интеллект не накапливается. Если бы 10 шимпанзе, действуя совместно, обладали бы суммарным интеллектом IQ равным 600, то этого было бы более чем достаточно, чтобы отпереть дверцу. Реально шимпанзе не могут этого сделать.

Биотехнологии

Нейронные сети – ожидания против реальности

Если развитие будет идти теми же темпами, что и в последние 50 лет, то, как я надеюсь, через полвека появятся системы ИИ, сравнимые с возможностями человеческого мозга.

Что такое нейронные сети?

Нанороботы – технология, которая изменит мир

Что такое нанороботы?

Сейчас используется несколько способов создания нанороботов. Согласно первому, для этих целей потребуется специальная нанофабрика. Это комплекс устройств, предназначенный для комбинации атомов и создания из них различных связей. Второй метод подразумевает создание наноробота на основе ДНК.

Возможный потенциал нанороботов

Ученые считают, что он практически безграничен. При достаточном уровне развития технологии эти микроскопические устройства смогут в прямом смысле преобразить наш мир. Среди прочего они позволят:

• Лечить все болезни, даже такие опасные, как рак. Врачи смогут внедрять роботов в организм пациента и с их помощью быстро отслеживать пораженные клетки, а затем напрямую лечить их изнутри! Это, в свою очередь, позволит существенно продлить срок человеческой жизни и, возможно, даже обрести бессмертие.

• Изменять организм, улучшая его функции и возможности. Наноботы в данном случае используются как имплантаты. Помещенные внутрь организма, они будут отслеживать его состояние, быстро фиксировать симптомы заболеваний, улучшать физические данные носителя и т. д.

• Подключить мозг к Интернету. Напрямую! Изобретатель Реймонд Курцвел считает, что это станет возможным уже в 2030 году.

• Очищать воды Мирового океана и воздух, высасывая загрязнения на молекулярном уровне.

Это лишь малая часть возможностей нанороботов. При должной фантазии и изобретательности с их помощью можно сделать невероятно много.

Современные нанороботы

Уже создан целый ряд удивительных разработок в данном направлении! Приведем здесь только некоторых из них:

3D-движущиеся наномашины из ДНК. Такую необычную конструкцию разработали ученые Университета Огайо. Эти боты сконструированы непосредственно из ДНК-клеток и могут выполнять определенные манипуляции.

Еще один вид нанороботов, предназначенный для доставки лекарств в заданные участки, создали ученые Дрексельского Университета. Конструкция представляет собой цепочку из 13 ботов, способных передвигаться по биологической жидкости со скоростью 17,85 микрометра в секунду.

Эти наноботы, конечно, еще не способны лечить все болезни и подключать человеческий мозг к Интернету. И в ближайшее время не смогут. Но очевидно, что все к тому идет, и появление наноботов в повседневной жизни – это не настолько нереально, как может показаться на первый взгляд.

Представьте, что идете к врачу за лечением постоянной простуды. Вместо того чтобы дать вам таблетку или сделать укол, врач направляет вас к специальной медицинской команде, которая имплантирует крошечного робота в вашу кровь. Робот распознает причину вашей болезни, отправляется в соответствующую систему и обеспечивает дозу лекарства непосредственно в зараженной зоне.


Вы удивитесь, но мы не так уж и далеки от устройств типа такого, которые уже отчасти используются в медицине. Они называются нанороботами, и инженеры по всему миру работают над ними, чтобы они в конечном итоге могли излечить все: от гемофилии до рака.

Как вы можете себе представить, задачи, стоящие перед инженерами, колоссальны. Жизнеспособный наноробот должен быть небольшим и достаточно гибким, чтобы перемещаться по человеческой системе кровообращения, невероятно сложной сети артерий и вен. Робот также должен обладать возможностью переносить медикаменты или миниатюрные инструменты. Если предположить, что наноробот не должен оставаться в теле пациента навсегда, он также должен уметь выходить из него.

В этой статье мы узнаем о потенциальном применении нанороботов, различных способов навигации нанороботов по нашему телу, об инструментах, которые они будут использовать для лечения пациентов, и о прогрессе, который двигают команды по всему миру.

Вот два бота, принимать на ночь вместе с едой



При должном исполнении нанороботы смогут лечить множество заболеваний и состояний человека. В то время как их размер означает, что они могут перенести лишь самую малую порцию медикаментов или оборудования, многие доктора и инженеры полагают, что точное применение этих инструментов будет более эффективным, нежели традиционных. К примеру, вводят мощный антибиотик пациенту через шприц, чтобы помочь его иммунной системе: антибиотик разбавляется кровотоком пациента, и в итоге только часть его достигает пункта назначения. Тем не менее наноботы или целая команда наноботов может добраться прямо до очага инфекции и доставить небольшую дозу лекарств. Пациент будет меньше страдать от побочных эффектов лекарств.

Несколько инженеров, ученых и врачей полагают, что возможные применения нанороботов практически не ограничены. Среди наиболее вероятных применений:

Лечение артериосклероза. Артериосклероз относится к состоянию, когда вдоль стенок артерий выстраиваются бляшки. Нанороботы могут помочь, срезая бляшки, которые затем будут увлекаться кровотоком.

Борьба с раком. Врачи надеются использовать нанороботов для лечения онкологических больных. Роботы могут либо атаковать непосредственно опухоли с помощью лазеров, микроволн или ультразвука, либо стать частью химиотерапии, обеспечив доставку лекарств непосредственно к месту рака. Врачи считают, что поставка небольших, но точных доз медикаментов пациенту сведет к минимуму побочные эффекты и потери лекарственной эффективности.

Помощь тромбоцитам. Один из конкретных видов нанороботов — это клоттоцит, или искусственный тромбоцит. Клоттоцит несет небольшую сетку, которая превращается в липкую мембрану при контакте с плазмой крови. По словам Роберта Фрейтаса, автора идеи клоттоцитов, искусственное свертывание может проходить до 1000 раз быстрее, чем работает природный механизм свертывания организма. Врачи могут использовать клоттоциты для лечения больных гемофилией или пациентов с серьезными открытыми ранами.

Удаление паразитов. Нанороботы могут вести микровойну с бактериями и мелкими паразитирующими организмами в теле пациента. Чтобы уничтожить всех паразитов, может понадобиться несколько нанороботов, работающих вместе.

Подагра. Подагра — это состояние, при котором почки теряют способность удалять отходы расщепления жиров в кровотоке. Эти отходы иногда кристаллизуются в точках вблизи суставов вроде коленей и лодыжек. Люди, страдающие от подагры, испытывают интенсивную боль в этих суставах. Нанороботы могут разбить кристаллические структуры в суставах, обеспечивая облегчение от симптомов, хотя и не смогут полностью остановить процесс их формирования.

Разрушение камней в почках. Камни в почках могут быть очень болезненными — чем больше камень, тем сложнее ему выйти. Врачи разбивают большие камни в почках с помощью ультразвуковых частот, но не всегда эффективно. Нанороботы могут разбить камни в почках, используя небольшой лазер.

Очистка ран. Нанороботы могут помочь очистить рану от грязи, снизив вероятность заражения. Они будут особенно полезны в случае колотых ран, которые с трудом поддаются лечению с использованием более традиционных методов.

Как нанороботы будут перемещаться по кровеносной системе?

Навигация нанороботов



Есть три основных момента, на которых должны сосредоточиться ученые, изучающие движение нанороботов по телу — навигация, питание и как нанороботы будут двигаться по кровеносным сосудам. Нанотехнологи рассматривают различные варианты для каждого из этих аспектов, и у всякого есть положительные и отрицательные стороны. Большинство вариантов можно разделить на две категории: внешние системы и бортовые системы.

Внешние навигационные системы могут использовать множество различных методов, чтобы доставить наноробота в нужное место. Один из таких методов — использование ультразвуковых сигналов для обнаружения местоположения наноробота и направления его в нужное место назначения. Врачам пришлось бы отправлять ультразвуковые сигналы в тело пациента. Сигналы проходили бы через тело и отражались обратно к источнику сигналов. Нанороботы могут излучать импульсы ультразвуковых сигналов, которые врачи могли бы регистрировать, используя специальное оборудование с ультразвуковыми датчиками.

Используя магнитно-резонансную томографию (МРТ), врачи могли бы определять местонахождение наноробота и отслеживать его, обнаруживая его магнитное поле. Врачи и инженеры из Политехнической школы Монреаля несколько лет назад показали, что могли бы обнаружить, отследить, управлять и даже передвигать наноробота с использованием МРТ. Они проверили свои выводы, маневрируя небольшим количеством малых магнитных частиц в артериях свиньи, используя специальное программное обеспечение на устройстве МРТ. Поскольку за рубежом во многих больницах есть МРТ, это может стать промышленным стандартом — больницам не придется инвестировать в дорогостоящие непроверенные технологии.

Врачи также могут отслеживать нанороботов путем введения радиоактивного красителя в кровоток пациента. Затем использовали бы флюороскоп или аналогичное устройство для обнаружения радиоактивного красителя по мере его движения в кровотоке. Сложные трехмерные изображения показали бы, где находятся нанороботы. В качестве альтернативы нанороботы сами могут распылять радиоактивную краску, оставляя след.

Другие методы обнаружения нанороботов включают использование рентгеновских лучей, радиоволн, микроволн или тепла. На данный момент наши технологии, использующие эти методы на наноразмерных объектах, ограничены, так что гораздо более вероятно, что будущие системы будут полагаться на другие методы.

Бортовые системы, или внутренние датчики, также могут сыграть большую роль в навигации. Нанороботы с химическими сенсорами могли бы обнаруживать и следовать по следам конкретных химических веществ для достижения правильного местоположения. Спектроскопический датчик позволил бы нанороботу забирать пробы и образцы окружающей ткани, анализировать их и идти дальше.

Как бы это странно не звучало, нанороботы могут быть оснащены миниатюрной телекамерой. Оператор мог бы управлять устройством во время просмотра живого видео, буквально вручную проводя корабль сквозь тело. Системы видеонаблюдения довольно сложны, поэтому понадобится по меньшей мере несколько лет, прежде чем нанотехнологи смогут создать надежную систему, которую можно будет поместить внутри крошечного робота.

Питание нанороботов



Так же, как о навигационных системах, нанотехнологи раздумывают о внешних и внутренних источниках питания. Некоторые проекты полагаются на нанороботов, использующих собственное тело пациента как способ выработки энергии. Другие проекты включают в себя небольшой источник энергии на борту самого робота. Наконец, некоторые проекты используют силы за пределами тела пациента для питания наноробота.

Нанороботы могут получать энергию непосредственно из кровотока. Наноробот с установленными электродами может сформировать батарею на основе электролитов, найденных в крови. Другой вариант заключается в создании химических реакций с кровью для превращения ее в энергию. Наноробот мог бы нести небольшой запас химических веществ, которые станут источником топлива в сочетании с кровью.

Наноробот может использовать тепло тела для выработки энергии, но должен быть градиент температур для управления этим процессом. Выработка энергии может быть результатом эффектом Зеебека. Эффект Зеебека возникает, когда два проводника из разных металлов соединены в двух точках, которые обладают разной температурой. Металлические проводники становятся термопарой, то есть создают напряжение, когда стыки находятся в разных температурах. Поскольку трудно рассчитать температурный градиент в теле, едва ли мы увидим нанороботов, использующих тепло тела для генерации энергии.

Поскольку есть возможность создания батарей, достаточно малых для размещения в нанороботах, они обычно не рассматриваются в качестве жизнеспособного источника питания. Проблема заключается в том, что батареи могут хранить относительно небольшое количество энергии, напрямую связанное с их размером и весом, и, таким образом, очень маленькая батарея обеспечит лишь малую часть необходимой нанороботу энергии. Более вероятным кандидатом является конденсатор, который имеет немного лучшее соотношение мощности к весу.

Инженеры работают над созданием небольших конденсаторов, которые смогут стать источником питания для нанороботов.

Еще один возможный источник питания нанороботов — ядерный источник энергии. Мысль о том, чтобы оснастить крошечного робота ядерной энергии может вызвать ужас у некоторых людей, но имейте в виду, что необходимое количество материала достаточно мало и, по мнению некоторых экспертов, его легко экранировать. Тем не менее общественное мнение по поводу ядерной энергии едва ли позволить сделать нанороботов на ее основе.

Внешние источники питания включают системы, когда нанороботы либо привязаны к внешнему миру, либо контролируются без физического поводка. Привязанная система потребует провода между наноботом и источником питания. Провод должен быть достаточно прочным, но также без проблем проходить сквозь тело человека, не нанося повреждений. Физический трос мог бы поставлять электроэнергию с помощь электричества или оптики. Оптические системы передают свет через оптоволокно, а он затем преобразуется в электричество на борту робота.

Внешние системы, которые не используют провода, могли бы полагаться на микроволны, ультразвуковые сигналы или магнитные поля. Микроволны наименее вероятны к использованию, поскольку могут повредить ткань пациента путем нагревания. Наноробот с пьезоэлектрической мембраной сможет подхватывать ультразвуковые сигналы и преобразовывать их в электричество. Системы, использующие магнитные поля, вроде тех врачей из Монреаля, о которых мы упоминали выше, могут также напрямую управлять нанороботом или индуцировать электрический ток в закрытой проводящей петле внутри робота.

Передвижение нанороботов



Если предположить, что нанороботы не будут привязаны или предназначены для пассивного течения через кровоток, им понадобится средство передвижения через тело. Поскольку им, возможно, придется плыть против течения крови, двигательная установка должна быть относительно мощная для своих размеров. Еще одним важным фактором является безопасность пациента — система должна быть в состоянии продвигать наноробота без ущерба хозяину.

Некоторые ученые наблюдают за микроорганизмами в поисках вдохновения. Парамеция может двигаться через среду, используя крошечные хвостики — реснички. Вибрируя ресничками, парамеция может плавать в любом направлении. Подобно ресничкам работают жгутики, более длинные хвостовые структуры. Организмы бьют жгутиками вокруг, чтобы двигаться в разных направлениях.

Израильские ученые создали микроробота, который всего несколько миллиметров в длину и использует маленькие придатки для захвата и ползания по кровеносным сосудам. Ученые манипулируют его конечностями, создавая магнитное поле за пределами тела пациента. Магнитное поле заставляет конечности робота вибрировать и толкать его по кровеносным сосудам. Ученые отмечают, что, поскольку вся энергия для наноробота берется из внешних источников, нет никакой необходимости оснащать механизм внутренним источником питания. Они надеются, что относительно простой дизайн позволит им сделать в скором времени еще более мелких роботов.

Другие устройства звучат еще более экзотически. Одно использует конденсаторы для генерации магнитных полей, которые бы протягивали проводящие жидкости из одного конца электромагнитного насоса и выстреливали бы их обратно. Наноробот двигался бы как реактивный самолет. Миниатюрные струйные насосы могут даже использовать плазму крови, чтобы подталкивать робота вперед, но, в отличие от электромагнитного насоса, в этих должны быть движущиеся части.

Другой потенциальный способ, которым могли бы передвигаться роботы — использование вибрирующей мембраны. Поочередно затягивая и ослабляя напряженность мембраны, нанороботы могли бы генерировать небольшую тягу. На наноуровне этой тяги может быть достаточно, чтобы стать основным источником движения.

Крошечные инструменты



Современные проверенные микророботы имеют всего несколько миллиметров в длину и около миллиметра в диаметре, но эти цифры уменьшаются ежегодно. По сравнению с наноуровнем, эти цифры просто огромны — нанометр представляет собой одну миллиардную долю метра, в то время как миллиметр — всего одну тысячную. Будущие нанороботы будут настолько малы, что вы сможете увидеть их только в микроскоп. Инструменты нанороботов должны быть еще меньше. Вот несколько вещей, которые вы можете обнаружить в инструментарии нанороботов:

Полость для медикаментов. Это пустая секция внутри наноробота, которая будет содержать небольшие дозы лекарств или химических веществ. Робот может высвобождать лекарства непосредственно в месте травмы или инфекции. Нанороботы также могут нести химические вещества, используемые в химиотерапии для лечения рака непосредственно на месте. Хотя количество лекарств будет относительно незначительным, применение их непосредственно к раковой ткани может быть более эффективным, чем традиционная терапия, которая опирается на систему кровообращения как способ перевозки химических веществ в теле пациента.

Зонды, ножи и стамески. Чтобы удалять блокады и бляшки, нанороботам нужно будет что-то, что сможет хватать и рушить. Также, возможно, понадобится устройство для разрушения тромбов на мелкие кусочки. Если часть тромба вырвется и попадет в кровоток, она может вызвать массу проблем.

Микроволновые излучатели и ультразвуковые генераторы. Чтобы уничтожать раковые клетки, врачам нужны методы, которые смогут убить клетку, не разрушив ее. Разорванная раковая клетка может выбросить химические вещества, которые спровоцируют дальнейшее распространение рака. Используя точные микроволны или ультразвуковые сигналы, наноробот может разрушить химические связи в раковой клетке, убив ее, не разрушая клеточные стенки. В качестве альтернативы робот может излучать микроволны или ультразвук для нагревания клетки, которого будет достаточно для ее уничтожения.

Электроды. Два электрода, выступающих из наноробота, смогут убить раковые клетки, генерируя электрический ток и нагревая клетку, пока она не умрет.

Лазеры. Крошечные мощные лазеры могут выжечь дотла вредные материалы вроде артериальных бляшек, раковых клеток или тромбов в крови. Лазеры буквально испарят это все.

Две самые большие проблемы, которые беспокоят ученых, — это как повысить эффективность этих миниатюрных инструментов и сделать их безопасными. Например, создать небольшой лазер, который будет достаточно мощным для испарения клеток, достаточно сложная задача, но сделать его безопасным для окружающей среды — еще сложнее. В то время как многие научные группы разработали нанороботов достаточно мелких, чтобы они могли попасть в кровеносную систему, это только первые шаги к созданию реально применяемых нанороботов.

Нанороботы: сегодня и завтра



Команды по всему миру работают над созданием первого практичного медицинского наноробота. Роботы от миллиметра в диаметре до относительно громоздких, в два сантиметра длиной, уже существуют, хотя и не испытываются на людях. Возможно, мы всего в нескольких годах от выхода нанороботов на медицинский рынок. Сегодняшние микророботы остаются прототипами, которым не хватает способностей выполнять медицинские задачи.

В будущем нанороботы могут совершить революцию в медицине. Врачи смогут лечить все, от сердечно-сосудистых заболеваний до рака, при помощи крошечных роботов, по размерам сопоставимых с бактериями, намного меньших, чем нынешние нанороботы. Некоторые считают, что полуавтономные нанороботы уже вот-вот будут доступны — доктора смогут имплантировать роботов, способных патрулировать человеческое тело и реагировать на любые проблемы. В отличие от экстренного лечения, эти роботы будут оставаться в теле пациента навсегда.

Другое потенциальное применение нанороботов в будущем — укрепление нашего тела, повышение иммунитета, увеличение силы или даже улучшение интеллекта. Сможем ли мы в один прекрасный день обнаружить тысячи микроскопических роботов, плывущих по нашим венам и вносящим коррекции и изменения в наши разрушенные тела? С нанотехнологиями, похоже, все будет возможно.

Читайте также: