Как сделать логические элементы на транзисторах

Добавил пользователь Alex
Обновлено: 04.10.2024

Тем не менее, принцип работы цифровой логики остается неизменным – на входе логического элемента (входов может быть несколько) должен быть цифровой сигнал (сигналы, если входов несколько), который однозначно определяет сигнал на выходе логического элемента.

При анализе работы логических элементов используется так называемая булева алгебра . Начала этого раздела математики было изложено в работах Джорджа Буля – английского математика и логика 19-го века, одного из основателей математической логики. Основами булевой алгебры являются высказывания, логические операции, а также функции и законы. Для понимания принципов работы логических элементов нет необходимости изучать все тонкости булевой алгебры, мы освоим ее основы в процессе обучения с помощью таблиц истинности.

Еще несколько замечаний. Логические элементы (как, впрочем, и другие элементы электронных схем) принято обозначать так, чтобы входы были слева, а выходы справа. Число входов может быть, вообще говоря, любым, отличным от нуля. Реальные цифровые микросхемы могут иметь до 8 входов, но мы ограничимся двумя – этого достаточно для понимания. Условные обозначения соответствуют отечественному ГОСТу, в других стандартах они могут быть иными.

Какие же бывают логические элементы?

Условное обозначение - Таблица истинности

Мастер Кит Урок 8.3 - Логические элементы

Условное обозначение - Таблица истинности

Мастер Кит Урок 8.3 - Логические элементы

Условное обозначение - Таблица истинности

Мастер Кит Урок 8.3 - Логические элементы

Состояние на входе обратно состоянию на входе.

Вот из этих трех элементов строятся все цифровые устройства!

Рассмотрим еще три логических элемента, которые можно получить, комбинируя уже рассмотренные. В силу исторически сложившихся схемотехнических решений эти скомбинированные схемы тоже считаются логическими элементами.

Условное обозначение - Таблица истинности

Мастер Кит Урок 8.3 - Логические элементы

Условное обозначение - Таблица истинности

Мастер Кит Урок 8.3 - Логические элементы

Условное обозначение - Таблица истинности

Мастер Кит Урок 8.3 - Логические элементы

Мы рассмотрели логические элементы, которые применяются в цифровой технике для построения логических схем любого уровня сложности, но рассмотренные нами элементы не могут делать одну крайне важную работу – они не умеют хранить информацию. Для хранения используется более сложный класс устройств, называемый элементами с памятью или конечными автоматами. В этот класс входят триггеры, регистры, счетчики, шифраторы (дешифраторы), мультиплексоры (демультиплексоры) и сумматоры. Некоторый из этих устройств мы рассмотрим в следующем уроке.

Вентильные схемы работы логических элементов


Рис 1. Вентильные схемы работы логических элементов

Во времена первых компьютеров в ходу была диодная логика, по принципу действия в чем-то схожая с работой водопроводных вентилей. Сегодня логические схемы реализуются интегральными микросхемами с высокой плотностью компоновки полупроводниковых элементов, но иногда полезно вспомнить, как формируется один логический элемент с использованием нескольких диодов.

Если подтягивающие резисторы не устанавливать

Вентили на полевых транзисторах

Для построения сложных схем требуются элементы, способные обеспечить развязку между управляющей и ве­до­мой цепями. В качестве таких элементов используются транзисторы. Наиболее продуктивной для логических схем оказалась CMOS-технологиях их изготовления. В качестве основы для этих транзисторов используется ком­пле­мен­тар­ная структура металл-оксид-полупроводник, что и определило название всего семейства.

N-канальный транзистор закрыт, когда потенциал на затворе равен истоковому


Рис 4. N-канальный транзистор закрыт, когда потенциал на затворе равен истоковому

N-канальный транзистор откроется, если на затвор подать положительный потенциал


Рис 5. N-канальный транзистор откроется, если на затвор подать положительный потенциал

Стоит только изменить уровень напряжения на затворе транзистора, и он откроется, переключаясь в проводимое состояние. Если нулевой уровень запирает логическую схему, то перевести ее в противоположное (открытое) со­сто­я­ние можно только подав относительно истока положительное напряжение. Его уровень должен превышать оп­ре­де­лен­ный барьер — threshold voltage. Конструкция транзисторов СMOS-логики такова, что порог сра­ба­ты­ва­ния, как правило, выше 1,5 вольта.

Для надежной работы схемы переключения требуется, чтобы напряжение на затворе превышало коммутируемое напряжение

Примечание. Если быть предельно точным, то для надежной работы схемы переключения требуется, чтобы напряжение на затворе превышало коммутируемое напряжение. Именно поэтому в импульсных регуляторах, где ШИМ-контроллер питается от +12V и коммутируемое напряжение равно +12V применяется Boost-цепочка, формирующая напряжение в пределах 2024V для питания затворов.

Всем доброго времени суток! Продолжаю рассказывать про цифровые логические микросхемы. Здесь смотрите первую и вторую часть.

Рассказывая про логические микросхемы мы идём по пути повышения сложности логических элементов. После логических элементов НЕ и буферных микросхем следующие элементы, о которых идёт речь, выполняют простейшие логические операции: операция логического умножения и логического сложения. Такие элементы называются логические элементы И (AND) и логический элемент ИЛИ (OR). Данные логические элементы объединяет то, что они имеют несколько равноправных входов (от 2 до 12), а выход всего один. На выходе сигнал соответствует комбинации сигналов на входе, над которыми выполнена соответствующая функция. Ниже показано условное графическое обозначение элементов И и ИЛИ.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Обозначение элементов И и ИЛИ



Обозначение элементов И и ИЛИ: слева логический элемент И и ИЛИ (DIN); справа логический элемент И и ИЛИ (ANSI).

Кроме многочисленных логических элементов И и ИЛИ существуют такие логические элементы, которые на выходе инвертируют сигнал. К названию таких элементов добавляется в конце частичка НЕ, то есть элемент И с инверсией сигнала на выходе называется И-НЕ (NAND), а элемент ИЛИ соответственно ИЛИ-НЕ (NOR). Ниже показано условное графическое обозначение элементов И-НЕ и ИЛИ-НЕ.

 Обозначение элементов И-НЕ и ИЛИ-НЕ



Обозначение элементов И-НЕ и ИЛИ-НЕ: слева логический элемент И-НЕ и ИЛИ-НЕ (DIN); справа логический элемент И-НЕ и ИЛИ-НЕ (ANSI).

Как указывалось выше, данные элементы имеют несколько равноправных входов, поэтому для чёткого распознавания логических элементов с разным количеством входов перед названием логического элемента ставят число, которое соответствует количеству входов логического элемента. Например, обозначение двухвходового элемента И с инверсией на выходе будет иметь обозначение 2И-НЕ, а пятивходового элемента выполняющего функцию ИЛИ с инверсией – 5ИЛИ-НЕ.

Отечественная система обозначений чётко определяет наименования микросхем, выполняющих различные функции. Такие обозначения различаются суффиксами: для логических элементов выполняющих функцию И наименование содержит суффикс ЛИ (например, К155ЛИ2, КР1533ЛИ10), для элементов И-НЕ – суффикс ЛА (например, К155ЛА3, К555ЛА13), для элементов ИЛИ – суффикс ЛЛ (например, К155ЛЛ1, К1533ЛЛ4), для элементов ИЛИ-НЕ – суффикс ЛЕ (например, К155ЛЕ1, К1533ЛЕ10).

Как известно для каждого логического элемента выполняющего соответственную функцию существует своя таблица истинности. Ниже приведена сводная таблица истинности для двухвходовых логических элементов И, И-НЕ, ИЛИ, ИЛИ-НЕ.

Сигналы на входе Сигналы на выходе
1 2 И И-НЕ ИЛИ ИЛИ-НЕ
0 0 0 1 0 1
0 1 0 1 1 0
1 0 0 1 1 0
1 1 1 0 1 0

Применение логоческих элементов

На современном этапе развития цифровой электроники и микросхемотехники простые логические элементы всё меньше находят своё применение именно как выполняющие простые логические функции. Очень часто вышеописанные логические элементы выполняют функции разрешения/запрещения или смешивания/совпадения сигналов в более сложных цифровых схемах.

Схема разрешения/запрещения

Например, применение логического элемента 2И в качестве управляющего можно описать следующим образом. Один из входов считают управляющим, а второй информационным, тогда при лог. 1 на управляющем входе, сигнал с информационного входа проходит на выход без ограничения, но если на управляющем входе низкий логический уровень, то прохождение сигнала с входа на выход отсутствует. Очень часто логические элементы в таком качестве используют для работы на мультиплексированную или двунаправленную линию.

Точно также в качестве элементов разрешении/запрещения используются и другие элементы И, И-НЕ, ИЛИ, ИЛИ-НЕ. Применение того или иного элемента обуславливается уровнем управляющего сигнала, инверсии (или её отсутствия) входного сигнала. Ниже показаны схемы использования логических элементов в качестве разрешающих/запрещающих прохождение сигнала.

разрешение/запрещение прохождения сигналов



Реализация разрешение/запрещение прохождения сигналов на логических элементах

Схема смешивания сигналов

Довольно часто требуется реализовать смешивание сигналов, когда выходной сигнал должен появляться при приходе сигналов на любой вход логического элемента. Например, использую элемент 2ИЛИ можно реализовать смешивание двух сигналов без инверсии, то есть сигналы, которые приходят на первый и на второй вход, будут отображаться в выходном сигнале. Ниже показаны схемы использования логических элементов в качестве смешивающих с различными уровнями.

смешивания сигналов различных логических уровней



Реализация смешивания сигналов различных логических уровней на логических элементах

Схемы определения совпадения сигналов

На логических элементах И, И-НЕ, ИЛИ, ИЛИ-НЕ очень просто реализовать схемы совпадения входящих сигналов, когда выходной сигнал вырабатывается при совпадении логических уровней входящих сигналов. Ниже показаны схемы совпадения на логических элементах.

совпадения сигналов на логических элементах



Реализация функции совпадения сигналов на логических элементах

Схемы инвертирования сигналов

Логические элементы И, И-НЕ, ИЛИ, ИЛИ-НЕ, как более сложные по сравнению с элементами НЕ и повторителями, позволяют реализовать функции инверторов и буферных элементов. Для этого просто необходимо соединить их входы или на один из входов подать сигнал соответствующего логического уровня. Ниже показаны схемы повторителей и инверторов на элементах И, И-НЕ, ИЛИ, ИЛИ-НЕ.

Реализация повторителей и инверторов



Реализация повторителей и инверторов на логических элементах

Этими простыми схемами не ограничивается применение логических элементов И, И-НЕ, ИЛИ, ИЛИ-НЕ. Больше про применение логических микросхем я обязательно напишу в одном из следующих постов.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Всем доброго времени суток! Продолжаю рассказывать про цифровые логические микросхемы. Здесь смотрите первую и вторую часть.

Рассказывая про логические микросхемы мы идём по пути повышения сложности логических элементов. После логических элементов НЕ и буферных микросхем следующие элементы, о которых идёт речь, выполняют простейшие логические операции: операция логического умножения и логического сложения. Такие элементы называются логические элементы И (AND) и логический элемент ИЛИ (OR). Данные логические элементы объединяет то, что они имеют несколько равноправных входов (от 2 до 12), а выход всего один. На выходе сигнал соответствует комбинации сигналов на входе, над которыми выполнена соответствующая функция. Ниже показано условное графическое обозначение элементов И и ИЛИ.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Обозначение элементов И и ИЛИ



Обозначение элементов И и ИЛИ: слева логический элемент И и ИЛИ (DIN); справа логический элемент И и ИЛИ (ANSI).

Кроме многочисленных логических элементов И и ИЛИ существуют такие логические элементы, которые на выходе инвертируют сигнал. К названию таких элементов добавляется в конце частичка НЕ, то есть элемент И с инверсией сигнала на выходе называется И-НЕ (NAND), а элемент ИЛИ соответственно ИЛИ-НЕ (NOR). Ниже показано условное графическое обозначение элементов И-НЕ и ИЛИ-НЕ.

 Обозначение элементов И-НЕ и ИЛИ-НЕ



Обозначение элементов И-НЕ и ИЛИ-НЕ: слева логический элемент И-НЕ и ИЛИ-НЕ (DIN); справа логический элемент И-НЕ и ИЛИ-НЕ (ANSI).

Как указывалось выше, данные элементы имеют несколько равноправных входов, поэтому для чёткого распознавания логических элементов с разным количеством входов перед названием логического элемента ставят число, которое соответствует количеству входов логического элемента. Например, обозначение двухвходового элемента И с инверсией на выходе будет иметь обозначение 2И-НЕ, а пятивходового элемента выполняющего функцию ИЛИ с инверсией – 5ИЛИ-НЕ.

Отечественная система обозначений чётко определяет наименования микросхем, выполняющих различные функции. Такие обозначения различаются суффиксами: для логических элементов выполняющих функцию И наименование содержит суффикс ЛИ (например, К155ЛИ2, КР1533ЛИ10), для элементов И-НЕ – суффикс ЛА (например, К155ЛА3, К555ЛА13), для элементов ИЛИ – суффикс ЛЛ (например, К155ЛЛ1, К1533ЛЛ4), для элементов ИЛИ-НЕ – суффикс ЛЕ (например, К155ЛЕ1, К1533ЛЕ10).

Как известно для каждого логического элемента выполняющего соответственную функцию существует своя таблица истинности. Ниже приведена сводная таблица истинности для двухвходовых логических элементов И, И-НЕ, ИЛИ, ИЛИ-НЕ.

Сигналы на входе Сигналы на выходе
1 2 И И-НЕ ИЛИ ИЛИ-НЕ
0 0 0 1 0 1
0 1 0 1 1 0
1 0 0 1 1 0
1 1 1 0 1 0

Применение логоческих элементов

На современном этапе развития цифровой электроники и микросхемотехники простые логические элементы всё меньше находят своё применение именно как выполняющие простые логические функции. Очень часто вышеописанные логические элементы выполняют функции разрешения/запрещения или смешивания/совпадения сигналов в более сложных цифровых схемах.

Схема разрешения/запрещения

Например, применение логического элемента 2И в качестве управляющего можно описать следующим образом. Один из входов считают управляющим, а второй информационным, тогда при лог. 1 на управляющем входе, сигнал с информационного входа проходит на выход без ограничения, но если на управляющем входе низкий логический уровень, то прохождение сигнала с входа на выход отсутствует. Очень часто логические элементы в таком качестве используют для работы на мультиплексированную или двунаправленную линию.

Точно также в качестве элементов разрешении/запрещения используются и другие элементы И, И-НЕ, ИЛИ, ИЛИ-НЕ. Применение того или иного элемента обуславливается уровнем управляющего сигнала, инверсии (или её отсутствия) входного сигнала. Ниже показаны схемы использования логических элементов в качестве разрешающих/запрещающих прохождение сигнала.

разрешение/запрещение прохождения сигналов



Реализация разрешение/запрещение прохождения сигналов на логических элементах

Схема смешивания сигналов

Довольно часто требуется реализовать смешивание сигналов, когда выходной сигнал должен появляться при приходе сигналов на любой вход логического элемента. Например, использую элемент 2ИЛИ можно реализовать смешивание двух сигналов без инверсии, то есть сигналы, которые приходят на первый и на второй вход, будут отображаться в выходном сигнале. Ниже показаны схемы использования логических элементов в качестве смешивающих с различными уровнями.

смешивания сигналов различных логических уровней



Реализация смешивания сигналов различных логических уровней на логических элементах

Схемы определения совпадения сигналов

На логических элементах И, И-НЕ, ИЛИ, ИЛИ-НЕ очень просто реализовать схемы совпадения входящих сигналов, когда выходной сигнал вырабатывается при совпадении логических уровней входящих сигналов. Ниже показаны схемы совпадения на логических элементах.

совпадения сигналов на логических элементах



Реализация функции совпадения сигналов на логических элементах

Схемы инвертирования сигналов

Логические элементы И, И-НЕ, ИЛИ, ИЛИ-НЕ, как более сложные по сравнению с элементами НЕ и повторителями, позволяют реализовать функции инверторов и буферных элементов. Для этого просто необходимо соединить их входы или на один из входов подать сигнал соответствующего логического уровня. Ниже показаны схемы повторителей и инверторов на элементах И, И-НЕ, ИЛИ, ИЛИ-НЕ.

Реализация повторителей и инверторов



Реализация повторителей и инверторов на логических элементах

Этими простыми схемами не ограничивается применение логических элементов И, И-НЕ, ИЛИ, ИЛИ-НЕ. Больше про применение логических микросхем я обязательно напишу в одном из следующих постов.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Читайте также: