Как сделать линзу френеля для датчика движения

Обновлено: 07.07.2024

слева: Линза Френеля, справа: обычная линза

Что такое Линза Френеля

Ли́нзой Френе́ля называют сложную составную линзу. В отличие от обыкновенных линз, она состоит не из цельного шлифованного куска стекла со сферической поверхностью, а из отдельных концентрических колец. Они плотно примыкают друг к другу и имеют малую толщину. В сечении они представляют собой призмы специального профиля. Свое название эта разновидность линз получила по имени предложившего ее французского физика Огюстена Френеля, работавшего в области физической оптики.

Благодаря своей уникальной конструкции, данная модель линзы имеет малый вес и толщину. Сечения ее колец построены таким образом, что ее сферическая аберрация крайне невелика, в результате чего лучи, ей преломленные, выходят единым параллельным пучком. Диаметр Линзы Френеля варьируется от пары сантиметров и вплоть до нескольких метров.

Линзы Френеля принято подразделять на кольцевые и поясные. Первые направляют пучок света в каком-то одном, заранее заданном, направлении. Вторые же посылают свет от источника по всем направлениям в какой-то одной плоскости.

Как делают контактные линзы?

Для изготовления современных мягких и жестких контактных линз для глаз используют разные методики: точения, литья, центробежного формования, а также способы, сочетающие в себе несколько перечисленных приемов.

Точение. Оптические изделия изготавливаются на токарном станке из сухих (жестких) заготовок полимеризованного материала. Затем их тщательно полируют, насыщают влагой до требуемого параметра и производят химическую очистку от посторонних примесей. Финальный этап — тонирование, проверка качества, стерилизация при температуре 121°-124° и упаковка.


Литье. В этом случае линзы изготавливаются из жидкого полимера, который заливают в специальные формы-матрицы с требуемыми параметрами. После отливки средства контактной коррекции насыщаются влагой, подвергаются очистке, полировке, тонированию, стерилизации и упаковке. Данные метод менее трудоемкий, чем точение, поэтому достаточно часто используется производителями.

Центробежное формование. Один из наиболее ранних методов, который широко применяется и в наши дни. Жидкий полимер впрыскивают в специальную форму, вращающуюся на определенной скорости, где он сразу подвергается воздействию ультрафиолетового излучения или температуры, в результате чего принимает требуемую форму. Далее продукция гидратируется (насыщается водой) и проходит ту же обработку, что и при точении.

В интернете Вы можете посмотреть видео, как изготавливают средства контактной коррекции, чтобы наглядно представить процесс производства.

Также рекомендуем ознакомиться с широким ассортиментом контактных линз от мировых брендов на сайте Очков.Нет. У нас Вы сможете выгодно заказать любимую продукцию по выгодным ценам!



Применение Линзы Френеля

На сегодняшний день Линза Френеля нашла широкое применение во многих областях.

Например, их используют в больших маяках, проекционных телевизорах, навигационных огнях, железнодорожных линзовых светофорах и семафорных фонарях. А благодаря своему малому весу, Линза Френеля используется также в осветительных устройствах, которые необходимо в процессе эксплуатации передвигать.

На основе Линзы Френеля создана сверхплоская легкая лупа. Именно к ее помощи прибегают люди с пониженным зрением при чтении текстов, набранных мелким шрифтом.

Кроме того, подобные линзы применяются в инфракрасных датчиках движения и в линзовых антеннах.

Есть еще пара перспективных направлений, в которых возможно применение Линзы Френеля. Ее использование предположительно возможно при построении космических телескопов гигантских диаметров.

Также вероятно ее применение в качестве концентратора солнечной энергии для солнечных батарей.

Как сделать линзу?

Если в нужный момент у вас под рукой не оказалось линзы, не стоит расстраиваться, так как ее можно сделать своими руками очень быстро. Для этого необходимо изучить рекомендации того, как сделать линзу своими руками.


Как сделать самодельный телескоп своими руками — схема и инструкции

Времена, когда открытие в науке мог сделать любой желающий, почти полностью остались в прошлом. Всё, что может открыть любитель в химии, физике, биологии — давно уже известно, переписано и посчитано. Астрономия — исключение из этого правила.

Ведь это наука о космосе, пространстве неописуемо огромном, в котором невозможно изучить всё, и даже недалеко от Земли ещё существуют неоткрытые объекты. Однако, для того чтобы заниматься астрономией, необходим телескоп — дорогой оптический прибор.

Самодельный телескоп своими руками — простая или сложная задача?

Может быть, поможет бинокль?

Начинающему астроному, который только-только начинает присматриваться к звёздному небу, рановато делать телескоп своими руками. Схема для него может показаться слишком сложной. На первых порах можно обойтись и обыкновенным биноклем.

Это не такой уж и несерьёзный прибор, как может показаться, и есть астрономы, которые продолжают пользоваться биноклями, даже став знаменитыми: так, японский астроном Хиякутаке, первооткрыватель кометы, названной его именем, прославился именно своим пристрастием к мощным биноклям.

Если Вы загорелись астрономией всерьёз и всё-таки хотите сделать телескоп своими руками, схема, которую вы выберете, может принадлежать к одной из двух основных категорий: рефракторы (в них используются только линзы) и рефлекторы (используются линзы и зеркала).

Для начинающих рекомендуются рефракторы: это менее мощные, но более простые в изготовлении телескопы. Потом, когда Вы наберетесь опыта в изготовлении рефракторов, сможете попробовать собрать рефлектор — мощный телескоп своими руками.

Чем отличается мощный телескоп?

Что за глупый вопрос — спросите вы. Конечно — увеличением! И будете неправы. Дело в том, что не все небесные тела в принципе возможно увеличить.

Например, звёзды вы не увеличите никак: они расположены на расстоянии многих парсек, и с такого расстояния превращаются практически в точки.

А звёзды, телескоп, прежде всего, делает ярче. И за это его свойство отвечает его первая по важности характеристика — диаметр объектива. Во сколько раз объектив шире, чем зрачок человеческого глаза — во столько раз ярче становятся все светила. Если Вы хотите сделать мощный телескоп своими руками — Вам придется подыскивать, прежде всего, очень большую в диаметре линзу под объектив.

Простейшая схема телескопа-рефрактора

В наиболее простом своём виде телескоп-рефрактор состоит из двух выпуклых (увеличивающих) линз. Первая — большая, направленная на небо — называется объективом, а вторая — маленькая, в которую смотрит астроном, называется окуляром. Самодельный телескоп своими руками следует делать именно по этой схеме, если для Вас это первый опыт.

Объектив телескопа должен иметь оптическую силу в одну диоптрию и как можно больший диаметр. Найти подобную линзу можно, например, в мастерской по изготовлению очков, где из них вырезают стёклышки для очков различной формы.

Лучше, если линза будет двояковыпуклой.

Если не найдётся двояковыпуклой — можно использовать пару плосковыпуклых линз по полдиоптрии, расположенных одна за другой, выпуклостями в разные стороны, на расстоянии 3 сантиметра друг от друга.

В качестве же окуляра лучше всего сойдёт любая сильная увеличительная линза, в идеале — лупа в окуляре на ручке, какие выпускались раньше. Сойдёт и окуляр от любого оптического прибора заводского изготовления (бинокля, геодезического прибора).

Чтобы узнать, какое увеличение будет давать телескоп, замерьте фокусное расстояние окуляра в сантиметрах. Затем поделите 100 см (фокусное расстояние линзы в 1 диоптрию, то есть объектива) на эту цифру, и получите искомое увеличение.

Закрепите линзы в любой прочной трубе (сойдёт картонная, промазанная клеем и покрашенная изнутри самой чёрной краской, что сможете найти). Окуляр должен иметь возможность скользить вперёд-назад в пределах нескольких сантиметров; это нужно для наведения резкости.

Закрепить телескоп следует в деревянном штативе так называемой монтировки Добсона. Чертёж её легко можно найти в любом поисковике. Это самая простая в изготовлении и в то же время надёжная монтировка для телескопа, почти все телескопы-самоделки используют именно её.

Линзы из пластиковой бутылки

В данном случае попробуем сделать двояковыпуклую линзу. В ходе работы понадобятся:

  • бумага;
  • пластиковая бутылка (желательно прозрачная);
  • ножницы;
  • пластилин/глина;
  • трубочки;
  • вода.

Изготовление

Также вместо трубочек можно использовать обыкновенный шприц и с его помощью наполнить линзу водой. В таком случае с одной стороны вставьте иголку шприца и постепенно наполняйте линзу водой, а с противоположной стороны необходимо сделать отверстие для воздуха.

Газовые линзы для TIG сварки. Полный обзор. Часть 2

Приветствуем друзья!

Второй материал по теме линз для TIG сварки. И на этот раз рассмотрим вопросы совместимости линз и горелок.

В чем различие горелок?

Начнем с того, что горелки отличаются размером и по сути их есть всего два вида – маленькие и большие. Это очень упрощенное деление, потому что только на картинке выше представлено шесть вариантов горелок, но с точки зрения фурнитуры многие из них идентичные.

Каждая горелка имеет свой номер, который характеризует ее размер и параметры. Обычно номер выбит на шейке и имеет вид WP-9, WP-17, CK9, CK-17F и тд. Нас интересует прежде всего цифра, т.к. буквы обозначают производителя, опции в виде гибкой шейки или наличие газового клапана в горелке и тд. А вот цифра однозначно определяет какие линзы будут совместимы с данной горелкой. В 99% случаев с Вашим аппаратом в комплекте будет горелка номер 17, как наиболее универсальная.

Какие бывают номера горелок?
  • Номер 9 (WP-9) – самая маленькая горелка воздушного охлаждения, если не считать всякие экзотические микро-горелки.
  • Номер 20 (WP-20) – маленькая горелка водяного охлаждения, полностью идентичная по размеру и фурнитуре горелкам WP-9.
  • Номер 17 (WP-17) – “большая горелка” воздушного охлаждения, резьбы и фурнитура увеличенного размера.
  • Номер 18 (WP-17) – “большая горелка” водяного охлаждения, во всем идентичная горелкам WP-17.
  • Номер 26 (WP-17) – “большая горелка” воздушного охлаждения, идентичная по фурнитуре горелкам WP-17, но больше и массивней.
  • TW450/451/452 и др. – промышленные монстры, которые нет смысла рассматривать.

По сути получаем две группы стандартных горелок – маленькие 9/20 и большие 17/18/26. Именно такие сокращения вы найдете во всяких описаниях к линзам и фурнитуре. Для маленьких горелок свои маленькие цанги, цангодержатели, колпачки для электродов, внутренние линзы и сопла. Для больших – свои, увеличенного размера.

Фурнитура горелок 9/20 и 17/18/26 не взаимозаменяема!

И маленькие и большие горелки можно использовать с электродами диаметром 1.6, 2.4 или 3.2мм. Под каждый диаметр электрода нужна своя цанга и свой цангодержатель или внутрення линза. Если диаметр отверстия в линзе больше электрода, то в нее допускается установка меньшей цанги. К примеру во внутреннюю линзу 2.4мм можно вставить цангу и электрод 1.6 мм. А вот наоборот ничего не выйдет – электрод 2.4 никак не вставить в линзу под 1.6мм. Это очевидно, но все же бывает путаница.

Какую горелку выбрать?

Выбор горелки полностью определяется тем током, которым Вы будете варить. Чем выше ток, тем выше номер горелки Вам нужен. Учитывая тот факт, что аппараты с водяным охлаждением горелки довольно дорогие, они редко встречаются в тюнинг мастерских. Поэтому из нашего списка выпадают горелки водяного охлаждения с номерами 20 и 18. Горелка 26 слишком массивная и тяжелая, она подходит для сварки толстостенных конструкций большим током и тоже не лучший выбор при работе с выхлопом или тонким алюминием.

По сути выбор будет между номером 9 и 17. Мы рекомендуем иметь обе! Но предпочитаем в работе WP-9.

Китайские горелки номер 17 идут в комплекте с большинством аппаратов, при этом имеют тяжелый жесткий шланг, резиновый защитный рукав и массивную пластиковую ручку, рассчитанные на промышленные и строительные применения. Этим можно работать и в тюнинге, но мы настоятельно рекомендуем заменить горелку на легкую фирменную. Попробовав хоть раз в работе горелку WP9 с легким супер-гибким шлангом вы никогда не вернетесь к обычным. Как сказал один из наших клиентов – это как будто варить с гирей в руке. Даже более крупная WP17, но без массивной ручки и жесткого тяжелого шланга покажется Вам пушинкой.

Легкая горелка – меньше усталости, точнее движения, выше качество и эстетика швов.

Важно отметить, что наиболее легкие горелки и в частности те, которые продаются у нас в MFSTORE, не имеют кнопки включения и предназначены для работы с педалью. Переход на управление педалью – необходимость, если Вы всерьез занимаетесь аргонодуговой сваркой.

Совместимость линз и горелок.

Мы будем рассматривать совместимость горелок с линзами Furick, но для других брендов принцип точно такой же.

PIR (пассивные инфракрасные датчики) сенсоры позволяют улавливать движение.

Очень часто используются в системах сигнализации. Эти датчики малые по габаритам, недорогие, потребляют мало энергии, легки в эксплуатации, практически не подвержены износу. Кроме PIR, подобные датчики называют пироэлектрическими и инфракрасными датчиками движения.

Пирлоэлектрический датчик движения - общая информация

ПИР датчики движения по сути состоят из пироэлектрического чувствительного элемента (цилиндрическая деталь с прямоугольным кристаллом в центре), который улавливает уровень инфракрасного излучения. Все вокруг излучает небольшой уровень радиации. Чем больше температура, тем выше уровень излучения. Датчик фактически разделен на две части. Это обусловлено тем, что нам важен не уровень излучения, а непосредственно наличие движение в пределах его зоны чувствительности. Две части датчика установлены таким образом, что если одна половина улавливает больший уровень излучения, чем другая, выходной сигнал будет генерировать значение high или low.

ПИР датчик движения

Сам модуль, на котором установлен датчик движения, состоит также из дополнительной электрической обвязки: предохранители, резисторы и конденсаторы. В большинстве недорогих пир-датчиков используются недорогие чипы BISS0001 ("Micro Power PIR Motion Detector IC"). Этот чип воспринимает внешний источник излучения и проводит минимальную обработку сигнала для его преобразования из аналогового в цифровой вид.

Одна из базовых моделей пироэлектрических датчиков подобного класса выглядит так:

Более новые модели PIR-датчиков имеют дополнительные выходы для дополнительной настройки и установленные коннекторы для сигнала, питания и земли:

Инфракракрасный датчик движения - пояснения

ПИР датчики отлично подходят для проектов, в которых необходимо определять наличие или отсутствие человека в пределах определенного рабочего пространства. Помимо перечисленных выше достоинство подобных датчиков, они имеют большую зону чувствительности. Однако учтите, что пироэлектрические датчики не предоставят вам информации о том, сколько человек вокруг и насколько близко они находятся к датчику. Кроме того, сработать они могут и на домашних питомцев.

Общая техническая информация

Эти технические характеристики относятся к PIR датчикам, которые продаются в магазине Adafruit. Принцип работы аналогичных датчиков похожий, хотя технические характеристики могут отличаться. Так что прежде чем работать с ПИР-датчиком, ознакомьтесь с его даташитом.

  • Форма: Прямоугольник;
  • Цена: около 10.00 долларов в магазине Adafruit;
  • Выходной сигнал: цифровой импульс high (3 В) при наличии движения и цифровой сигнал low, когда движения нет. Длина импульса зависит от резисторов и конденсаторов на самом модуле и разная в различных датчиках;
  • Диапазон чувствительности: до 6 метров. Угол обзора 110° x 70°;
  • Питание: 3В - 9В, но наилучший вариант - 5 вольт;
  • BIS0001 (даташит);
  • RE200B (даташит);
  • NL11NH (даташит);
  • Parallax (даташит).

Ссылки для заказа оборудования, которое используется в статье в дальнейшем из Китая

>Для заказа с Aliexpress:

Принцип работы пироэлектрических (PIR) датчиков движения

PIR датчики не такие простые как может показаться на первый взгляд. Основная причина - большое количество переменных, которые влияют на его входной и выходной сигналы. Чтобы объяснить основы работы ПИР датчиков, мы используем рисунок, приведенный ниже.

Пироэлектрический датчик движения состоит из двух основных частей. Каждая из частей включает в себя специальный материал, чувствительный к инфракрасному излучению. В данном случае линзы особо не влияют на работу датчика, так что мы видим два участка чувствительности всего модуля. Когда датчик находится в состоянии покоя, оба сенсора определяют одинаковое количество излучения. Например, это может быть излучение помещения или окружающей среды на улице. Когда теплокровный объект (человек или животное), проходит мимо, он пересекает зону чувствительности первого сенсора, в результате чего на модуле ПИР датчика генерируются два различных значения излучения. Когда человек покидает зону чувствительности первого сенсора, значения выравниваются. Именно изменения в показаниях двух датчиков регистрируются и генерируют импульсы HIGH или LOW на выходе.

Принцип работы ПИР сенсоров

Конструкция PIR датчика

Чувствительные элементы ПИР датчика устанавливается в металлический герметический корпус, который защищает от внешних шумов, перепадов температур и влажности. Прямоугольник в центре сделан из материала, который пропускает инфракрасное излучение (обычно это материал на основе силикона). За этой пластиной устанавливаются два чувствительных элемента.

Рисунок из даташита Murata:

Рисунок из даташита RE200B:

На рисунке из даташита RE200B видно два чувствительных элемента:

На рисунке выше приведена внутренняя схема подключения.

Линзы

Инфракрасные датчики движения практически одинаковые по своей структуре. Основные отличия - чувствительность, которая зависит от качестве чувствительных элементов. При этом значительную роль играет оптика.

На рисунке выше приведен пример линзы из пластика. Это значит, что диапазон чувствительности датчика представляет из себя два прямоугольника. Но, как правило, нам нужно обеспечить большие углы обзора. Для этого можно использовать линзы, подобные тем, которые используются в фотоаппаратах. При этом линза для датчика движения должна быть маленькая, тонкая и изготавливаться из пластика, хотя он и добавляет шумы в измерения. Поэтому в большинстве PIR датчиков используются линзы Френеля (рисунок из Sensors Magazine):

Рисунок из Cypress appnote 2105:

Теперь у нас есть значительно больший диапазон чувствительности. При этом мы помним, что у нас два чувствительных элемента и нам нужны не столько два больших прямоугольника, сколько большое количество маленьких зон чувствительности. Для этого линза разделяется на несколько секций, каждая из которых представляет из себя отдельную линзу Френеля.

На рисунке ниже можно увидеть отдельные секции - линзы Френеля:

Линзы Френеля из пластика на PIR датчике движения

На этом макроснимке обратите внимание, что фактура отдельных линз отличается:

Разная фактура линз Френеля

В результате формируется целый набор чувствительных участков, которые взаимодействуют между собой.

Рисунки из даташита NL11NH:

Ниже еще один рисунко. Более яркий, но менее информативный. Кроме того, обратите внимание, что у большинства датчиков угол обзора составляет 110 градусов, а не 90.

Рисунок из IR-TEC:

Подключение PIR датчика движения

PIR датчик

Большинство модулей с инфракрасными датчиками движения имеют три коннектора на задней части. Распиновка может отличаться, так что прежде чем подключать, проверьте ее! Обычно рядом с коннекторами сделаны соответсвующие надписи. Один коннектор идет к земле, второй выдает интересующий нас сигнал с сенсоров, третий - земля. Напряжение питания обычно составляет 3-5 вольт, постоянный ток. Однако иногда встречаются датчики с напряжением питания 12 вольт. В некоторых больших датчиках отдельного пина сигнала нет. Вместо этого используется реле с землей, питанием и двумя переключателями.

Для прототипа вашего устройства с использованием инфракрасного датчика движения, удобно использовать монтажную плату, так как большинство данных модулей имеют три коннектора, расстояние между которыми рассчитано именно под отверстия макетки.

ПИР датчик - обратная сторона

В нашем случае красный кабель соответсвует питанию, черный - земле, а желтый - сигналу. Если вы подключите кабели неправильно, датчик не выйдет из строя, но работать не будет.

Тестирование PIR датчика движения

Pir_датчик_без_ARDUINO

Pir_датчик_без_ARDUINO_Электросхема

Соберите схему в соответсвии с рисунком выше. В результате, когда PIR датчик обнаружит движение, на выходе сгенерируется сигнал HIGH, который соответсвует 3.3 В и светодиод загорится.

При этом учтите, что пироэлектрический датчик должен 'стабилизироваться'. Установите батарейки и подождите 30-60 секунд. На протяжении этого времени светодиод может мигать. Подождите, пока мигание закончится и можно начинать махать руками и ходить вокруг датчика, наблюдая за тем, как светодиод зажигается!

Настройка перезапуска датчика

У пироэлектрического датчика движения есть несколько настоек. Первой мы рассмотрим 'перезапуск'.

После подключения, посмотрите на заднюю поверхность модуля. Коннекторы должны быть установлены в левом верхнем углу L, как это показано на рисунке ниже.

Перезапуск ПИР датчика

Коннекторы для перезапуска датчика движения

Обратите внимание, что при таком варианте подключения, светодиод не горит постоянно, а включается-выключается, когда вы двигаетесь возле него. Это опция 'без перезапуска' (non-retriggering).

Теперь установите коннектор в позицию H. После тестирования окажется, что светодиод горит постоянно, если кто-то движется в пределах зоны чувствительности датчика. Это режим 'перезапуск'.

Рисунок ниже из даташита датчика BISS0001:

Для большинства случаев режим 'перезапуск' (коннектор в позиции H кк это показано на рисунке ниже) лучше.

L - коннектор на PIR датчике

Настраиваем чувствительность

На многих инфракрасных датчиках движения, в том числе и у компании Adafruit, установлен небольшой потенциометр для настройки чувствительности. Вращение потентенциометра по часовой стрелке добавляет чувствительность датчику.

Изменение времени импульса и времени между импульсами

Когда мы рассматривает PIR датчики, важны два промежутка времени 'задержки'. Первый отрезок времени - Tx: как долго горит светодиод после обнаружения движения. На многих пироэлектрических модулях это время регулируется встроенным потенциометром. Второй отрезок времени - Ti: как долго светодиод гарантированно не загорится, когда движения не было. Изменять этот параметр не так просто, для этого может понадобится паяльник.

Давайте взглянем на даташит BISS:

На датчиках от Adafruit есть потенциометр, отмеченный как TIME. Это переменный резистор с сопротивлением 1 мегаом, который добавлен к резисторам на 10 килоом. Конденсатор C6 имеет емкость 0.01 микрофарат, так что:

Tx = 24576 x (10 кОм + Rtime) x 0.01 мкФ

Когда потенциометр Rtime в 'нулевом' - полностью повернут против часовой стрелки - положении (0 мегаом):

Tx = 24576 x (10 кОм) x 0.01 мкФ = 2.5 секунды (примерно)Когда потенциометр Rtime полностью повернут по часовой стрелке (1мегаом):

Tx = 24576 x (1010 кОм) x 0.01 мкФ = 250 секунд (примерно)

В средней позиции RTime время будет составлять около 120 секунд (две минуты). То есть, если вы хотите отслеживать движение объекта с частотой раз в минуту, поверните потенциометр на 1/4 поворота.

Для более старых/других моделей PIR датчиков

Если на вашем датчике нет потенциометров, можно провести настройку с помощью резисторов.

Нас интересуют резисторы R10 и R9. К сожалению, китайцы умею многое. В том числе и путать надписи. На рисунке выше приведен пример, на котором видно, что перепутаны R9 с R17. Отследить подключение по даташиту. R10 подключен к 3 пину, R9 - к 7 пину.

Tx is = 24576 * R10 * C6 = ~1.2 секунд

R10 = 4.7K и C6 = 10 нанофарад

Ti = 24 * R9 * C7 = ~1.2 секунд

R9 = 470K и C7 = 0.1 микрофарад

Вы можете изменить время задержки установив различные резисторы и конденсаторы.

Подключение PIR датчика движения к Arduino

Напишем программу для считывания значений с пироэлектрического датчика движения. Подключить PIR датчик к микроконтроллеру просто. Датчик выдает цифровой сигнал, так что все, что вам необходимо - считывать с пина Arduino сигнал HIGH (рбнаружено движение) или LOW (движения нет).

При этом не забудьте установить коннектор в позицию H!

Подайте питание 5 вольт на датчик. Землю соежинети с землей. После этого соедините пин сигнала с датчика с цифровым пином на Arduino. В данном примере использован пин 2.

* проверка PIR датчика движения

int ledPin = 13; // инициализируем пин для светодиода

int inputPin = 2; // инициализируем пин для получения сигнала от пироэлектрического датчика движения

int pirState = LOW; // начинаем работу программы, предполагая, что движения нет

int val = 0; // переменная для чтения состояния пина

pinMode(ledPin, OUTPUT); // объявляем светодиод в качестве OUTPUT

pinMode(inputPin, INPUT); // объявляем датчик в качестве INPUT

val = digitalRead(inputPin); // считываем значение с датчика

digitalWrite(ledPin, HIGH); // включаем светодиод

if (pirState == LOW)

// мы только что включили

// мы выводим на серийный монитор изменение, а не состояние

digitalWrite(ledPin, LOW); // выключаем светодиод

if (pirState == HIGH)

// мы только что его выключили

// мы выводим на серийный монитор изменение, а не состояние

Не забудьте, что для работы с пироэлектрическим датчиком не всегда нужен микроконтроллер. Порой можно обойтись и простым реле.

Лаборатория каждого сумасшедшего ученого, или секретная комната подростка, нуждается в улучшенной защите от вторжения мошенников или братьев и сестер. Если вы один из них, вам, вероятно, стоит подумать о приобретении пассивного пироэлектрического инфракрасного (PIR) датчика. PIR датчики позволяют вам определять, когда кто-то находится в комнате, когда не должен быть там.

Рисунок 1 Как работает PIR датчик HC-SR501, и его взаимодействие с Arduino

Рисунок 1 – Как работает PIR датчик HC-SR501, и его взаимодействие с Arduino

Хотя это может показаться чем-то из шпионского фильма, но вы, вероятно, используете PIR датчики каждый день. Этот датчик вы можете найти в большинстве современных систем безопасности, автоматических выключателях света, механизмах открывания гаражных ворот и аналогичных применениях, где работа какого-либо электрического устройства необходима только в присутствии людей.

Как работает PIR датчик движения?

Если вы не знали, все объекты с температурой выше абсолютного нуля (0 Кельвинов / -273,15°C), включая человеческие тела, испускают тепловую энергию в виде инфракрасного излучения. Чем горячее объект, тем большее излучение он излучает.

PIR датчик разработан специально для обнаружения таких уровней инфракрасного излучения. В основном он состоит из двух основных составляющих: пироэлектрического датчика и специальной линзы, называемой линзой Френеля, которая фокусирует инфракрасные сигналы на пироэлектрический датчик.

Рисунок 2 PIR датчик, пироэлектрический датчик, два слота обнаружения

Рисунок 2 – PIR датчик, пироэлектрический датчик, два слота обнаружения

Пироэлектрический датчик на самом деле имеет две прямоугольные прорези, выполненные из материала, который пропускает инфракрасное излучение. За ними находятся два отдельных инфракрасных сенсорных электрода: один из которых отвечает за создание положительного выходного сигнала, а другой – отрицательного. Причина такого решения заключается в том, что мы ищем изменение инфракрасных уровней, а не сами окружающие инфракрасные уровни. Два электрода подключены так, чтобы они подавляли друг друга. Если одна половина видит больше или меньше инфракрасного излучения, чем другая, выходной сигнал будет высоким или низким.

Когда датчик находится в режиме ожидания (то есть вокруг датчика нет движения), оба слота обнаруживают одинаковое количество инфракрасного излучения, что приводит к нулевому выходному сигналу.

Но когда мимо проходит теплый объект, подобный человеку или животному; сначала он перекрывает одну половину PIR датчика, что вызывает появление положительного дифференциального изменения между двумя половинами. Когда теплый объект покидает чувствительную область, происходит обратное, в результате чего датчик генерирует отрицательное дифференциальное изменение. Соответствующий импульс сигналов приводит к тому, что датчик устанавливает на выходном выводе высокий логический уровень.

Рисунок 3 – Принцип действия PIR датчика

PIR детектор движения HC-SR501

Для большинства наших проектов на Arduino, которые должны определять, когда человек покинул или вошел в зону, или приблизился, PIR датчики HC-SR501 являются отличным выбором. Они имеют низкое энергопотребление и низкую стоимость, довольно прочные, имеют широкий диапазон линз, с ними легко взаимодействовать, и они безумно популярны среди любителей.

PIR датчик HC-SR501 имеет три вывода: питание VCC, выход и земля (показано на рисунке ниже). Он имеет встроенный стабилизатор напряжения, поэтому он может питаться от любого постоянного напряжения от 4,5 до 12 вольт, обычно используется 5В. Кроме этого, у него есть несколько настроек. Давайте проверим их.

Рисунок 4 Распиновка PIR датчика. Расположение компонентов на плате.

Рисунок 4 – Распиновка PIR датчика. Расположение компонентов на плате.

На плате есть два потенциометра для настройки пары параметров:

  • Чувствительность – устанавливает максимальное расстояние, на котором может быть обнаружено движение. Оно варьируется от 3 до 7 метров. На реальное расстояние, которое вы получите, может влиять планировка вашего помещения.
  • Время – устанавливает время, в течение которого выходной сигнал останется на высоком логическом уровне после обнаружения. Минимум – 3 секунды, максимум – 300 секунд или 5 минут.

Наконец, на плате есть перемычка (на некоторых моделях перемычка не впаяна). У нее есть два варианта настройки:

  • H – это удержание / повтор / повторный запуск. В этом положении HC-SR501 будет продолжать выдавать высокий логический уровень, пока он продолжает обнаруживать движение. Рисунок 5 – Работа PIR датчика HC-SR501 в режиме повторного запуска
  • L – это прерывающийся или неповторяющийся / без повторного запуска. В этом положении выходной сигнал останется на высоком логическом уровне в течение времени, установленного регулировкой потенциометра TIME. Рисунок 6 – Работа PIR датчика HC-SR501 в режиме без повторного запуска

Повышение универсальности PIR датчика HC-SR501

  • RT – предназначен для термистора или термочувствительного резистора. Его добавление позволяет использовать HC-SR501 при экстремальных температурах, а также в некоторой степени повышает точность детектора.
  • RL – это место для подключения светочувствительного резистора (LDR) или фоторезистора. При добавлении этого компонента HC-SR501 будет работать только в темноте, это обычное применение для систем освещения, чувствительных к движению.

Дополнительные компоненты могут быть припаяны непосредственно к плате или выведены в удаленные места с помощью проводов и разъемов.

Распиновка PIR датчика HC-SR501

HC-SR501 имеет 3-контактный разъем, который соединяет его с внешним миром. На него выведены следующие контакты:

Рисунок 8 Распиновка PIR датчика HC-SR501

Рисунок 8 – Распиновка PIR датчика HC-SR501

VCC – вывод питания для PIR датчика HC-SR501, к которому мы подключаем вывод 5V на Arduino.

Выходной контакт – логический выход с TTL уровнем 3,3 В. Низкий логический уровень означает, что движение не обнаружено, высокий логический уровень означает, что было обнаружено какое-то движение.

GND должен быть подключен к земле Arduino.

Использование PIR датчика в качестве автономного устройства

Одна из причин, по которой PIR датчик HC-SR501 является чрезвычайно популярным, заключается в том, что он является очень универсальным датчиком, который самодостаточен. А подключив его к каким-либо микроконтроллерам, таким как Arduino, вы сможете еще больше расширить его универсальность. Для нашего первого эксперимента мы будем использовать HC-SR501 отдельно, чтобы показать, насколько он полезен сам по себе.

Схема соединений для этого эксперимента очень проста. Батареи подключены к выводам датчика VCC и GND, а маленький красный светодиод подключен к выходному контакту через ограничивающий ток резистор 220 Ом. И всё!

Теперь, когда PIR обнаруживает движение, на выходном контакте появляется высокий логический уровень, и светодиод загорается!

Рисунок 9 Тестовая схема подключения PIR датчика без использования Arduino. Она показывает, как можно использовать PIR датчик в автономных приложениях.

Рисунок 9 – Тестовая схема подключения PIR датчика без использования Arduino. Она показывает, как можно использовать PIR датчик в автономных приложениях.

Помните, что при включении питания необходимо подождать 30-60 секунд, пока PIR датчик не адаптируется к инфракрасной энергии в помещении. В течение этого времени светодиод может немного мигать. Подождите, пока светодиод не погаснет, а затем подвигайтесь перед ним, махая рукой, чтобы увидеть, что светодиод загорается.

Подключение PIR датчика к Arduino UNO

Теперь, когда у нас есть полное понимание того, как работает PIR датчик, мы можем подключить его к нашей плате Arduino!

Подключить PIR датчики к микроконтроллеру очень просто. PIR действует как цифровой выход, поэтому всё, что вам нужно делать, это отслеживать, когда на его выходном выводе установится высокий логический уровень (обнаружено движение) или низкий логический уровень (не обнаружено). Подайте на PIR датчик напряжение 5 В и подключите землю. Затем подключите выход к цифровому выводу 2.

Вам нужно установить перемычку на HC-SR501 в положение H (повторный запуск), чтобы он работал правильно. Вам также нужно будет установить время на минимум (3 секунды), повернув потенциометр "время" против часовой стрелки до упора. Установите чувствительность в любое положение, которое вам нужно, либо, если не уверены, установите ее в среднее положение.

Теперь вы готовы загрузить код и начать работу PIR датчиком.

Рисунок 10 Подключение PIR датчика к Arduino UNO

Рисунок 10 – Подключение PIR датчика к Arduino UNO

Код Arduino

Код очень прост и в основном отслеживает, является ли входной сигнал на выводе 2 высоким или низким.

Рисунок 11 Вывод приложения PIR датчика в мониторе последовательного порта

Рисунок 11 – Вывод приложения PIR датчика в мониторе последовательного порта

Что нужно учесть перед проектированием приложений на базе PIR датчиков

Как и для большинства PIR датчиков, HC-SR501 требуется некоторое время для адаптации к инфракрасной энергии в помещении. Это занимает от 30 до 60 секунд при первом включении датчика.

При проектировании системы на базе HC-SR501 вам необходимо будет учитывать эти длительности задержек.


Решил повторить замену лампового центрального стопака на светодиодный. Схема точно такая же, размеры и компоненты те же, поэтому просто напечатал пару новых плат:


Основа платы — алюминий, затем изолятор белого цвета и слой меди.
Светодиоды, которые я купил в прошлый раз оказались очень хорошими, поэтому их и применил. 16 светиков на две платы:


Светодиоды красные и с достаточно большой площадью кристалла:


Сажаем их при помощи паяльной пасты и фена. Греем снизу, сначала паста растекается:


Затем постепенно расплавляется:


Светодиод центрируется и садится точно по контактным площадкам:


Припой принимает нужную форму и натягивается поверхностным натяжением:


В этот раз выпал пал на линзы френеля:


Линзы имеют посадочное место под светодиод и это большой плюс:


Линза Френеля расчитана под большую площадь излучения кристалла (белый светодиод с люминофором) поэтому получается очень прикольный рисунок:


Угол луча оптики равен 15 градусам и в отличии от прошлого коллиматора имеет ровный угол во всех плоскостях. При отклонении оси рисунок изменяется, тоже прикольно:


В качестве генератора тока светодиодов та же схема на ZXLD1360 Так же выведены контакты под ШИМ регулировку яркости и цепь контроля температуры платы.


Дальше одеваем оптику и едим вкуснятку:


Проверяем работу и правильность сборки:


Каждый из двух стабилизаторов управляет своей половиной светодиодов:


Достал с полки запасной стопак. Штатная схема имеет просто две лампы, на фотке виден светодиодный заменитель в штатный цоколь, таким он мне достался из япии:


Снимаем штатный красный фильтр и ставим плату с оптикой:


Пока все. Осталось прикрутить к этому полуфабрикату контроллер управления яркостью и работой. Старую схему на G сенсоре применить не смогу, ибо отказался от нее, нужно собирать на новой платформе, а это требует времени.

Toyota Will VS 2002, двигатель бензиновый 1.8 л., 192 л. с., передний привод, автоматическая коробка передач — тюнинг

Машины в продаже

Комментарии 35


Сделай мне пожалуйста .


это разве линза фринеля?


Ниже есть ответ


за таким колхозом обычным колхозникам уже не успеть… (



Возможно, не помню


Этот драйвер требует электролита 100 мкф на входе. Без него очень шумит… Если антенна рядом то вообще глушит.


У меня не шумит. Там керамика по входу на 10 микрофарад, это с лихвой достаточно для мегагерцовых частот.


Степан, у него там нет мегагерца. 300-400кГц по-моему это максимум что я видел.
Ну и +-30% по току на выходе это так себе результат ) Но с керамикой да, работает получше.
А вот светодиоды я бы, конечно, нормальные взял все же)


Да, чето я загнул с частотой. Output Current Deviation по даташиту в паре процентов максимум. Светодиоды меня полностью устраивают. Помехи от таких штук идут от ошибок в монтаже и разводке проводников и в неверных точках подключения, когда питающие провода становятся передающими антеннами, в отклонениях (если такие есть) в рекомендациях производителя по монтажу компонентов. Ни разу не замечал в радио изменения звука при нажатии тормоза. Но тушить высокочастотные помехи электролитами конечно


Не аутпут каррент, а сама модуляция целевого тока )
Помехи да, от кривых рук, это факт. Я знаю чуваков, у которых от драйвера до светодиодов провода два метра ))) типа коммерческое решение за кучу бабла.
У меня в старой машине порядка 20 таких драйверов и тоже все ок.


CAMOKAT-BETEPAHA

Да, чето я загнул с частотой. Output Current Deviation по даташиту в паре процентов максимум. Светодиоды меня полностью устраивают. Помехи от таких штук идут от ошибок в монтаже и разводке проводников и в неверных точках подключения, когда питающие провода становятся передающими антеннами, в отклонениях (если такие есть) в рекомендациях производителя по монтажу компонентов. Ни разу не замечал в радио изменения звука при нажатии тормоза. Но тушить высокочастотные помехи электролитами конечно

ну где, где вы берёте такую оптику?


ой, спасибо за ссылку!
правда мне такую партию многовато… поищу помельче.



Если присмотреться, за каждой призмой видно кольца. Оттуда и можно подумать что это линзы Френеля. А вот что это за кольца — Френеля или от инструмента — по фото определить тяжело


Определение линзы Френеля спорно в наше время. Сам классический вид линзы отличен (кольца) но вот результат и схема — точно такая же. Это результат того, что современные технологии ушли далеко вперед и позволяют намного усложнить и улучшить работу линзы Френеля, отступая от классического внешнего вида. И на телескопах кстати тоже используют отличную от оригинала форму, похожие на мои линзы, но называют при этом название "телескоп с принципом линзы Френеля" или с "аналогом линзы Френеля"
И еще яркий пример линзы Френеля в системах датчиков движения

Читайте также: