Как сделать лакмус красным

Обновлено: 06.07.2024

Растворы всех кислот и щелочей бесцветны, большинство из них не пахнут. Как же тогда можно определить, что в одном сосуде находится кислота, а в другом – щёлочь? Попробуем провести такой опыт. Разольём заваренный чай в два стакана. В один из них положим кусочек лимона, и мы увидим, что чай побледнел. В другой стакан добавим немного питьевой соды. Размешаем соду в стакане с чаем, мы увидим, что чай потемнел. Как объяснить эти результаты с точки зрения химии? Оказывается, чай указывает нам, что в лимоне есть кислота, а сода в соединении с водой образует щёлочь! Такой способностью подсказывать людям, где кислота, а где щёлочь обладают многие красители. Все они имеют специальное название – индикаторы, что означает – указатели.

По мере развития производственной и научной деятельности человека было создано огромное множество разнообразных индикаторов. Общая задача их – контролировать процесс или изменение состояния наблюдаемого объекта в форме, удобной для человеческого восприятия. В химической лаборатории или на заводе индикаторы в наглядной и доступной форме расскажут о том, прошла ли до конца химическая реакция или нет, достаточно добавлено одного реактива к другому или нужно ещё добавить. Чаще всего химики пользуются индикаторами, которые переменой цвета сообщают о величине концентрации водородных ионов в растворах, их называют кислотно-основными. Лакмус и фенолфталеин, сок красной капусты, вишни и черноплодной рябины, а также множество других красителей тонко реагируют на изменение концентрации ионов водорода в растворе. Но существуют индикаторы и других типов: окислительно-восстановительные, комплексонометрические, адсорбционные, хемилюминесцентные. Индикаторы всех этих пяти групп информируют химиков о том, как далеко зашли изменения в реакционной системе. Некоторые из них даже начинают светиться под действием происшедших в растворе изменений. Индикаторы действуют безотказно и отличаются большой чувствительностью.

История возникновения индикаторов.

История открытия лакмуса.

История открытия вещества, о котором пойдёт речь, началась в XVII веке в лаборатории известного английского физика и химика Роберта Бойля (1627-1692). В лаборатории, как обычно, кипела напряжённая работа: горели свечи, в ретортах нагревались разнообразные вещества. В кабинет к Бойлю вошел садовник и поставил в углу корзину с великолепными тёмно-фиолетовыми фиалками. В это время Бойль собирался проводить опыт по получению серной кислоты. Восхищённый красотой и ароматом фиалок, учёный, захватив с собой букетик, направился в лабораторию. Его лаборант Уильям сообщил Бойлю, что вчера доставили две бутылки соляной кислоты из Амстердама. Бойлю захотелось взглянуть на эту кислоту, и, чтобы помочь Уильяму налить кислоту, он положил фиалки на стол. Затем он взял со стола букетик и отправился в кабинет. Здесь Бойль заметил, что фиалки слегка дымятся от попавших на них брызг кислоты. Чтобы промыть цветы, Бойль опустил их в стакан с водой. Через некоторое время он бросил взгляд на стакан с фиалками, и случилось чудо: тёмно-фиолетовые фиалки стали красными. Естественно, Бойль, как истинный учёный, не мог пройти мимо такого случая и начал исследования.

Фенолфталеин – кислотно-основный индикатор.

Фенолфталеин – бесцветное кристаллическое органическое вещество сложного строения. Фенолфталеин мало растворим в воде и хорошо растворяется в этиловом спирте. Он может служить кислотно-основным индикатором: его раствор, бесцветный в нейтральной и кислотной средах, в щелочной среде становится малиновым. Раствор фенолфталеина для химических опытов обычно содержит 0,1 г этого индикатора в 125 мл этилового спирта и 25 мл воды. Фенолфталеин – это не только индикатор, но и лекарственное средство (сильное слабительное – пурген) и поэтому продаётся в аптеке. Синтез фенолфталеина впервые осуществил в 1871 году немецкий химик Адольф фон Байер, будущий лауреат Нобелевской премии.

Каждому школьнику хорошо знаком лакмус – с его помощью определяют кислотность среды. Это вещество является кислотно-основным индикатором, то есть обладает способностью обратимо изменять окраску в зависимости от кислотности раствора: в кислой среде лакмус становится красным, а в щелочной – синим. В нейтральной среде лакмус фиолетовый – это сочетание равных количеств синего и красного. Хотя лакмус уже в течение нескольких столетий верно служит людям, его состав так до конца и не изучен. В этом нет ничего удивительного: ведь лакмус – это сложная смесь природных соединений. Он был известен уже в Древнем Египте и в Древнем Риме, где его использовали в качестве фиолетовой краски – заменителя дорогостоящего пурпура. Лишь в начале XIV века во Флоренции вновь была открыта фиолетовая краска орсейль, тождественная лакмусу, причём способ её приготовления в течение многих лет держали в секрете. Готовили лакмус из специальных видов лишайников. Измельчённые лишайники увлажняли, а затем добавляли в эту смесь золу и соду. Приготовленную таким образом густую массу помещали в деревянные бочки, добавляли мочу и выдерживали длительное время. Постепенно раствор приобретал тёмно-синий цвет. Его упаривали и в таком виде применяли для окрашивания тканей.

В XIX веке на смену лакмусу пришли более прочные и дешёвые синтетические красители, поэтому использование лакмуса ограничилось лишь грубым определением кислотности среды. Для этой цели служат полоски фильтровальной бумаги, пропитанные раствором лакмуса. На смену лакмусу в аналитической химии пришёл лакмоид – краситель резорциновый синий, который отличается от природного лакмуса по строению, но сходен с ним по окраске: в кислой среде он красный, а в щелочной – синий.

Однако наиболее часто в лабораторной практике используется универсальный индикатор – смесь нескольких кислотно-основных индикаторов. Он позволяет легко определять не только характер среды (кислая, нейтральная, щелочная), но и значение кислотности раствора.

Шкала цветовых переходов кислотно-основных индикаторов.

название индикатора нейтральная среда кислотная среда щелочная среда лакмус фиолетовый красный синий тимоловый синий жёлтый малиново-красный синий метиловый оранжевый оранжевый красно-розовый жёлтый фенолфталеин бесцветный бесцветный малиновый универсальный жёлтый оттенки красного оттенки синего

Правила техники безопасности в домашней лаборатории.

Представить себе химию без химических опытов невозможно. Поэтому изучить эту науку, понять её законы и, конечно, полюбить её можно только через эксперимент. Сложилось мнение, что химический эксперимент – это сложное оборудование и недоступные реактивы, ядовитые соединения и страшные взрывы и для занятий химией необходимы особые условия. Тем не менее, более 300 химических опытов с самыми различными веществами можно выполнить в домашних условиях. В связи с тем, что в домашней лаборатории нет вытяжного шкафа и других специальных устройств, необходимо строго соблюдать правила техники безопасности:

1. Запрещается проводить опыты с ядовитыми и опасными веществами.

2. Нельзя накапливать и хранить дома большие количества реактивов.

3. Химические реактивы и вещества должны иметь этикетки с названиями, концентрацией и сроком изготовления.

4. Химические вещества нельзя пробовать на вкус.

5. Для определения запаха нельзя сосуд с веществом близко подносить к лицу. Нужно ладонью руки сделать несколько плавных взмахов от отверстия сосуда к носу.

6. Если пролилась кислота или щелочь, то вещество предварительно нейтрализуют или засыпают песком и удаляют тряпкой или собирают в совок.

7. Перед проведением эксперимента, каким бы простым он ни казался, нужно внимательно прочесть описание опыта и понять свойства применяемых веществ. Для этого есть учебники, справочники и другая литература.

Приготовление индикаторов из растительного сырья.

Стоит отметить, что пигменты растений могут быть химическими индикаторами. В качестве индикаторов можно использовать также свекольный, капустный, вишнёвый и виноградный соки, а также заварку. Растворы индикаторов надо готовить прямо перед опытом, потому что они быстро портятся.

Получение индикатора из краснокочанной капусты.

Краснокочанная капуста, спирт, вода, ступка с пестиком, раствор соляной кислоты, раствор гидрокарбоната натрия, штатив с пробирками, марлевый фильтр.

Методика проведения эксперимента:

Измельчаем лист краснокочанной капусты и растираем его в ступке с небольшим объёмом спирто-водной смеси (1:1). Вытяжка приобретает фиолетовый цвет, поскольку из капустной ткани экстрагируется рубробрассицин. Это и есть кислотно-щелочной индикатор растительной природы. Приготовим 4 пробирки: первая – с раствором соляной кислоты, капустный индикатор в этой пробирке ярко-красный цвет; вторая – просто с водой – цвет фиолетовый; третья – со слабым раствором гидрокарбоната натрия – цвет синий; четвёртая – с раствором щёлочи, приобретает зелёный цвет.

Получение индикатора из сока сахарной свёклы.

Сахарная свёкла, нож, тёрка, кастрюля, ступка с пестиком, стакан, воронка, марлевый фильтр, штатив с пробирками, раствор соляной кислоты, раствор гидроксида натрия.

Методика проведения эксперимента:

Очистим свёклу от кожуры, отрежем кусочек весом 5-10 грамм. Данный кусочек прокипятим в 100 мл воды в течение 5-10 минут. Протрём кусок свёклы на терке, измельчим в ступке и отфильтруем полученный настой. Фильтрат приобретает бордовый цвет. Приготовим 2 пробирки с растворами кислоты и щёлочи, добавим к содержимому пробирок по несколько капель полученного индикатора. В растворе кислоты свекольный индикатор приобретает малиновую окраску, а в растворе щёлочи становится жёлто-коричневым.

Получение индикатора из клюквы.

Клюква, ступка с пестиком, стакан, воронка, марлевый фильтр, мел, спирт, вода, штатив с пробирками, растворы соляной кислоты и гидроксида натрия.

Методика проведения эксперимента:

Ягоды клюквы разотрём в ступке с небольшим количеством чистого речного песка и добавим несколько миллилитров спирта. Необходимым условием является экстракция пигмента (краски) данным растворителем. После этого экстракт нейтрализуем мелом, так как сок клюквы содержит природные кислоты. Профильтруем полученную смесь через марлевый фильтр. Вытяжка приобретает красный цвет. Приготовим пробирки с растворами кислоты и щёлочи и добавим в каждую по несколько капель клюквенного индикатора. В растворе с кислотой индикатор приобретает алую окраску, а в растворе со щёлочью – синюю.

Получение индикатора из чёрного винограда.

Чёрный виноград, ступка с пестиком, стакан, воронка, марлевый фильтр, мел, спирт, вода, штатив с пробирками, раствор уксусной кислоты, раствор питьевой соды.

Методика проведения эксперимента:

С ягод чёрного винограда осторожно снимаем кожицу и измельчаем её в ступке с пестиком, добавляем несколько миллилитров спирта. Необходимым условием является экстракция пигмента (краски) данным растворителем. После этого экстракт нейтрализуем мелом, так как сок винограда содержит природные кислоты. Профильтруем полученную смесь через марлевый фильтр. Вытяжка приобретает бордово-красный цвет. Приготовим пробирки с растворами уксусной кислоты и питьевой соды и добавим в каждую по несколько капель виноградного индикатора. В растворе с кислотой индикатор приобретает красную окраску, а в растворе со щёлочью – жёлто-зелёную.

Получение индикатора из цветков домашней фиалки.

Домашняя фиалка, ступка с пестиком, стакан, воронка, марлевый фильтр, спирт, вода, штатив с пробирками, раствор соляной кислоты, раствор гидроксила натрия.

Методика проведения эксперимента:

Сорвём несколько цветков с комнатного растения – фиалка. Измельчим цветки в ступке с небольшим количеством чистого речного песка и добавим несколько миллилитров спирто-водной смеси (1:1). Полученную смесь отфильтруем в стакан. Вытяжка приобретает сиреневый цвет. Приготовим пробирки с растворами соляной кислоты и гидроксида натрия, добавим в каждую пробирку по несколько капель фиалкового индикатора. В растворе с кислотой индикатор приобретает розовый цвет, а в растворе со щёлочью – зелёный.

Для проведения опытов целесообразно приготовить индикаторные бумажки. Полученными вытяжками из соков овощей, ягод и цветков пропитаем полоски фильтровальной (промокательной) бумаги, которые затем высушим в тени и сохраним в тёмных плотно закрытых склянках, на которых приклеим этикетки с названиями растений. Эти индикаторные бумажки можно использовать в школе при проведении лабораторных опытов. Результаты экспериментов оформляем в виде таблицы.

Получение индикатора фенолфталеина.

Лекарственное вещество – пурген, спирт, вода, стакан, ступка с пестиком, штатив с пробирками, раствор соляной кислоты, раствор гидроксида натрия.

Методика проведения эксперимента:

Разотрём в ступке одну таблетку лекарственного вещества – пургена, размешаем с несколькими каплями спирта и разведём водой до 20-30 мл. Приготовим пробирки с растворами соляной кислоты и гидроксида натрия, добавим в каждую пробирку по несколько капель полученного индикатора. В растворе с кислотой индикатор остаётся бесцветным, а в растворе со щёлочью приобретает малиновую окраску.

Пробирка, гидроксид натрия, соляная кислота, фенолфталеин.

Методика проведения эксперимента:

В пробирку прильём 1 мл раствора гидроксида натрия и добавим несколько капель фенолфталеина, раствор приобретает малиновую окраску. К полученному раствору будем по каплям приливать соляную кислоту. При добавлении кислоты окраска раствора исчезает, так как среда становится нейтральной, то есть протекает реакция нейтрализации.

Лакмус для цветов.

Семь бумажных цветов из фильтровальной бумаги, раствор лакмуса, семь стаканчиков, уксусная кислота, лимонная кислота, питьевая сода, стиральный порошок, кальцинированная сода, нашатырный спирт, шампунь, вода.

Методика проведения эксперимента:

Среди веществ, которые можно найти дома на кухне, в аптечке или ванной комнате, есть кислоты и основания. Чтобы определить, какая среда в растворе (кислотная или щелочная) будем использовать индикатор – раствор лакмуса. Лакмус синеет в щелочной среде и становится красным в кислотной.

Сделаем из фильтровальной бумаги семь бумажных цветов (роз) и опустим их поочерёдно в раствор лакмуса. В нейтральной среде этот раствор фиолетовый.

Фильтровальная бумага, проволока, банка с крышкой, медный купорос, фенолфталеин, нашатырный спирт.

Методика проведения эксперимента:

Из фильтровальной бумаги и проволоки готовим два цветочка: розу и василёк. Бумажную розу необходимо пропитать раствором медного купороса, а бумажный василёк – спиртовым раствором фенолфталеина. Красиво разместим влажные цветы в банке, вольём в неё 10 мл нашатырного спирта и закупорим горловину крышкой. Через несколько минут роза станет ярко-синей (васильковой), так как медный купорос образует с аммиаком комплекс интенсивно-синего цвета. А василёк станет розово-малиновым, так как индикатор фенолфталеин в щелочной среде окрашивается в малиновый цвет.

Белый лист бумаги, раствор фенолфталеина, ручка с пером.

Методика проведения эксперимента:

На белом листе бумаги обычным пером пишут какой-нибудь текст, но вместо чернил берут спиртовой раствор фенолфталеина. Спирт быстро испаряется с бумаги, а фенолфталеин остаётся невидимым. По внешнему виду бумага кажется совершенно чистой. Для того чтобы прочитать текст необходимо приготовить раствор, имеющий щелочную среду (раствор гидроксида натрия, питьевой или кальцинированной соды или использовать нашатырный спирт)

Выводы по работе.

В ходе выполнения учебно-исследовательской работы, мы выяснили, что такое индикаторы, познакомились с их классификацией, историей открытия и способами получения. Экспериментальную часть работы мы выполняли дома и в школьной лаборатории. В ходе выполнения экспериментов, мы освоили методику получения природных индикаторов из растительного сырья, а также составили экспериментальную шкалу цветовых переходов природных индикаторов в различных средах. Мы считаем, что полученные нами индикаторы имеют преимущества перед синтетическими, потому что они дешёвые и доступные; но у них есть и существенные недостатки. Основной недостаток природных индикаторов – их сезонность и невозможность заготовить впрок: растворы довольно быстро скисают или плесневеют, теряют свои свойства. Другой, но не такой существенный недостаток – слишком медленное, постепенное изменение цвета при добавлении кислоты к щелочному раствору или наоборот. К тому же трудно бывает отличить, например, нейтральную среду от слабокислой или слабощелочную от сильнощелочной. Поэтому в химических лабораториях используют синтетические индикаторы, резко меняющие свой цвет уже при небольшом изменении кислотности.

А также мы поняли, что химия – это замечательная наука! Она помогает нам дома и в школе, даёт пищу и одежду, снабжает необычными веществами и материалами и удивляет химическими чудесами. Химия позволит нам проникнуть в тайны природы, прикоснуться к прекрасному и познать многие вещества, окружающие нас. Как много ещё интересных открытий предстоит нам совершить, изучая химию.

Шкала цветовых переходов природных индикаторов в различных средах.

Природный индикатор кислая среда нейтральная среда щелочная среда краснокочанная капуста красный фиолетовый зелёный сахарная свёкла малиновый бордовый жёлто-коричневый клюква алый красный синий чёрный виноград красный бордово-красный зелёный домашняя фиалка розовый сиреневый жёлто-зелёный

Реактив роза до опыта роза после опыта уксусная кислота фиолетовая розовая лимонная кислота фиолетовая розовая питьевая сода фиолетовая синяя нашатырный спирт фиолетовая синяя кальцинированная сода фиолетовая синяя стиральный порошок фиолетовая синяя шампунь фиолетовая синяя

Одним из способов является применение индикаторов, изменяющих свою окраску при изменении среды раствора.

  • метилоранж,
  • лакмус,
  • фенолфталеин,
  • универсальный индикатор.

Вспомним правила смешивания цветов! Из каких двух цветов при смешивании можно получить оранжевый? Из красного и жёлтого. Действительно, в щелочной среде метилоранж приобретает жёлтый цвет.

2) Фенолфталеин является индикатором на щелочную среду . Только в ней он приобретает яркую малиновую окраску. В остальных средах он бесцветный.

Лакмусовая бумажка – простое, доступное приспособление, которое дает возможность быстро измерять показатели кислотно-щелочной среды жидкостей и их смесей. Наиболее часто такой индикатор применяют для определения химической активности телесных жидкостей, в частности слюны, мочи, грудного молока, прочего. Лакмусовая бумажка также подходит для работы с водой, всевозможными растворами.

Индикатор может пригодиться не только специалистам, что проводят лабораторные исследования. Влажная лакмусовая бумажка нередко используется в быту. Она поможет больше узнать о собственном организме.

Что представляет собой лакмус?

лакмусовая бумажка

Непосредственно лакмус является особой красящей субстанцией, которую синтезируют из нескольких типов лишайников. Основным действующим веществом здесь выступает слабая кислота, что используется в качестве пропитки для фильтровальной бумаги. Индикаторные бумажные ленты нередко обрабатывают фенолфталеином, метиловым оранжевым, а также такими натуральными красителями, как сок рябины, вишни, красной капусты.

Цвета лакмусовой бумажки

При контакте с азотной кислотой лакмусовая бумага приобретает темно-красный оттенок. Схожий цвет индикатор имеет и в случае взаимодействия с соляной и серной кислотой. Указанные химические вещества называют сильными кислотами. В свою очередь, винная, уксусная и лимонная кислоты имеют определение слабых. При контакте с ними бумажка окрашивается в розовый цвет.

Как определяется щелочная среда? В случае взаимодействия с веществами данной категории лакмусовый индикатор приобретает синий оттенок. Большинство таких субстанций имеют едкий характер. Поэтому работать с ними, применяя лакмусовую бумагу, следует осторожно. Безопасными являются лишь нашатырный спирт и известковая вода. Несмотря на низкую химическую активность, эти вещества также относятся к категории щелочей.

Как пользоваться лакмусовой бумагой?

влажная лакмусовая бумажка

Определять уровень pH жидких веществ с помощью такого индикатора довольно просто. Необходимо лишь отмотать определенное количество бумаги из рулона, достаточное для проведения теста. Затем нужно поместить полосу в исследуемый раствор на несколько секунд.

Результатом выполнения процедуры станет окрашивание лакмусовой бумаги в определенный оттенок. Последний необходимо сравнить с цветовой шкалой, которая находится в инструкции к применению индикатора. Если полученный оттенок равен цифровому значению 7 на шкале, это означает, что исследуемое вещество имеет нейтральный характер. Получение pH менее 7 подскажет о том, что произошла кислотная реакция, а более – щелочная.

Лакмусовый индикатор в быту

цвета лакмусовой бумажки

В домашних условиях лакмусовую бумагу можно использовать в нескольких ситуациях. К регулярному применению индикатора прежде всего прибегают люди, которые следят за состоянием собственного здоровья. С помощью такого средства можно отслеживать изменения в кислотно-щелочных показателях слюны и мочи, прочих телесных жидкостей.

Подходит лакмусовая бумага для организации здорового питания. В частности, ее применение дает возможность исследовать показатели pH напитков, а также блюд, на основе которых строится рацион.

В бытовых условиях применение индикатора позволяет определить качество воды в аквариуме, исследовать почву, что используется для выращивания комнатных растений.

В итоге

Как видно, лакмусовая бумажка является универсальным средством для определения химической активности отдельных сред. Успешно используют такой индикатор не только в лабораторных условиях. Его умелое применение дает возможность получать ценные сведения о характере различных веществ в быту.

Лакмус: химическая формула
Лакмус: вид молекулы

Лакмус (от нидерл. lakmoes ) — красящее вещество природного происхождения, один из первых и наиболее широко известных кислотно-основных индикаторов.

Свойства

В чистом виде представляет собой тёмный порошок со слабым запахом аммиака. Хорошо растворяется в чистой воде, образуя растворы фиолетового цвета. В кислых средах (pH 8,3) — синюю.
У лакмуса, по сравнению с остальными индикаторами, сравнительно небольшая погрешность в определении среды вещества.

Состав

    (англ.Azolitmin , сост. C9H10NO5) — может быть выделен из лакмуса экстракцией и использоваться как самостоятельный кислотно-щелочной индикатор; (англ.Erythrolitmin или Orcein Erythrolein, сост. С13H22O6);
    (англ.Spaniolitmin ); (англ.Leucoorcein ); (англ.Leucazolitmin ).

Применение




Происхождение









Добывается из растительного сырья, в частности из некоторых лишайников: Roccella tinctoria ((о-ва Кабо-Верде, Канарские о-ва, Мадейра, Азорские о-ва, западное побережье Южной Америки), Roccella fuciformis (Ангола и Мадагаскар), Roccella pygmaea (Алжир), Roccella phycopsis, Lecanora tartarea (Норвегия, Швеция), Variolaria dealbata (Пиренеи и Аверн), Ochrolechia parella (северо-запад Атлантического побережья Европы), Parmotrema tinctorum (Канарские острова), из различных видов рода Parmelia, Dendrographa leucophoea (США, Калифорния). Основными производителями лакмуса являются Мозамбик (из Roccella montagnei) и США (из Dendrographa leucophoea).

Получение

  • растительное сырьё измельчают до порошкообразного состояния;
  • порошок до 3-х недель вымачивают в содово-аммиачном растворе (сода или поташ + NH4OH) при постоянном перемешивании. Вместо раствора аммиака обычно использовалась моча (как источник ионов (CO3) 2- и NH4) + );
  • после того, как в результате вымачивания (экстрагирования) и ферментации цвет смеси меняется с красного на голубой, осадок отделяют;
  • после отделения осадка полученный голубой экстракт высушивается и размалывается. В результате образуется порошок смеси лакмусового и орцеинового пигментов;
  • после спиртовой экстракции порошка карминово-красный раствор красящих веществ удаляется и остается тёмно-синий лакмус;
  • прессовка осадка с гипсом или мелом позволяет получить легко крошащиеся блоки готового сухого лакмуса.
  • растительное сырьё измельчают до порошкообразного состояния;
  • порошок смешивают с водным раствором-суспензией извести-поташа и карбоната аммония и оставляют для ферментации на воздухе;
  • примерно через 3 недели ферментации цвет смеси изменяется с фиолетового или коричневого на насыщенный синий;
  • смесь разделяется на сите, выделенный раствор содержит до 90% орцеина и до 8% веществ лакмуса в пересчете на сухой остаток.
  • далее раствор может использоваться для прессовки блоков из мела или гипса, либо выпариваться для последующей спиртовой экстракции орцеина.

История

Впервые лакмус был применён в качестве химического реагента и индикатора других веществ около 1300г. испанским врачом и алхимиком Арнальдусом де Виланова (Arnaldus de Villanova).
С XVI-ого века, когда информация о способе получения лакмуса распространилась, голубой лакмус из лишайников Leuconora tartarea и Rocella tinctoria в промышленных количествах начал производиться в Голландии на экспорт под названиями "Bergmoos" и "Klippmoos". В 1704 году этот индикатор получил своё нынешнее название — лакмус. Название Lakmoes, ставшее прародителем современого названия препарата (англ. Litmus , нем. Lackmus , рус. Лакмус ) было образовано от индогерманских корней "leg" (капать) и "mus" (каша) и отражало способ получения лакмуса - экстракцию по каплям из измельчённых в кашу лишайников.
В 1640 году ботаники описали красящее вещество, которое они получали из душистого растения с тёмно-лиловыми цветками — гелиотропа. Химики вскоре стали использовать этот краситель в качестве индикатора (в растворах кислот он становился красным, а в щелочах синим). Изначально лакмус использовали в основном для исследования минеральных вод, но с 1670-х годов им в полной мере заинтересовались химики. Французский химик Пьер Поме писал:

Читайте также: