Как сделать квантовый телепорт

Обновлено: 04.07.2024

Ученые из Великобритании и Дании провели первую в мире квантовую телепортацию — смогли передать квантовое состояние частицы между двумя чипами. Это должно стать краеугольным камнем для технологий квантовой связи. Точность передачи данных составила 91%.

Кодирование в свете

Ученые из Бристольского университета в Великобритании и Датского технического университета создали устройства наподобие чипов, которые способны генерировать и манипулировать отдельными частицами света в программируемых наноразмерных схемах, реализуя таким образом законы квантовой физики. Об этом сообщил Бристольский университет на своем сайте. Результаты исследования были опубликованы в журнале Nature Physics.

Эти чипы способны кодировать квантовую информацию в свете, который генерируется внутри схемы, и могут обрабатывать эту информацию с высокой эффективностью и чрезвычайно низким уровнем шума. Изобретение должно помочь человечеству перейти к созданию более сложных схем для квантовых вычислений и коммуникаций, чем те, которые существуют на сегодняшний день.

Квантовая телепортация

В одном из самых прорывных экспериментов исследователи из Лаборатории квантовых инженерных технологий Бристольского университета (QET Labs) впервые продемонстрировали квантовую телепортацию информации между двумя программируемыми микросхемами. Они отмечают, что это должно стать краеугольным камнем для технологий квантовой связи.

Данная телепортация представляет собой передачу квантового состояния частицы из одного места в другое с помощью так называемого квантового запутывания, при котором квантовые состояния нескольких частиц зависят друг от друга. Установление запутанной линии связи между двумя чипами оказалось весьма непростой задачей, даже в лабораторных условиях.

kvant490.jpg

По словам одного из авторов исследования — Дэна Ллевеллина (Dan Llewellyn) из Бристольского университета — изначально фотоны в каждом чипе находились в одном квантовом состоянии. Затем каждый чип был запрограммирован для проведения ряда манипуляций с использованием запутывания. В основном эксперименте были задействованы две микросхемы. Между ними удалось передать индивидуальное квантовое состояние частицы после проведения квантовых измерений. В ходе измерений использовался феномен квантовой физики, при котором одновременно разрушается запутанная связь, а состояние частицы передается другой частице, уже находящейся в чипе-приемнике.

Другой соавтор работы, профессор Имад Фарук (Imad Faruque), также из Бристольского университета, добавил, что в итоге была создана еще более сложная схема, содержащая четыре однофотонных источника. Все источники были проверены и признаны практически идентичными, то есть испускающими почти одинаковые фотоны, что чрезвычайно важно для обмена запутыванием. Точность квантовой телепортации составила 91%.

Кроме того, исследователи смогли продемонстрировать некоторые другие важные функциональные возможности своих чипов. К ним относятся перестановка запутывания (требуется для квантовых повторителей и квантовых сетей) и четырехфотонные гигагерцные состояния (требуются в квантовых вычислениях и квантовом интернете).

Зачем нужны квантовые технологии


Квантовые вычисления можно применить для решения проблем моделирования в области химии, поскольку традиционная техника не может, например, смоделировать квантовые состояния даже простой молекулы из-за их большого количества. Компании вроде IBM уже разработали методики, позволяющие исследовать симуляцию химических задач с помощью квантовых процессоров. В перспективе на квантовых компьютерах можно будет осуществлять моделирование сложных молекул и высокоточное предсказание химических свойств.

Квантовые приложения в дальнейшем могут быть использованы для создания новых медикаментов, поскольку с их помощью можно моделировать сложные молекулярные и химические реакции. Также они найдут применение в глобальной логистике, где помогут в построении каналов поставок в наиболее загруженные периоды — например, в праздничный сезон. В сфере инвестиций квантовые инструменты применимы для моделирования финансовых данных и ликвидации факторов риска в процессе инвестиций.

Кроме того, они дадут возможность осуществлять поиск по чересчур большим массивам данных с помощью усиленного искусственного интеллекта, что пригодится при поиске изображений или видео. Также квантовые алгоритмы смогут повысить безопасность облачных вычислений и конфиденциальной информации за счет законов квантовой физики.


В фантастических мирах, придуманных писателями и сценаристами, телепортация давно стала стандартной транспортной услугой. Кажется, сложно найти настолько же быстрый, удобный и в то же время интуитивно понятный способ перемещения в пространстве.

Основы

Почему телепортация именно квантовая? Дело в том, что квантовые объекты (элементарные частицы или атомы) обладают специфическими свойствами, которые обусловлены законами квантового мира и в макромире не наблюдаются. Именно такие свойства частиц и послужили основой экспериментов по телепортации.

ЭПР-парадокс

Чтобы разобраться, в чем же заключается парадокс, сначала проведем опыт с макроскопическими объектами. Возьмем два ящика, в каждом из которых лежат по два шара — черный и белый. И отвезем один из этих ящиков на Северный полюс, а другой на Южный.

Если мы вынем на Южном полюсе один из шаров (например, черный), то это никак не повлияет на результат выбора на Северном полюсе. Совершенно не обязательно, что там нам в этом случае попадется именно белый шар. Этот простой пример подтверждает, что наблюдать ЭПР-парадокс в нашем мире невозможно.

Эксперименты по телепортации

В 1993 году Чарльз Беннет и его коллеги придумали, как можно использовать замечательные свойства ЭПР-пар: они изобрели способ переноса квантового состояния объекта на другой квантовый объект с помощью ЭПР-пары и назвали этот способ квантовой телепортацией. А в 1997 году группа экспериментаторов под руководством Антона Цайлингера впервые осуществила квантовую телепортацию состояния фотона. Схема телепортации подробно описана на врезке.

Ограничения и разочарования

Принципиально важно, что квантовая телепортация — это перенос не объекта, а только неизвестного квантового состояния одного объекта на другой квантовый объект. Мало того, что квантовое состояние телепортируемого объекта так и остается для нас тайной, оно к тому же необратимо разрушается. Но в чем мы можем быть совершенно уверены, так это в том, что получили идентичное состояние другого объекта в другом месте.

Тех, кто рассчитывал, что телепортация будет мгновенной, ждет разочарование. В способе Беннета для успешной телепортации необходим классический канал связи, а значит, и скорость телепортации не может превышать скорость передачи данных по обычному каналу.

И пока совершенно неизвестно, удастся ли перейти от телепортации состояний частиц и атомов к телепортации макроскопических объектов.

Применение

Практическое применение для квантовой телепортации нашлось быстро — это квантовые компьютеры, где информация хранится в виде набора квантовых состояний. Тут квантовая телепортация оказалась идеальным способом передачи данных, который принципиально исключает возможность перехвата и копирования передаваемой информации.

Дойдет ли очередь до человека?

Краткая версия

Успешный перенос квантового состояния с одной частицы на другую можно применить в технологиях квантовой связи, что позволит создать невзламываемый тип коммуникации – из-за особенностей квантового мира хакер, решивший перехватить и изучить квантовую информацию, получит искаженную версию, которую вряд ли сможет использовать. В АСИ хотят внедрять именно квантовую телепортацию – в частности, интерес к этой технологии проявляют банки и структуры безопасности.

Теперь подробнее

В нашем мире абсолютно все состоит из элементарных частиц. Даже взаимодействия между частицами состоят из особых частиц (бозонов). Все частицы при этом обитают в квантовом мире – на недоступном глазу микроуровне, где законы физики очень сильно отличаются от привычных человеку.

Именно это явление лежит в основе феномена квантовой телепортации, который активно изучается с первых удачных экспериментов в 1990-х годах.

Рецепт квантовой телепортации

Есть распространенный пример, который обычно приводят для объяснения квантовой телепортации.

  • Частица А, квантовое состояние которой нужно передать;
  • Две запутанные частицы B и C, представляющие собой квантовый канал связи;
  • Традиционный канал связи – в случае фотонов для этого используется оптоволоконный кабель.

Затем запутанные частицы разносят на необходимое расстояние – так, чтобы в одном месте остались фотоны A и B, а в другом – C. Между двумя пунктами проводят оптоволоконный кабель. Отметим, что максимальное расстояние, на котором производилась квантовая телепортация, составляет уже более 100 км.

Задача – передать квантовое состояние незапутанной частицы А частице C. Для этого ученые измеряют квантовое свойство фотонов А и B. Результаты измерений затем превращают в бинарный код, который рассказывает о различиях между частицами А и B.

Для чего все это нужно

В первую очередь квантовую телепортацию планируется применять в технологиях квантовой связи и квантовой криптографии – защищенность такого типа коммуникаций выглядит привлекательно и для бизнеса, и для государства, а использование квантовой телепортации позволяет избежать потери информации при движении фотонов по оптоволокну.

Другое направление ˜– это квантовые компьютеры, где запутанные частицы могут использоваться в качестве кубитов – единиц квантовой информации.

Отметим, что в данный момент ученые телепортируют в основном состояния фотонов и атомов; более крупные объекты телепортировать пока не удалось.

Судя по всему, гипотетически квантовую телепортацию все-таки можно использовать для создания копий крупных объектов, включая человека – ведь организм тоже состоит из атомов, квантовые состояния которых можно телепортировать. Однако на современном этапе развития технологий это считают невозможным и относят к области фантастики.

Что такое квантовая телепортация, кто ее придумал, как выглядит самый первый и простой подобный эксперимент?

Квантовая телепортаци — это когда квантовое состояние некоторого физического объекта (например, фотона) передается на идентичный объект, находящийся в другом месте, без использования прямого переноса квантовой частицы.

По традиции, партнеров, находящихся на двух концах квантовой линии связи, называют Алиса и Боб. Так вот, для того, чтобы телепортировать фотон от Алисы к Бобу, им нужно дополнительно приготовить и обменяться парой фотонов в запутанном состоянии. Таким образом, вначале у Алисы два фотона: тот, который она хочет телепортировать и один из двух запутанных, а у Боба — второй из этих двух. В ходе телепортации Алиса измеряет квантовое состояние обоих из своих фотонов и передает полученный результат Бобу.

Если речь идет о состояниях оптической поляризации (то есть в какой плоскости колеблется поле электромагнитной волны), то используются так называемые поляризационные светоделители. Это такой стеклянный кубик, который пропускает горизонтально поляризованные фотоны и отражает на угол 90 градусов — вертикально поляризованные. Если фотон поляризован как-то по-другому, то есть находится в суперпозиции вертикального и горизонтального состояний, то он случайным образом пройдет насквозь либо отразится, с определенной вероятностью. За кубиком, в каналах пропускания и отражения, ставят детекторы одиночных фотонов, которые генерируют электрические импульсы при попадании на них квантов света.

Откуда берутся запутанные пары фотонов и что именно у них запутано?

Что такое вообще запутанные частицы? Например, мы взяли пару фотонов, разнесли их на расстояние и измерили состояние одного из них. Со вторым что-то в этот момент произошло? Или мы просто что-то узнали о нем, как в эксперименте с двумя шариками, которые можно бросить в мешок, вытащить один и точно узнать какой остался?

Запутанное состояние — это состояние суперпозиции, в котором одновременно находятся два отдельных квантовых объекта. Например, суперпозиция состояний двух фотонов, в первом из которых фотон Алисы имеет горизонтальную поляризацию, а фотон Боба вертикальную, а во втором — наоборот, является запутанной.

Квантовые свойства запутанных объектов являются коррелированными. Это означает не просто, что если один из партнеров обнаружит фотон в горизонтальной поляризации, поляризация второго окажется вертикальной (подобная корреляция встречается и у классических объектов, таких, как упомянутые Вами шарики в мешке). В случае квантовой корреляции, какой бы угол поляризации ни обнаружила Алиса, Боб непременно обнаружит поляризацию, ортогональную Алисе. По сравнению с шариками разница в том, что они имеют определенный цвет сами по себе — еще до того, как мы их увидели. С квантовым объектом дело обстоит иначе — нельзя сказать, что они имеют какую-то поляризацию до того, как мы ее измерили. До измерения они находятся в суперпозиции разных поляризаций.

Разобрались с запутанными парами, теперь — как нам провести квантовую телепортацию?


Тогда фотон Боба преобразуется в состояние с поляризацией, идентичной первоначальной поляризации фотона Алисы, или такой, которая может быть приведена к этой поляризации простой операцией. Фотон Алисы при этом разрушается, благодаря чему соблюдается запрет на квантовое клонирование.

Это же обман, телепортируется только состояние частицы, а не сама частица. Почему же тогда это называется телепортацией?

Хорошо, а зачем вообще что-то телепортировать?

Телепортация макроскопических объектов — например, людей — не входит в число насущных задач квантовой технологии. Однако телепортация квантовых состояний микроскопических частиц — фотонов, атомов — оказывается полезной для квантовых информационных технологий. Например, она является важной составляющей определенных моделей квантовых компьютеров и повторителей (репитеров).

И как с помощью телепортации можно сделать связь?

Квантовая связь основана на кодировании битов в состояниях отдельных фотонов. В современных системах квантовой связи эти фотоны передаются от Алисе к Бобу напрямую по оптоволоконному каналу. Проблема в том, что в таких каналах есть существенные потери: половина всех фотонов теряется каждые 10-15 км. Это ограничивает практическую дальность передачи где-то сотней километров. Эту трудность, однако, можно обойти, если не передавать фотоны напрямую, а телепортировать их. Тогда фотону Алисы придется преодолеть лишь небольшое расстояние.

И как, это удается на практике? Какая скорость, дальность телепортации, что с репитерами?

Не вдаваясь в технические подробности, скажу, что для осуществления такой схемы необходимо уметь не только телепортировать квантовые состояния фотонов, но и сохранять их неизменными в течение относительно длительного времени (хотя бы нескольких миллисекунд). Для этого необходимо разработать квантовую ячейку памяти для фотонов, а такого прибора с необходимыми параметрами пока у нас нет. Поэтому квантовый повторитель пока не реализован. Однако надеюсь, что мы преодолеем трудности в течении ближайших нескольких лет.

Какие главные проблемы стоят перед квантовой телепортацией, что нам сулит их решение?

Читайте также: