Как сделать концентрированный раствор

Обновлено: 06.07.2024

Цель: Научиться навыкам проведения расчетов, необходимых для приготовления растворов различных концентраций и умению готовить такие растворы.

Задачи:

1. Ознакомиться со способами выражения концентрации растворов.

2. Разобрать обучающие задачи по расчету концентрации растворов.

Студент должен знать:

1. до изучения темы: Понятия массовой доли, количества вещества, концентрации раствора и их взаимную связь.

2. после изучения темы: Понятия: раствор, растворитель, растворенное вещество; особенности структуры воды в жидком и твердом состояниях; растворимость твердых веществ, газов в воде; факторы, влияющие на растворимость; способы выражения концентрации растворов: по растворению точной навески (объема) сухого вещества, кристаллогидрата, газа; из концентрированного раствора путем его разбавления; из разбавленного раствора путем его концентрирования.

Студент должен уметь: Проводить необходимые расчеты для приготовления раствора с заданной концентрацией раствора. Пользоваться аналитическими весами, мерной посудой (пипетки, бюретки, мерные пробирки, цилиндры, мензурки) и химическими приборами (ареометр).

Теоретическое введение

Растворы играют важную роль в живой и неживой природе, а также в науке и технике.

Большинство физиологических процессов в организмах человека, животных и в растениях, различных промышленных процессов, биохимических процессов в почвах и т.п. протекают в растворах.

Раствор – это гомогенная многокомпонентная система, в которой одно вещество распределено в среде другого или других веществ.

Растворы могут быть в газообразном (воздух), жидком и твердом (сплавы, цветные стекла) агрегатных состояниях. Чаще всего приходится работать с жидкими растворами.

Содержание данного вещества в единице массы или объема раствора называется концентрацией раствора. На практике наиболее часто пользуются следующими способами выражения концентрации:

1. Массовая доля – отношение массы данного компонента в растворе к общей массе этого раствора. Массовая доля может быть выражена в долях единицы, процентах (%), промилле (тысячная часть %) и в миллионных долях (млнˉ1). Массовая доля данного компонента, выраженная в процентах, показывает, сколько граммов данного компонента содержится в 100 г раствора.

2. Массовая концентрация – отношение массы компонента, содержащегося в растворе, к объему этого раствора. Единицы измерения массовой концентрации кг/м 3 , г/л.

3. Титр Т – число граммов растворенного вещества в 1 мл раствора. Единицы измерения титра – г/мл, кг/см 3 .

4. Молярная концентрация с – отношение количества вещества (в молях), содержащегося в растворе, к объему раствора. Единицы измерения - моль/м 3 , (моль /л). Раствор, имеющий концентрацию 1 моль/л, обозначают 1М; 0,5 моль/л, обозначают 0,5 М.

5. Молярная концентрация эквивалентов сэк (нормальная концентрация) – это отношение количества вещества эквивалентов (моль) к объему раствора (л). Единица измерения нормальной концентрации моль/л. Например, сэк(KOH) = 1 моль/л, сэк(1/2H2SO4) = 1 моль/л, сэк(1/3 AlCl3) = 1 моль/л. Раствор в 1 л которого содержится 1 моль вещества эквивалентов, называют нормальным и обозначают 1 н.

6. Моляльность b - это отношение количества растворенного вещества (в молях) к массе m растворителя. Единица измерения моляльности - моль/кг. Например, b(HCl/H2O) = 2 моль/кг.

7. Молярная доля – отношение числа молей растворенного вещества к общему числу молей вещества и растворителя. Молярная доля может быть выражена в долях единицы, процентах (%), промилле (тысячная часть %) и в миллионных долях (млн-1).

Для приготовления растворов определенной концентрации, для точного измерения объемов применяют мерную посуду: мерные колбы, пипетки и бюретки.

Мерные колбы – тонкостенные плоскодонные сосуды с длинным узким горлом, на котором нанесена метка в виде кольцевой черты. На каждой колбе обозначены ее емкость и температура, при которой эта емкость измерена. Колба должна плотно закрываться пробкой (рис.1).


Рис. 1 Мерная посуда

а - мерная колба; б – пипетки; в – бюретка.

Пипетки используют для отбора определенного объема пробы жидкости.

Пипетки Мора представляют собой стеклянные трубки с расширением посередине. Нижний конец оттянут в капилляр, на верхнем конце нанесена метка, до которой следует набирать измеряемую жидкость. На пипетке указана объемность.

Широко применяют также градуированные пипетки различной емкости, на наружной стенке которых нанесены деления. Для наполнения пипетки нижний конец ее опускают в жидкость и втягивают последнюю при помощи груши или специального приспособления. Жидкость набирают так, чтобы она поднялась на 2-3 см выше метки, затем быстро закрывают верхнее отверстие указательным пальцем правой руки, придерживая в то же время пипетку большим и средним пальцами. Затем ослабляют нажим указательного пальца, в результате чего жидкость будет медленно вытекать из пипетки. В тот момент, когда нижний мениск (уровень) жидкости окажется на одном уровне с меткой, палец снова прижимают. Введя пипетку в сосуд, отнимают указательный палец и дают жидкости стечь по стенке сосуда. После того, как жидкость вытечет, пипетку держат еще 5секунд прислоненной к стенке сосуда, слегка поворачивая вокруг оси.

Бюретки применяют при титровании, для измерения точных объемов и т.д.

ЛАБОРАТОРНАЯ РАБОТА

ПРИГОТОВЛЕНИЕ РАСТВОРОВ ЗАДАННОЙ КОНЦЕНТРАЦИИ

Опыт 1. Приготовление растворов кислот за­данной концентрации

Раствор готовится разбавлением более концентрированного раствора исходной кислоты.

В соответствии со своим вариантом (таблица 1) рассчитайте (с точностью до десятых долей миллилит­ра) объемы кислот, необходимые для приготовления указанного объема раствора с заданной концентрацией.

Таблица 1. Варианты для выполнения опыта 1

Вариант Н2SO4 HNO3 HCl
0,1М 0,01н 12%
0,01н 0,1М 8%
0,001М 0,05н 4%
0,05н 0,001М 6%
0,005М 0,025н 2%
0,025н 0,005М 10%
20% 0,01н
26% 0,02н 0,1М
30% 0,01М 0,05н
38% 0,25н 0,001М
40% 0,005М 0,025н
0,025н 60% 0,005М
0,8М 56%
0,5н 18%
0,75н 10% 0,5М

Плотность растворов некоторых кислот при 20°С (г/мл)

Массовая доля, % H2SO4 HNO3 HCl
1.0116 1.0091 1.0081
1.0250 1.0202 1.0179
1.0385 1.0314 1.0278
1.0522 1.0427 1.0377
1.0661 1.0543 1.0476
1.0802 1.0660 1.0576
1.0947 1.0780 1.0676
1.1094 1.0901 1.0777
1.1245 1.1025 1.0878
1.1398 1.1150 1.0980
1.1554 1.1277 1.1083
1.1714 1.1406 1.1185
1.1872 1.1536 1.1288
1.2031 1.1668 1.1391
1.2191 1.1801 1.1492
1.2353 1.1934 1.1594
1.2518 1.2068 1.1693
1.2685 1.2022 1.1791
1.2855 1.2335 1.1886
1.3028 1.2466 1.1977
1.3205 1.259
1.3386 1.272
1.3570 1.285
1.3759 1.297
1.3952 1.310
1.4149 1.322
1.4351 1.333
1.4558 1.345
1.4770 1.356
1.4987 1.367
1.520 1.377
1.542 1.386
1.565 1.396
1.587 1.405
1.6105 1.413
1.634 1.422
1.657 1.430
1.681 1.437
1.704 1.445
1.7272 1.452
1.749 1.459
1.769 1.465
1.802 1.477
1.8144 1.482
1.8240 1.487
1.8312 1.409
1.8355 1.497
1.8361 1.505
1.8305 1.513

Пример 1. Нужно узнать объем 96% Н2SO4 (ρ=1,8355 г/мл), необходимый для приготовления 500мл 1М раствораН2SO4.

Вычислим, в какой массе 96% раствора содержится 49г Н2SO4:

ω%= ∙100% (2), следовательно, m р-ра = = =51г.

Переведем массу 96% раствора Н2SO4 в объем, учитывая плотность:

ρ= (3), значит V = =27,8 мл

Если необходимо приготовить раствор Н2SO4 с заданной нормальностью, расчеты ведут аналогично, но при расчете необходимой массы кислоты вместо формулы 1 пользуются формулой:

Пример 2. Нужно узнать объем 36% HCl (ρ=1,1791 г/мл), необходимый для приготовления 250 мл 20% раствора НСl (ρ= 1,0980 г/мл).

Найдем массу 250 мл 20% раствора НСl:

ρ= , значитm (20% р-ра)= ρ∙ V=1,0980г/мл∙250мл=274,5г.

Узнаем массу кислоты, необходимую для приготовления 247,5 г 20% раствора НСl:

ω%= ∙100%, следовательно m(НСl)= = =54,9г.

Вычислим, в какой массе 36% раствора содержится 54,9 г НСl:

ω%= ∙100% , тогда m р-ра = = =152,5г.

Переведем массу 36% раствора НСl в объем, учитывая плотность:

ρ= , значит V = =129,3 мл

Результат запишите в таблицу

Объем раствора кислоты Объем воды

Про­верьте правильность своих расчетов, показав их преподавателю.

Опыт 2. Приготовление раствора соли с заданной массовой долей (%) из навески соли

Рассчитайте, сколько граммов соли и воды потребуются для приготовления 100 г раствора соли заданной концентрации в соответствии со своим вариантом (таблица 3).

Таблица 3. Варианты для выполнения опыта 2

Вариант КВr MgSO4∙7Н2О NaH2PO4∙2Н2О
1% 14% 4%
3% 10% 7%
5% 12% 1%
8% 6% 10%
10% 3% 15%
14% 1% 9%
0,5% 24% 2%
20% 0,5% 7%
2% 20% 0,5%
40% 5% 20%
9% 16% 5%
24% 5% 16%
6% 18% 3%
4% 20% 32%
30% 7% 40%

Пример 1. Нужно узнать какую массу медного купороса CuSO4∙5Н2О и какой объем воды необходимо взять для приготовления 500 г раствора с массовой долей 16 %.

Найдем массу CuSO4, необходимую для приготовления 500г 16% раствора:

ω%= ∙100% (1), следовательно, m (CuSO4)= = =80г.

М(CuSO4) = 64∙2+32+16∙4=160 г/моль.

Учитывая, что приготовление раствора производится из кристаллогидрата CuSO4∙5Н2О, составим пропорцию:

Находим массу воды:

значит m(Н2О)= m(р-ра) - m(CuSO4∙5Н2О)=500-125=375 г или 375 мл.

В том случае, если раствор готовится из безводной соли, используют формулы 1 и 2 и не прибегают к составлению пропорции:

Результат запишите в таблицу

Масса навески соли Масса воды

Про­верьте правильность расчета, показав его преподавателю.

Приблизительные растворы. При приготовлении приблизительных растворов количества веществ, которые должны быть взяты для этого, вычисляют с небольшой точностью. Атомные веса элементов для упрощения расчетов допускается брать округленными иногда до целых единиц. Так, для грубого подсчета атомный вес железа можно принять равным 56 вместо точного —55,847; для серы — 32 вместо точного 32,064 и т. д.

Вещества для приготовления приблизительных растворов взвешивают на технохимических или технических весах.

Принципиально расчеты при приготовлении растворов совершенно одинаковы для всех веществ.

Количество приготовляемого раствора выражают или в единицах массы (г, кг), или в единицах объема (мл, л), причем для каждого из этих случаев вычисление количества растворяемого вещества проводят по-разному.

Пример. Пусть требуется приготовить 1,5 кг 15%-ного раствора хлористого натрия; предварительно вычисляем требуемое количе-ство соли. Расчет проводится согласно пропорции:



т. е. если в 100 г раствора содержится 15 г соли (15%), то сколько ее потребуется для приготовления 1500 г раствора?

Расчет показывает, что нужно отвесить 225 г соли, тогда воды иужио взять 1500 — 225 = 1275 г. ¦

Если же задано получить 1,5 л того же раствора, то в этом случае по справочнику узнают его плотность, умножают последнюю на заданный объем и таким образом находят массу требуемого количества раствора. Так, плотность 15%-нoro раствора хлористого натрия при 15 0C равна 1,184 г/см3. Следовательно, 1500 мл составляет



Следовательно, количество вещества для приготовления 1,5 кг и 1,5 л раствора различно.

Расчет, приведенный выше, применим только для приготовления растворов безводных веществ. Если взята водная соль, например Na2SO4-IOH2O1 то расчет несколько видоизменяется, так как нужно принимать во внимание и кристаллизационную воду.

Пример. Пусть нужно приготовить 2 кг 10%-ного раствора Na2SO4, исходя из Na2SO4 *10H2O.

Молекулярный вес Na2SO4 равен 142,041, a Na2SO4*10H2O 322,195, или округленно 322,20.

Расчет ведут вначале па безводную соль:



Следовательно, нужно взять 200 г безводной соли. Количество десятиводной соли находят из расчета:



Воды в этом, случае нужно взять: 2000 — 453,7 =1546,3 г.

Так как раствор не всегда готовят с пересчетом на безводную соль, то на этикетке, которую обязательно следует наклеивать на сосуд с раствором, нужно указать, из какой соли приготовлен раствор, например 10%-ный раствор Na2SO4 или 25%-ный Na2SO4*10H2O.

Часто случается, что приготовленный ранее раствор нужно разбавить, т. е. уменьшить его концентрацию; растворы разбавляют или по объему, или по массе.

Пример. Нужно разбавить 20%-ный раствор сернокислого аммония так, чтобы получить 2 л 5%-иого раствора. Расчет ведем следующим путем. По справочнику узнаем, что плотность 5%-ного раствора (NH4)2SO4 равна 1,0287 г/см3. Следовательно, 2 л его должны весить 1,0287*2000 = 2057,4 г. В этом количестве должно находиться сернокислого аммония:



Теперь можно подсчитать, сколько нужно взять 20%-ного рас* твора, чтобы получить 2 л 5%-ного раствора.



Полученную массу раствора можно пересчитать на объем его. Для этого массу раствора делят на его плотность (плотность 20%-ного раствора равна 1.1149 г/см3), т. е.



Учитывая, что при отмеривании могут произойти потери, нужно взять 462 мл и довести их до 2 л, т. е. добавить к ним 2000—462 = = 1538 мл воды.

Если же разбавление проводить по массе, расчет упрощается. Но вообще разбавление проводят из расчета на объем, так как жидкости, особенно в больших количествах, легче отмерить по объему, чем взвесить.

Нужно помнить, что при всякой работе как с растворением, так и с разбавлением никогда не следует выливать сразу всю воду в сосуд. Водой ополаскивают несколько раз ту посуду, в которой проводилось взвешивание или отмеривание нужного вещества, и каждый раз добавляют эту воду в сосуд для раствора.

Когда не требуется особенной точности, при разбавлении растворов или смешивании их для получения растворов другой концентрации можно пользоваться следующим простым и быстрым способом.

Возьмем разобранный уже случай разбавления 20%-ного раствора сернокислого аммония до 5%-ного. Пишем вначале так:



где 20 — концентрация взятого раствора, 0 — вода и 5'—-требуемая концентрация. Теперь из 20 вычитаем 5 и полученное значение пишем в правом нижнем углу, вычитая же нуль из 5, пишем цифру в правом верхнем углу. Тогда схема примет такой вид:



Это значит, что нужно взять 5 объемов 20%-ного раствора и 15 объемов воды. Конечно, такой расчет не отличается точностью.

Если смешивать два раствора одного и того же вещества, то схема сохраняется та же, изменяются только числовые значения. Пусть смешением 35%-ного раствора и 15%-ного нужно приготовить 25%-ный раствор. Тогда схема примет такой вид:



т. е. нужно взять по 10 объемов обоих растворов. Эта схема дает приблизительные результаты и ею можно пользоваться только тогда, когда особой точности не требуется.Для всякого химика очень важно воспитать в себе привычку к точности в вычислениях, когда это необходимо, и пользоваться приближенными цифрами в тех случаях, когда это не повлияет на результаты работы.Когда нужна большая точность при разбавлении растворов, вычисление проводят по формулам.

Разберем несколько важнейших случаев.

Приготовление разбавленного раствора. Пусть с — количество раствора, m%—концентрация раствора, который нужно разбавить до концентрации п%. Получающееся при этом количество разбавленного раствора х вычисляют по формуле:



а объем воды v для разбавления раствора вычисляют по формуле:



Смешивание двух растворов одного и того же вещества различной концентрации для получения раствора заданной концентрации. Пусть смешиванием а частей m%-ного раствора с х частями п%-ного раствора нужно получить /%-ный раствор, тогда:



Точные растворы. При приготовлении точных растворов вычисление количеств нужных веществ проверят уже с достаточной степенью точности. Атомные весы элементов берут по таблице, в которой приведены их точные значения. При сложении (или вычитании) пользуются точным значением слагаемого с наименьшим числом десятичных знаков. Остальные слагаемые округляют, оставляя после запятой одним знаком больше, чем в слагаемом с наименьшим числом знаков. В результате оставляют столько цифр после запятой, сколько их имеется в слагаемом с наименьшим числом десятичных знаков; при этом производят необходимое округление. Все расчеты производят, применяя логарифмы, пятизначные или четырехзначные. Вычисленные количества вещества отвешивают только на аналитических весах.

Взвешивание проводят или на часовом стекле, или в бюксе. Отвешенное вещество высыпают в чисто вымытую мерную колбу через чистую сухую воронку небольшими порциями. Затем из промывалки несколько раз небольшими порциями воды обмывают над воронкой бнже или часовое стекло, в котором проводилось взвешивание. Воронку также несколько раз обмывают из промывалки дистиллированной водой.

Для пересыпания твердых кристаллов или порошков в мерную колбу очень удобно пользоваться воронкой, изображенной на рис. 349. Такие воронки изготовляют емкостью 3, 6, и 10 см3. Взвешивать навеску можно непосредственно в этих воронках (негигроскопические материалы), предварительно определив их массу. Навеска из воронки очень легко переводится в мерную колбу. Когда навеска пересыпается, воронку, не вынимая из горла колбы, хорошо обмывают дистиллированной водой из промывалки.

Как правило, при приготовлении точных растворов и переведении растворяемого вещества в мерную колбу растворитель (например, вода) должен занимать не более половины емкости колбы. Закрыв пробкой мерную колбу, встряхивают ее до полного растворения твердого вещества. После этого полученный раствор дополняют водой до метки и тщательно перемешивают.

Молярные растворы. Для приготовления 1 л 1 M раствора какого-либо вещества отвешивают на аналитических весах 1 моль его и растворяют, как указано выше.

Пример. Для приготовления 1 л 1 M раствора азотнокислого серебра находят в таблице или подсчитывают молекулярную массу AgNO3, она равна 169,875. Соль отвешивают и растворяют в воде.

Если нужно приготовить более разбавленный раствор (0,1 или 0,01 M), отвешивают соответственно 0,1 или 0,01 моль соли.

Если же нужно приготовить меньше 1 л раствора, то растворяют соответственно меньшее количество соли в соответствущем объеме воды.

Нормальные растворы готовят аналогично, только отвешивая не 1 моль, а 1 грамм-эквивалент твердого вещества.

Если нужно приготовить полунормальный или децинормальный раствор, берут соответственно 0,5 или 0,1 грамм-эквивалента. Когда готовят не 1 л раствора, а меньше, например 100 или 250 мл, то берут1/10 или 1/4 того количества вещества, которое требуется для приготовления I л, и растворяют в соответствующем объеме воды.



Рис 349. Воронки для пересыпания навески а колбу.

После приготовления раствора его нужно обязательно проверить титрованием соответствующим раствором другого вещества с известной нормальностью. Приготовленный раствор может не отвечать точно той нормальности, которая задана. В таких случаях иногда вводят поправку.

Расчет при приготовлении титрованного раствора по определяемому веществу ведут также по грамм-эквиваленту растворяемого вещества, пользуясь формулой:



Пример. Пусть нужно приготовить 3 л раствора марганцовокислого калия с титром по железу 0,0050 г/мл. Грамм-эквивалент KMnO4 равен 31,61., а грамм-эквивалент Fe 55,847.

Вычисляем по приведенной выше формуле:



Стандартные растворы. Стандартными называют растворы с разными, точно определенными концентрациями, применяемые в колориметрии, например растворы, содержащие в 1 мл 0,1, 0,01, 0,001 мг и т. д. растворенного вещества.

Кроме колориметрического анализа, такие растворы бывают нужны при определении рН, при нефелометрических определениях и пр. Иногда стандартные растворы" хранят в запаянных ампулах, однако чаще приходится готовить их непосредственно перед применением. Стандартные растворы готовят в объеме не больше 1 л, а ча ще — меньше. Только при большом расходе стандартного раствори можно готовить несколько литров его и то при условии, что стандартный раствор не будет храниться длительный срок.

Количество вещества (в г), необходимое для получения таких растворов, вычисляют по формуле:



Пример. Нужно приготовить стандартные растворы CuSO4 • 5H2O для колориметрического определения меди, причем в 1 мл первого раствора должно содержаться 1 мг меди, второго — 0,1 мг, третьего —0,01 мг, четвертого — 0,001 мг. Вначале готовят достаточное количество первого раствора, например 100 мл.

В данном случае Mi = 249,68; АСu = 63,54; следовательно, для приготовления 100 мл раствора, 1 мл которого содержал бы 1 мг меди (Т = 0,001 г/мл), нужно взять



Навеску соли переносят в мерную колбу емкостью 100 мл и добавляют воду до метки. Другие растворы готовят соответствующим разбавлением приготовленного.

Эмпирические растворы. Концентрацию этих растворов чаще всего выражают в г/л или г/мл. Для приготовления эмпирических растворов применяют очищенные перекристаллизацией вещества или реактивы квалификации ч. д. а. или х. ч.

Пример. Нужно приготовить 0,5 л раствора CuSO4, содержашего Cu 10 мг/мл. Для приготовления раствора применяют CuSO4 • 5H2O.

Чтобы подсчитать, сколько следует взять этой солн для приготовления раствора заданного объема, подсчитывают, сколько Cu должно содержаться в нем. Для этого объем умножают на заданную концентрацию, т. е.

500*10 = 5000 мг, или 5,0000 г

После этого, зная молекулярный вес соли, подсчитывают нужное количество ее:



На аналитических весах отвешивают в бюксе точно 19,648 г чистой соли, переводят ее в мерную колбу емкостью 0,5 л. Растворение проводят, как указано выше.

Растворы в химии – это однородные системы, состоящие из двух и более компонентов, состав которых может меняться в широких пределах. Частицы растворов невозможно увидеть даже с помощью микроскопа. Растворы могут быть концентрированными или разбавленными, насыщенными или ненасыщенными.

Что называют раствором в химии

  1. растворитель – компонент, агрегатное состояние которого идентично с состоянием раствора;
  2. растворяемое вещество – вещество, находящееся в любом агрегатном состоянии.

Свойства раствора могут не повторять свойства чистого вещества. Например, сладкая вода – это результат растворения пищевого сахара С12Н22О11 в воде Н2О. Сладкая вода по многим параметрам отличается от чистой воды и сахара.

Вода

Пищевой сахар

Сладкая вода

Классификация растворов

Насыщенные и ненасыщенные растворы

Раствор, в котором вещество при определенной температуре больше не растворяется, называют насыщенным. Раствор, в котором вещество еще может растворяться, называют ненасыщенным. Насыщенные и ненасыщенные солевые растворы характеризуют с точки зрения растворимости.

Растворимость, или коэффициент растворимости – это максимально возможное число граммов вещества, которое может раствориться в 100 г растворителя при данной температуре. Например, в справочнике указано, что в 100 г растворителя растворяется 3 г вещества. Для приготовления насыщенного раствора соли в 100 г растворителя необходимо растворить 2 г вещества, а если растворить 3 г вещества, то образуется насыщенная однородная смесь.

Растворимость у всех веществ различна. Растворяемое вещество можно классифицировать на несколько групп в зависимости от растворимости:

  1. хорошо растворимые (пищевой сахар);
  2. малорастворимые (поваренная соль);
  3. практически нерастворимые (хлорид серебра (I)).

Что такое концентрированный и разбавленный раствор

Концентрированные растворы – это однородные смеси, в которых содержание растворенного вещества и растворителя сравнимы. Разбавленные растворы – это однородные смеси, в которых содержание растворенного вещества ниже, чем содержание растворителя. Из малорастворимых и нерастворимых веществ невозможно приготовить концентрированные растворы.

Насыщенный и концентрированный растворы: характеристика, описание

Количественные характеристики

В первом случае массовую долю выражают в процентах %, а во втором единицы измерения не указываются. Также растворы можно выразить с помощью молярной концентрации (молярности):

Приготовление

  1. расчет количества растворителя и вещества;
  2. растворение нужного количества вещества в необходимом объеме растворителя.

Чтобы приготовить разбавленный раствор, необходимо добавить отмеренный объем растворителя в концентрированный.

Для приготовления насыщенного раствора, например, хлорида натрия нужно взвесить максимальную массу вещества, которая растворяется в 100 г воды без осадка. Затем вещество растворить в 100 мл воды. Для приготовления ненасыщенного раствора нужно взвесить меньшую массу вещества.

Задачи на растворы

Задача №1. Смешали 5 г хлорида натрия NaCl в 55 г дистиллированной воды Н2О. Найдите массовую долю растворенного вещества.

Дано:

Решение:

mр-ра= m(NaCl) + m(H2O)=5 г + 55 г = 60 г

w(NaCl) = (5 г/60 г) * 100% = 8,33 %

Ответ: w(NaCl) = 8,33 %

Найти: w(NaCl) — ?

Задача №2. Сколько необходимо взять безводного хлорида калия KCl и воды Н2О для приготовления раствора массой 100 г и массовой долей хлорида калия KCl 13 %?

Дано:

Решение:

  1. w(KCl) = m(KCl)/mр-ра
  2. m(KCl) = w* mр-ра
    m(KCl) = 0,13*100 г = 13 г
  3. mр-ра= m(KCl) + m(Н2О)
    m(Н2О) = mр-ра — m(KCl)
    m(Н2О) = 100 г — 13 г = 87 г

Ответ: m(Н2О) = 87 г, m(KCl) = 13 г

Найти:

Задача №3. В воде Н2О растворили 8 г хлорида натрия NaCl. Объем раствора довели до 90 мл. Определите молярную концентрацию полученного раствора.

Дано:

Vр-ра = 90 мл = 0,09 л

Решение:

M(NaCl) = 23 + 35,5 = 58,5 г/моль

n(NaCl) = 8 г/58,5 г/моль = 0,137 моль

с(NaCl) = 0,137 моль/0,09 л = 1,52 моль/л

Ответ: с(NaCl ) = 1,52 моль/л

Найти:

Задача №4. Какая масса карбоната кальция CaCO3 необходима для получения раствора этой соли, объем которого равен 150 мл, а концентрация 1,5 моль/л.

Дано:

Vр-ра = 150 мл = 0,15 л

Решение:

Ответ: m(CaCO3)=22,5 г

Найти:

Чем отличается насыщенный раствор от концентрированного

Концентрированный раствор содержит большое количество растворенного вещества, но вещество все еще может растворяться при данной температуре, а в насыщенном вещество при данной температуре растворятся больше не может. Насыщенный раствор не всегда является концентрированным, это справедливо для малорастворимых веществ и для некоторых растворов, находящихся при низкой температуре.

Применение насыщенных и концентрированных растворов

Применение концентрированных растворов повышает качество готовых лекарственных препаратов, а также ускоряет отпуск лекарств больным. Насыщенные растворы могут применять в качестве стандартных растворов при исследовании изотерм сорбции паров воды или гигроскопических свойств солей.

Точность расчетов при приготовлении растворов зависит оттого, какой готовят раствор: приблизительный или точный. При расчетах приблизительных растворов атомные и молекулярные массы округляют до трех значащих цифр. Так, например, атомную массу хлора принимают равной 35,5 вместо 35,453, атомную массу водорода — 1,0 вместо 1,00797 и т. п. Округление ведут обычно в большую сторону.

При приготовлении стандартных растворов вычисления проводят с точностью до пяти значащих цифр. Атомные массы элементов берут с такой же точностью. При расчетах пользуются пятизначными или четырехзначными логарифмами. Растворы, концентрацию которых будем затем устанавливать титрованием, готовят, как и приблизительные.

Растворы могут быть приготовлены растворением твердых веществ, жидкостей или разбавлением более концентрированных растворов.

Расчеты при приготовлении растворов нормальной концентрации

Навеску вещества (г) для приготовления раствора определенной нормальности рассчитывают по формуле:

где Э — химический эквивалент растворяемого вещества;

N — требуемая нормальность раствора, г-экв/л;

V — объем раствора, мл.

Навеску вещества обычно растворяют в мерной колбе. Разбавленные приблизительные растворы можно готовить, растворяя навеску вещества в объеме растворителя, равном объему раствора. Этот объем может быть отмерен мерным цилиндром или мензуркой.

Если раствор готовят из навески кристаллогидрата вещества, то в расчетное уравнение для определения навески подставляют величину химического эквивалента кристаллогидрата.

При приготовлении раствора с определенной нормальной концентрацией путем разбавления более концентрированного раствора объем концентрированного раствора (мл) рассчитывают по формуле:

где Тк — концентрация концентрированного раствора, г/л, или:

где Nк — нормальность концентрированного раствора, или:

где pк — процентная концентрация концентрированного раствора;

dк — плотность концентрированного раствора, г/см 3 .

Концентрированные растворы разбавляют в мерных колбах. При приготовлении точных растворов (например, эталонных растворов из более концентрированного стандартного раствора) концентрированные растворы отмеривают пипетками или приливают их из бюреток. При приготовлении приблизительных растворов разбавление можно делать путем смешивания концентрированного раствора с объемом воды, равным разности между объемами разбавленного и концентрированного растворов:

Расчеты при приготовлении растворов, концентрация которых выражена в граммах на 1 л

Величину навески вещества (г) для таких растворов рассчитывают по формуле:

где Т — концентрация раствора, г/л;

V — объем раствора, мл.

Растворение вещества обычно ведут в мерной колбе с доведением объема раствора после растворения до метки. Приблизительные растворы можно готовить путем растворения навески в объеме воды, равном объему раствора.

Если раствор готовят из навески кристаллогидрата, а концентрация раствора выражена из расчета на безводное вещество, навеску кристаллогидрата вычисляют по формуле:

где Mk — молекулярная масса кристаллогидрата;

М —молекулярная масса безводного вещества.

При приготовлении растворов путем разбавления более концентрированных объем концентрированного раствора определяют по формуле:

где Tk — концентрация концентрированного раствора, г/л, или:

где pk — процентная концентрация концентрированного раствора;

dk — плотность концентрированного раствора, г/см 3 ;

где Nk — нормальная концентрация концентрированного раствора; Э — химический эквивалент вещества.

Растворы готовят так же, как и при приготовлении растворов определенной нормальной концентрации путем разбавления более концентрированных растворов.

где N1, Т1, N3, T3 — концентрации смешиваемых растворов;

N2, Т2 — концентрации раствора, полученного при смешивании;

V1, V3 — объемы смешиваемых растворов.

Если раствор готовят разбавлением концентрированного раствора водой, то N3 = 0 или Т3 = 0. Например, для приготовления раствора концентрации Т2 = 50 г/л из растворов концентрации T1 = 100 г/л и T3 = 20 г/л необходимо смешать объем V1 = 50 – 20 = 30 мл раствора концентрации 100 г/л и V3 = 100 – 50 = 50 мл раствора концентрации 20 г/л:

Расчеты при приготовлении растворов определенной процентной концентрации

Массу навески (г) рассчитывают по формуле:

где p — процентная концентрация раствора;

Q — масса раствора, г.

Если задан объем раствора V, массу раствора определяют:

где d — плотность раствора, г/см 3 (может быть найдена в справочных таблицах).

Массу навески при заданном объеме раствора рассчитывают:

Массу воды для растворения навески определяют:

Так как масса воды численно приблизительно равна ее объему, то воду обычно отмеривают мерным цилиндром.

Если раствор готовят растворением кристаллогидрата вещества, а концентрация раствора выражена в процентах безводного вещества, то массу кристаллогидрата рассчитывают по формуле:

где Мk — молекулярная масса кристаллогидрата;

М — молекулярная масса безводного вещества.

Приготовление растворов разбавлением более концентрированных удобно производить путем отмеривания определенных объемов растворов и воды, при этом объем концентрированного раствора вычисляют по формуле:

где dk — плотность концентрированного раствора.

Растворы определенной процентной концентрации готовят как приблизительные, а поэтому навески веществ с точностью до двух-трех значащих цифр взвешивают на технических весах, а для отмеривания объемов пользуются мензурками или мерными цилиндрами.

Например, для получения раствора в концентрации p2=10% из растворов концентрации p1=20% и р3=5% нужно смешать количество исходных растворов: m1=10-5=5г 20%-ного раствора и m3=20-10=10г 5%-ного раствора. Зная плотность растворов, можно легко определить требуемые для смешивания объемы.

Читайте также: